Mapping Toolbox ${ }^{\text {TM }}$
 Reference

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
www. mathworks.com
www.mathworks.com/sales_and_services
www. mathworks.com/matlabcentral
www.mathworks.com/support/contact_us

Phone:
508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Mapping Toolbox ${ }^{\mathrm{TM}}$ Reference
© COPYRIGHT 1997-2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

May 1997
October 1998
November 2000
July 2002
September 2003
January 2004
April 2004
June 2004
October 2004
March 2005
August 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022

First printing Second printing
Third printing
Online only Online only
Online only
Online only
Fourth printing
Online only
Fifth printing
Sixth printing
Online only
Online only
Seventh printing
Online only
Eighth printing
Online only
Online only Online only

New for Version 1.0
Version 1.1
Version 1.2 (Release 12)
Revised for Version 1.3 (Release 13)
Revised for Version 1.3.1 (Release 13SP1)
Revised for Version 2.0 (Release 13SP1+)
Revised for Version 2.0.1 (Release 13SP1+)
Revised for Version 2.0.2 (Release 14)
Revised for Version 2.0.3 (Release 14SP1)
Revised for Version 2.1 (Release 14SP2)
Minor revision for Version 2.1
Revised for Version 2.2 (Release 14SP3)
Revised for Version 2.3 (Release 2006a)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007b)
Revised for Version 2.7 (Release 2008a)
Revised for Version 2.7.1 (Release 2008b)
Revised for Version 2.7.2 (Release 2009a)
Revised for Version 3.0 (Release 2009b)
Revised for Version 3.1 (Release 2010a)
Revised for Version 3.2 (Release 2010b)
Revised for Version 3.3 (Release 2011a)
Revised for Version 3.4 (Release 2011b)
Revised for Version 3.5 (Release 2012a)
Revised for Version 3.6 (Release 2012b)
Revised for Version 3.7 (Release 2013a)
Revised for Version 4.0 (Release 2013b)
Revised for Version 4.0.1 (Release 2014a)
Revised for Version 4.0.2 (Release 2014b)
Revised for Version 4.1 (Release 2015a)
Revised for Version 4.2 (Release 2015b)
Revised for Version 4.3 (Release 2016a)
Revised for Version 4.4 (Release 2016b)
Revised for Version 4.5 (Release 2017a)
Revised for Version 4.5.1 (Release 2017b)
Revised for Version 4.6 (Release 2018a)
Revised for Version 4.7 (Release 2018b)
Revised for Version 4.8 (Release 2019a)
Revised for Version 4.9 (Release 2019b)
Revised for Version 4.10 (Release 2020a)
Revised for Version 5.0 (Release 2020b)
Revised for Version 5.1 (Release 2021a)
Revised for Version 5.2 (Release 2021b)
Revised for Version 5.3 (Release 2022a)

Functions
1

Functions

Map Viewer

(To be removed) View and explore data in map coordinates

Note The Map Viewer app will be removed in a future release.

Description

The Map Viewer app enables you to view geospatial data in map ($x-y$) coordinates. The Map Viewer works with vector, image, and raster data grids in a map coordinate system. You can pan and zoom on the map, specify the map scale of your screen display, and control the order, visibility, and symbolization of map layers. In addition, you can add annotations to your map and click to learn more about individual vector features.

	(Map Viewer I: View 1				
x:	Scale:Map unts:	1.2500	Active 1		
		¢s Surey Feet \sim			

Open the Map Viewer App

- MATLAB ${ }^{\circledR}$ command prompt: Enter mapview.

Limitations

The Select area tool ${ }^{[-}$-. is not supported in MATLAB Online ${ }^{\mathrm{Tm}}$. To view a particular region on the map, use the Zoom in, Zoom out, and Pan tools instead.

See Also

Functions

mapshow
Introduced before R2006a

addCustomBasemap

Add custom basemap

Syntax

addCustomBasemap(basemapName,URL)
addCustomBasemap(basemapName,mbtilesFilename)
addCustomBasemap(\qquad ,Name, Value)

Description

addCustomBasemap (basemapName, URL) adds the custom basemap specified by URL to the list of basemaps available for use with mapping functions. basemapName is the name you choose to call the custom basemap. Added basemaps remain available for use in future MATLAB sessions.

You can use custom basemaps with several types of map displays, for example, web maps created using the webmap function, geographic globes created using the geoglobe function, and geographic axes created using the geoaxes function.
addCustomBasemap(basemapName,mbtilesFilename) adds the custom basemap specified by mbtilesFilename, an MBTiles file containing a tile set of raster data. You can use the basemap in future MATLAB sessions, provided the MBTiles file is still on the same path as when you add it.

Web maps do not support custom basemaps created from MBTiles files.
addCustomBasemap(\qquad ,Name, Value) specifies name-value arguments that set additional parameters of the basemap.

Examples

Add Basemap from OpenStreetMap

Display locations on a geographic bubble chart using a basemap from OpenStreetMap®.
Define the name that you will use to specify your custom basemap.

```
name = 'openstreetmap';
```

Specify the website that provides the map data. The first character of the URL indicates which server to use to get the data. For load balancing, the provider has three servers that you can use: a, b, or c.

```
url = 'a.tile.openstreetmap.org';
```

Create an attribution to display on the map that gives credit to the provider of the map data. Web map providers might define specific requirements for the attribution.

```
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
```

Add the custom basemap to the list of basemap layers available.

```
addCustomBasemap(name,url,'Attribution',attribution)
```

Plot the locations over the map using a geographic bubble chart. You can specify your custom basemap when you create the geographic bubble chart.

```
lat = [42.3501 42.3515 42.3598 42.3584 42.3529];
lon = [-71.0870 -71.0926 -71.0662 -71.0598 -71.0662];
gb = geobubble(lat,lon,'Basemap','openstreetmap');
gb.BubbleWidthRange = 25;
gb.MapLayout = 'maximized';
gb.ZoomLevel = 14;
```


Add Basemap from USGS National Map

Display the route of a glider in 2-D and 3-D using a topographic basemap from the USGS National Map.

Before adding the basemap, specify the location of the map tiles. To do this, specify the URL of the National Map ArcGIS REST Services Directory. Then, add the path to the map tiles from the USGS Topo basemap service.

```
url = "https://basemap.nationalmap.gov/ArcGIS/rest/services";
fullurl = url + "/USGSTopo/MapServer/tile/${z}/${y}/${x}";
```

Specify a name for the basemap and attribution text to display with it.

```
nm = 'usgstopo';
att = 'Credit: US Geological Survey';
```

Finally, add the USGS Topo basemap.

```
addCustomBasemap(nm,fullurl,'Attribution',att)
```

Plot the path of a glider over the basemap. To do this, import latitude, longitude, and geoid height values.

```
trk = gpxread('sample_mixed','FeatureType','track');
lat = trk.Latitude;
lon = trk.Longitude;
h = trk.Elevation;
```

Display the path in 2-D using geographic axes. Specify the basemap using the geobasemap function and the name of the basemap. Use the basemap name given when you created it. Call hold on before plotting the line to prevent the basemap from resetting.

```
geoplot(lat,lon)
geobasemap('usgstopo')
hold on
geoplot(lat,lon,'r')
```


Display the path in 3-D using a geographic globe. Specify the basemap using the 'Basemap ' namevalue pair argument. By default, the view is directly above the path. Tilt the view by holding Ctrl and dragging.

```
uif = uifigure;
g = geoglobe(uif,'Basemap','usgstopo');
hold(g,'on')
geoplot3(g,lat,lon,h,'r')
```


Add Basemap from OpenTopoMap

Display the route of a glider on a web map using a basemap from OpenTopoMap.
Define the name that you will use to specify your custom basemap.

```
name = "opentopomap";
```

Specify the website that provides the map data. The first character of the URL indicates which server to use to get the data. For load balancing, the provider has three servers that you can use: a, b, or c.
url = "a.tile.opentopomap.org";
Create an attribution to display on the map that gives credit to the provider of the map data. Web map providers might define specific requirements for the attribution.

```
copyright = char(uint8(169));
attribution = [ ...
    "map data: " + copyright + "OpenStreetMap contributors,SRTM", ...
    "map style: " + copyright + "OpenTopoMap (CC-BY-SA)"];
```

Define the name that will appear in the Layer Manager to represent your custom basemap.

```
displayName = "Open Topo Map";
```

Add the custom basemap to the list of available basemap layers.

```
addCustomBasemap(name,url,"Attribution",attribution, ...
    "DisplayName",displayName)
```

Open a web map. Specify the custom basemap using the name you defined when you added it. Then, read glider data into the workspace and plot it over the basemap.
webmap opentopomap
trk = readgeotable("sample_mixed.gpx","Layer","tracks");
wmline(trk,"LineWidth", 2)

Add Several Basemaps from USGS National Map

Plot the path of a glider over a variety of maps that are available from the USGS National Map site. Viewing data over several maps can help you determine which map provides the best background.

Read in the glider path track data.
GT = readgeotable("sample_mixed.gpx","Layer","tracks");
Specify the custom basemap URL. The USGS National Map supports several tiled web maps. For this example, insert the word BASEMAP into the URL string. In this way, you can replace the word BASEMAP with the name of one of the maps supported by the USGS National Map.
baseURL = "https://basemap.nationalmap.gov/ArcGIS/rest/services";
usgsURL = baseURL + "/BASEMAP/MapServer/tile/\$\{z\}/\$\{y\}/\$\{x\}";
Specify a list of the names of USGS basemaps that you want to use. These names will be inserted into the URL in place of BASEMAP.

```
basemaps = ["USGSImageryOnly" "USGSImageryTopo" "USGSTopo" "USGSHydroCached"];
```

Specify a list of display names that you can use with each map. Use display names that are the same as those used by webmap so that webmap does not contain duplicate maps.

```
displayNames = ["USGS Imagery" "USGS Topographic Imagery" ...
    "USGS Shaded Topographic Map" "USGS Hydrography"];
maxZoomLevel = 16;
```

Create a map attribution to give credit to the provider of the map data.

```
attribution = "Credit: U.S. Geological Survey";
```

Create a loop in which you use each basemap with the geoplot function, plotting the glider data on each of the USGS basemaps.

```
for k =1:length(basemaps)
    basemap = basemaps(k);
    name = lower(basemap);
    url = replace(usgsURL,"BASEMAP",basemap);
    displayName = displayNames(k);
    addCustomBasemap(name,url,"Attribution",attribution, ...
            "DisplayName",displayName, "MaxZoomLevel", maxZoomLevel)
    figure
    geoplot(GT,"r","LineWidth",5);
    geobasemap(basemap)
    title(displayName)
end
```


USGS Topographic Imagery

Add Basemap from MBTiles File

Create a basemap from an MBTiles file containing USGS Imagery.
Add the USGS Imagery basemap to the list of basemaps available for use. The addCustomBasemap function uses the attribution and maximum zoom level contained in the file.

```
basemap = "usgsimagery";
mbtilesFilename = "usgsimagery.mbtiles";
addCustomBasemap(basemap,mbtilesFilename)
```

Read worldwide land areas into the workspace as a geospatial table. Create a subtable containing only Australia.

```
GT = readgeotable("landareas.shp");
australia = GT(GT.Name == "Australia",:);
```

Display the outline of Australia on a geographic axes. Update the basemap to use the USGS Imagery basemap.
figure
geoplot(australia,"LineWidth", 2,"FaceColor","none")
hold on
geobasemap("usgsimagery")

Input Arguments

basemapName - Name used to identify basemap programmatically

string scalar | character vector
Name used to identify basemap programmatically, specified as a string scalar or character vector.
Example: 'openstreetmap'
Data Types: string | char

URL - Parameterized map URL

string scalar | character vector
Parameterized map URL, specified as a string scalar or character vector. A parameterized URL is an index of the map tiles, formatted as $\$\{z\} / \$\{x\} / \$\{y\}$. png or $\{z\} /\{x\} /\{y\}$. png, where:

- $\$\{z\}$ or $\{z\}$ is the tile zoom level.
- $\$\{x\}$ or $\{x\}$ is the tile column index.
- $\$\{y\}$ or $\{y\}$ is the tile row index.

Example: 'https://hostname/\$\{z\}/\$\{x\}/\$\{y\}.png'
Data Types: string | char

mbtilesFilename - Name of MBTiles file

character vector | string scalar
Name of an MBTiles file containing a tile set of raster data, specified as a character vector or string scalar. You must include the extension .mbtiles. The form of mbtilesFilename depends on the location of your file.

- If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the file, such as "myFile.mbtiles".
- If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or relative path name, such as "C:/myfolder/myFile.mbtiles" or "dataDir/ myFile.mbtiles".

Data Types: char | string

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addCustomBasemap (basemapName, URL, "Attribution", attribution)

Attribution - Attribution of custom basemap

string scalar | string array | character vector | cell array of character vectors
Attribution of the custom basemap, specified as a string scalar, string array, character vector, or cell array of character vectors. To create a multiline attribution, specify a string array or nonscalar cell array of character vectors.

When you create a custom basemap from a URL, the default attribution is 'Tiles courtesy of DOMAIN_NAME_OF_URL', where DOMAIN_NAME_OF_URL is the domain name from the URL input argument. If the host is ' localhost', or if URL contains only IP numbers, specify the attribution as an empty string (" ").

When you create a custom basemap from an MBTiles file with an attribution in the metadata, the addCustomBasemap function gets the attribution from the file. If the file does not contain an attribution, the default attribution is an empty string.

Example: "Credit: U.S. Geological Survey"
Data Types: string | char | cell

DisplayName - Display name of custom basemap

string scalar | character vector
Display name of the custom basemap, specified as a string scalar or character vector.
The webmap function uses this name in the Layer Manager. The addToolbarMapButton function uses this name in the basemap picker.
Example: "OpenStreetMap"
Data Types: string | char

MaxZoomLevel - Maximum zoom level of basemap

18 (default) | integer in range [0, 25]
Maximum zoom level of the basemap, specified as an integer in the range [0, 25].
When you create a custom basemap from an MBTiles file with the maximum zoom level in the metadata, the addCustomBasemap gets the maximum zoom level from the file.
Data Types: single | double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

IsDeployable - Map is deployable using MATLAB Compiler ${ }^{\text {m }}$
 false or 0 (default) | true or 1

Map is deployable using MATLAB Compiler, specified as a numeric or logical 0 (false) or 1 (true).
To deploy a map application that uses a custom basemap, set IsDeployable to true. If you create the custom basemap from an MBTiles file, then you must include the file in the deployed application package, unless you deploy the application to the same computer you used to compile the application or if the file is on a network file system that the application can access from a different computer. You must set this argument whether you use the addCustomBasemap function in your application or outside your application.
Data Types: logical

Limitations

The addCustomBasemap function does not support adding custom basemaps from vector map tiles.

Tips

- You can find tiled web maps from various vendors, such as OpenStreetMap ${ }^{\circledR}$, the USGS National Map, Mapbox, DigitalGlobe, Esri ${ }^{\oplus}$ ArcGIS Online, the Geospatial Information Authority of Japan (GSI), and HERE Technologies. Abide by the map vendors terms-of-service agreement and include accurate attribution with the maps you use.
- To access a list of available basemaps, press Tab before specifying the basemap in your plotting function. This image shows a sample list of available basemaps, including several custom basemaps from the USGS National Map.

```
streets
streets-dark
streets-light
topographic
usgshydrocached
usgsimageryonly
usgsimagerytopo
usgstopo
```

geobubble (lat,lon, "Basemap","

See Also

geobasemap | geobubble | geoglobe | webmap | addToolbarMapButton |
removeCustomBasemap | readBasemapImage
Topics
"Use Basemaps in Offline Environments"
"Specify a Custom Base Layer"
Introduced in R2018b

addCustomTerrain

Add custom terrain data

Syntax

addCustomTerrain(terrainName,files)
addCustomTerrain(__ , Name, Value)

Description

addCustomTerrain(terrainName,files) adds terrain data specified by files for use with geographic plotting functions such as geoglobe. The terrain is named terrainName, and you can specify it by this name when calling a plotting function. Custom terrain data is available for current and future sessions of MATLAB, until you call removeCustomTerrain.
addCustomTerrain(\qquad ,Name, Value) adds custom terrain data with additional options specified by one or more name-value pairs.

Examples

Display Custom Terrain Using Geographic Globe

Display a line from the surface of Gross Reservoir to a point above South Boulder Peak using custom terrain.

First, add terrain for an area around South Boulder Peak by calling addCustomTerrain and specifying a DTED file. The DTED file is from the SRTM Void Filled data set, available from the US Geological Survey. Name the terrain 'southboulderpeak'.

```
addCustomTerrain('southboulderpeak','n39_w106_3arc_v2.dt1')
```

Create a geographic globe. Specify the terrain by name, using the 'Terrain' argument of the geoglobe function. Preserve the terrain after plotting by calling the hold function. Then, plot the line. Tilt the view by holding Ctrl and dragging.

```
uif = uifigure;
g = geoglobe(uif,'Terrain','southboulderpeak');
hold(g,'on')
lat = [39.95384 39.95];
lon = [-105.29916 -105.3608];
hTerrain = [10 0];
geoplot3(g,lat,lon,hTerrain,'y','HeightReference','Terrain', ...
    'LineWidth',3)
```


Close the geographic globe and remove the custom terrain.
close(uif)
removeCustomTerrain('southboulderpeak')

Input Arguments

terrainName - User-defined identifier for terrain data

string scalar | character vector
User-defined identifier for terrain data, specified as a string scalar or a character vector.
Data Types: char \| string

files - List of DTED files

string scalar | character vector | cell array of character vectors
List of DTED files, specified as a string scalar, a character vector or a cell array of character vectors.

Note If you specify multiple files, they must combine to define a complete rectangular geographic region. If not, you must set the name-value pair 'FillMissing' to 'true'.

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'FillMissing',true

Attribution - Attribution of custom terrain data
 character vector | string scalar

Attribution of custom terrain data, specified as a character vector or a string scalar. Attributions display on geographic plots that use the custom terrain. By default, the attribution is empty.

Data Types: char | string

FillMissing - Fill data of missing files with value 0

false (default)| true
Fill data of missing files with value 0 , specified as true or false. Missing file values are required to complete a rectangular geographic region with the input files.
Data Types: logical
WriteLocation - Name of folder to write extracted terrain files to
character vector | string scalar
Name of folder to write extracted terrain files to, specified as a character vector or a string scalar. The folder must exist and have write permissions. By default, addCustomTerrain writes extracted terrain files to a temporary folder that it generates using the tempname function.

Data Types: char | string

Tips

- To deploy an application with custom terrain using MATLAB Compiler, call addCustomTerrain in the application and include the DTED files in the deployed application package.
- You can find and download DTED files by using EarthExplorer, a data portal provided by the US Geological Survey (USGS). From the list of data sets, search for DTED files by selecting Digital Elevation, SRTM, and then SRTM 1 Arc-Second Global and SRTM Void Filled.

See Also

removeCustomTerrain | geoglobe |addCustomBasemap

Topics

"Access Basemaps and Terrain for Geographic Globe"

Introduced in R2020a

addToolbarMapButton

Add map button to toolbar

Syntax

```
addToolbarMapButton(tb)
addToolbarMapButton(tb,"basemap")
addToolbarMapButton(tb,"basemap",Name=Value)
```


Description

addToolbarMapButton(tb) adds all map buttons to the axes toolbar tb. The axes toolbar must be in a GeographicAxes object and the GeographicAxes object must be in a figure created by using the uifigure function.
addToolbarMapButton(tb, "basemap") creates a basemap picker and adds it to the axes toolbar.
Open the basemap picker by selecting \mathbb{T} Pick Basemap from the axes toolbar. The basemap picker appears near the upper-right corner of the map.
addToolbarMapButton(tb, "basemap", Name=Value) specifies basemap options using namevalue arguments. For example, specify basemaps to include in the basemap picker by using the BasemapNames name-value argument.

Examples

Add and Remove Map Buttons from Toolbar

Create a figure by using the uifigure function. Place a geographic axes in the figure.
uif = uifigure;
gx = geoaxes(uif);
Create a custom axes toolbar. Add all map buttons to the toolbar.

```
tb = axtoolbar(gx,"default");
addToolbarMapButton(tb)
```

Remove all map buttons from the toolbar.

```
removeToolbarMapButton(tb)
```


Add Basemap Picker to Geographic Plot

Read latitude and longitude data from a shapefile into a table by using the readgeotable function.
T = readgeotable("tsunamis.shp", CoordinateSystemType="geographic");
lat = T.Shape.Latitude;
lon = T.Shape.Longitude;
Display the latitude and longitude data on a map. To add a basemap picker to the toolbar, you must create a figure by using the uifigure function and a geographic axes within the figure by using the geoaxes function. By default, geographic plots use the "streets-light" basemap.

```
uif = uifigure;
gx = geoaxes(uif);
geoscatter(gx,lat,lon,"r+")
geolimits(gx,[-25.8016 27.4532],[96.9154 166.8728])
```

Preserve the specified toolbar, limits, and plotted data by using the hold function.
hold(gx,"on")
Create a custom toolbar by using the axtoolbar function. Add the basemap picker to the toolbar.

```
tb = axtoolbar(gx,"default");
addToolbarMapButton(tb,"basemap")
```


Open the toolbar and select a basemap.

Add Custom Basemap to Basemap Picker

Add the OpenStreetMap© basemap to the list of basemaps available for use with mapping functions. After you add the basemap, you do not need to add it again in future sessions. The basemap picker uses the display name you specify when you add the basemap.

```
name = "openstreetmap";
url = "https://a.tile.openstreetmap.org/${z}/${x}/${y}.png";
copyright = char(uint8(169));
displayName = "OpenStreetMap";
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,Attribution=attribution,DisplayName=displayName)
```

Read latitude and longitude data from a GPX file into a table.

```
T = readgeotable("sample_route.gpx");
lat = T.Shape.Latitude;
lon = T.Shape.Longitude;
```

Display the latitude and longitude data on a map.

```
uif = uifigure;
gx = geoaxes(uif);
geoplot(gx,lat,lon,LineWidth=2)
hold(gx,"on")
```

Add a basemap picker to the axes toolbar. Include the OpenStreetMap basemap and the high-zoomlevel basemaps provided by Esri®.
tb = axtoolbar(gx,"default");
bmaps = ["openstreetmap","streets","streets-light", ..
"streets-dark","topographic", "satellite"]
addToolbarMapButton(tb, "basemap", BasemapNames=bmaps)

Open the basemap picker and select the OpenStreetMap basemap.

Add Custom Icons to Basemap Picker

By default, the basemap picker uses the Level 1, North America tile as the icon for custom basemaps. Create a basemap picker with custom icons.

Add the OpenStreetMap basemap to the list of basemaps available for use with mapping functions. After you add the basemap, you do not need to add it again in future sessions.

```
name = "openstreetmap";
url = "https://a.tile.openstreetmap.org/${z}/${x}/${y}.png";
copyright = char(uint8(169));
displayName = "OpenStreetMap";
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,Attribution=attribution,DisplayName=displayName)
```

Read latitude and longitude data from a GPX file into a table.
T = readgeotable("sample_route.gpx");
lat = T.Shape.Latitude;
lon = T.Shape.Longitude;
Display the latitude and longitude data on a map.

```
uif = uifigure;
gx = geoaxes(uif);
```

```
geoplot(gx,lat,lon,LineWidth=2)
```

hold(gx,'on')

Specify the locations of the icons. For the custom basemap, use an icon that shows an area around Cape Town, South Africa. For the streets basemap, use the default icon.

```
osm_filename = "openstreetmap_256.png";
streets_filename = fullfile(matlabroot,"toolbox","shared","basemaps", ...
    "resources","icons","streets.png");
```

Create a basemap picker that includes the custom basemap, the "streets" basemap, and the custom icon.

```
tb = axtoolbar(gx,"default");
```


addToolbarMapButton(tb,"basemap",BasemapNames=["openstreetmap","streets"], ... BasemapIcons=[osm_filename,streets_filename])

Open the basemap picker and view the icons.

Input Arguments

tb - Axes toolbar

AxesToolbar object | array of AxesToolbar objects
Axes toolbar, specified as an AxesToolbar object or an array of AxesToolbar objects. The axes toolbar must be in a GeographicAxes object. Create the toolbar by using the axtoolbar function.

You can add only one of each type of map button to the axes toolbar. Adding a new button replaces any existing icons of the same type.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example:
addToolbarMapButton(tb,"basemap",BasemapNames=["streets","satellite"],NumColu $\mathrm{mns}=1$) specifies a basemap picker with one column and the "streets" and "satellite"
basemaps.

BasemapNames - Basemaps to include in basemap picker

string array | cell array of character vectors

Basemaps to include in the basemap picker, specified as a string array or a cell array of character vectors. You can specify the basemaps shown in the table and basemaps added using the addCustomBasemap function. Five basemaps in the table are high-zoom-level maps hosted by Esri. The other six basemaps are tiled data sets created using Natural Earth. By default, the basemap picker includes all available basemaps, including custom basemaps, except "none".

All basemaps except "darkwater" require Internet access. The "darkwater" basemap is included with MATLAB.

If you do not have consistent access to the Internet, you can download the basemaps created using Natural Earth onto your local system by using the Add-On Explorer. The five high-zoom-level maps are not available for download. For more information about downloading basemaps and changing the default basemap on your local system, see "Access Basemaps for Geographic Axes and Charts".

The basemaps hosted by Esri update periodically. As a result, you might see differences in your visualizations over time.

Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks ${ }^{\circledR}$.

If you specify any combination of BasemapNames, DisplayNames, and BasemapIcons, they must all be the same size. The elements of BasemapNames correspond with the elements of DisplayNames and BasemapIcons.
Example: BasemapNames=["streets","satellite"]
Data Types: char|string

DisplayNames - Basemap labels

string array | cell array of character vectors
Basemap labels, specified as a string array or a cell array of character vectors. When a label is longer than the width of a column, MATLAB breaks the label into separate lines so that each line fits within the width of the column, and avoids breaking words when possible. Basemap labels display up to three lines. MATLAB truncates labels that are longer than three lines.

The default display name for each basemap is:

- "satellite" - Satellite
- "streets" - Streets
- "streets-dark" - Streets (dark)
- "streets-light" - Streets (light)
- "topographic" - Topographic
- "darkwater" - Dark Water
- "bluegreen" - Blue Green
- "grayterrain" - Gray Terrain
- "colorterrain" - Color Terrain
- "landcover" - Land Cover
- "none" - none
- Custom basemap - Display name specified by the addCustomBasemap function. If you do not specify a display name when you add the custom basemap, then the basemap picker uses the basemap name.

Create a basemap picker with no display names by specifying DisplayNames as " ".
If you specify any combination of BasemapNames, DisplayNames, and BasemapIcons, they must all be the same size. The elements of DisplayNames correspond with the elements of BasemapNames and BasemapIcons.

Example: DisplayNames=["Road Map","Satellite Imagery"]
Data Types: char|string
BasemapIcons - Icon file names
string array | cell array of character vectors

Icon file names, specified as a string array or a cell array of character vectors. Supported image formats include JPEG, PNG, GIF, and SVG.

Specify file names based on the locations of your files.

- If a file is in your current folder or in a folder on the MATLAB path, then specify the name of the file only, such as "myIcon.png".
- If a file is not in the current folder or in a folder on the MATLAB path, then specify the full or relative path name, such as "C:\myfolder\myFile.png" or "dataDir\myFile.png".

The default basemap icons are in the folder matlabroot/toolbox/shared/basemaps/ resources/icons. When you add a custom basemap using the addCustomBasemap function, the default icon is the Level 1, North America tile.

When an icon has a side length greater than 80 pixels, MATLAB scales the icon to fit.
Create a basemap picker with no icon images by specifying BasemapIcons as " ". In this case, the icons display the basemap names instead of images.

If you specify any combination of BasemapNames, DisplayNames, and BasemapIcons, they must all be the same size. The elements of BasemapIcons correspond with the elements of BasemapNames and DisplayNames.
Example: BasemapIcons=["myIcon1.png", "myIcon2.png"]
Data Types: char|string

NumColumns - Number of basemap picker columns

2 (default) | positive integer
Number of basemap picker columns, specified as a positive integer.
Example: NumColumns=3
Data Types: single | double

Limitations

- When the Scrollable property of the figure is true, the basemap picker may not appear, or may appear in a different location than the upper-right corner.

See Also

Functions

axtoolbar|geoaxes|geobasemap|geoplot|geoscatter| removeToolbarMapButton

Topics

"Access Basemaps for Geographic Axes and Charts"

Introduced in R2021b

aer2ecef

Transform local spherical coordinates to geocentric Earth-centered Earth-fixed

Syntax

```
[X,Y,Z] = aer2ecef(az,elev,slantRange,lat0,lon0,h0,spheroid)
[___] = aer2ecef(___,angleUnit)
```


Description

$[X, Y, Z]=\operatorname{aer2ecef}(a z, e l e v, s l a n t R a n g e, l a t 0, l o n 0, h 0, s p h e r o i d)$ transforms the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange to the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z. Specify the origin of the local AER system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = aer2ecef(__ , angleUnit) specifies the units for azimuth, elevation, latitude, and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

Examples

Calculate ECEF Coordinates from AER Coordinates

Find the ECEF coordinates of a satellite, using the AER coordinates of the satellite relative to the geodetic coordinates of a satellite dish.

First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height, slant range, and ECEF coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometers');
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the satellite dish. Specify h0 as ellipsoidal height in kilometers.

```
lat0 = 42.3221;
lon0 = -71.3576;
h0 = 0.0847;
```

Specify the AER coordinates of the point of interest. In this example, the point of interest is the satellite. Specify the slant range in kilometers.
az = 24.8012;
elev = 14.6185;
slantRange = 36271.6327;
Then, calculate the ECEF coordinates of the satellite. In this example, the results display in scientific notation.

```
[x,y,z] = aer2ecef(az,elev,slantRange,lat0,lon0,h0,wgs84)
x = 1.0766e+04
y = 1.4144e+04
z = 3.3992e+04
```

Reverse the transformation using the ecef2aer function. In this example, slantRange displays in scientific notation.

```
[az,elev,slantRange] = ecef2aer(x,y,z,lat0,lon0,h0,wgs84)
az = 24.8012
elev = 14.6185
slantRange = 3.6272e+04
```


Input Arguments

az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Specify values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single|double

elev - Elevation angles

scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Specify elevations with respect to a plane that is perpendicular to the normal of the spheroid surface. If the local origin is on the surface of the spheroid ($\mathrm{h} 0=0$), then the plane is tangent to the spheroid.

Specify values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single|double

slantRange - Distances from local origin

scalar | vector | matrix | N-D array
Distances from the local origin, specified as a scalar, vector, matrix, or N-D array. Specify each distance as along a straight, 3-D, Cartesian line. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array

Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

Data Types: single | double

Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single \| double
h0 - Ellipsoidal height of local origin
scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double
spheroid - Reference spheroid
referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

Output Arguments

X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF x-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Y - ECEF \boldsymbol{y}-coordinates

scalar | vector \mid matrix | N-D array

ECEF y-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF z-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® $\operatorname{Coder}^{\mathrm{TM}}$.

See Also

aer2geodetic|ecef2aer|enu2ecef | ned2ecef

Topics

"Choose a 3-D Coordinate System"
Introduced in R2012b

aer2enu

Transform local spherical coordinates to local east-north-up

Syntax

[xEast,yNorth,zUp] = aer2enu(az,elev,slantRange)
[] = aer2enu(\qquad , angleUnit)

Description

[xEast,yNorth,zUp] = aer2enu(az,elev,slantRange) transforms the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange to the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zUp. Both coordinate systems use the same local origin. Each input argument must match the others in size or be scalar.
[___] = aer2enu(__ , angleUnit) specifies the units for azimuth and elevation. Specify angleUnit as 'degrees' (the default) or 'radians'.

Examples

Calculate ENU Coordinates from AER Coordinates

A sensor captures the AER coordinates of a nearby ground vehicle. Find the ENU coordinates of the vehicle with respect to the sensor, using the AER coordinates of the vehicle with respect to the same sensor.

First, specify the AER coordinates of the vehicle. Specify the azimuth and elevation in degrees. For this example, specify the slant range in meters.
az = 34.1160;
elev = 4.1931;
slantRange = 15.1070;
Then, calculate the ENU coordinates of the vehicle. The units for the ENU coordinates match the units specified by the slant range. Thus, the ENU coordinates are specified in meters.

```
[xEast,yNorth,zUp] = aer2enu(az,elev,slantRange)
xEast = 8.4504
yNorth = 12.4737
zUp = 1.1046
```

Reverse the transformation using the enu2aer function.

```
[az,elev,slantRange] = enu2aer(xEast,yNorth,zUp)
az = 34.1160
elev = 4.1931
```


Input Arguments

az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Specify values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

Data Types: single | double

elev - Elevation angles

scalar | vector \mid matrix | N-D array
Elevation angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Specify elevations with respect to the xEast-yNorth plane that contains the local origin. If the local origin is on the surface of the spheroid, then the xEast-yNorth plane is tangent to the spheroid.

Specify values in degrees. To use values in radians, specify the angleUnit argument as ' radians '.
Data Types: single | double
slantRange - Distances from local origin
scalar value | vector | matrix | N-D array
Distances from the local origin, specified as a scalar, vector, matrix, or N-D array. Specify each distance as along a straight, 3-D, Cartesian line.
Data Types: single | double
angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees' (the default) or 'radians '.

Output Arguments

xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU x-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Values are returned in the same units as the slantRange argument.

yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU y-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Values are returned in the same units as the slantRange argument.

ENU z-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Values are returned in the same units as the slantRange argument.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

aer2ned | enu2aer | aer2ecef | aer2geodetic
Topics
"Choose a 3-D Coordinate System"
Introduced in R2012b

aer2geodetic

Transform local spherical coordinates to geodetic

Syntax

[lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,spheroid) [___] = aer2geodetic(___, angleUnit)

Description

[lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,spheroid) transforms the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange to the geodetic coordinates specified by lat, lon, and h . Specify the origin of the local AER system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = aer2geodetic (\qquad , angleUnit) specifies the units for azimuth, elevation, latitude, and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

Examples

Calculate Geodetic Coordinates from AER Coordinates

Find the geodetic coordinates of the Matterhorn, using the AER coordinates of the Matterhorn with respect to the geodetic coordinates of Zermatt, Switzerland.

First, specify the reference spheroid as WGS 84. For more information about WGS 84, see "Reference Spheroids". The units for the ellipsoidal height and slant range must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.

```
wgs84 = wgs84Ellipsoid;
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is Zermatt. Specify h0 as ellipsoidal height in meters.

```
lat0 = 46.017;
lon0 = 7.750;
h0 = 1673;
```

Specify the AER coordinates of the point of interest. In this example, the point of interest is the Matterhorn. Specify the slant range in meters.

```
az = 238.08;
elev = 18.744;
slantRange = 8876.8;
```

Then, calculate the geodetic coordinates of the Matterhorn. The result h is the ellipsoidal height of the Matterhorn in meters. To view the results in standard notation, specify the display format as shortG.

```
format shortG
[lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,wgs84)
lat =
    45.977
lon =
    7.658
h =
    4 5 3 1
```

Reverse the transformation using the geodetic2aer function.

```
[az,elev,slantRange] = geodetic2aer(lat,lon,h,lat0,lon0,h0,wgs84)
az =
    238.08
elev =
    18.744
slantRange =
    8876.8
```


Input Arguments

az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Specify values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

elev - Elevation angles

scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Specify elevations with respect to a plane that is perpendicular to the normal of the spheroid surface. If the local origin is on the surface of the spheroid ($\mathrm{h} 0=0$), then the plane is tangent to the spheroid.

Specify values in degrees. To use values in radians, specify the angleUnit argument as ' radians '.
Data Types: single | double

slantRange - Distances from local origin

scalar \| vector \| matrix \| N-D array
Distances from the local origin, specified as a scalar, vector, matrix, or N-D array. Specify each distance as along a straight, 3-D, Cartesian line. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single | double

lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

Data Types: single | double

lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

Data Types: single | double

h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

Output Arguments

Lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

Lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-180 180]. To use values in radians, specify the angleUnit argument as 'radians'.

h - Ellipsoidal height

scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

aer2ecef | enu2geodetic | geodetic2aer | ned2geodetic

Topics

"Choose a 3-D Coordinate System"

Introduced in R2012b

aer2ned

Transform local spherical coordinates to local north-east-down

Syntax

[xNorth,yEast,zDown] = aer2ned(az,elev,slantRange)
[___] = aer2ned(___ ,angleUnit)

Description

[xNorth,yEast,zDown] = aer2ned(az,elev,slantRange) transforms the local spherical azimuth-elevation-range (AER) coordinates specified by az, elev, and slantRange to the local north-east-down (NED) coordinates specified by xNorth, yEast, and zDown. Both coordinate systems use the same local origin. Each input argument must match the others in size or be scalar.
[___] = aer2ned (__ , angleUnit) specifies the units for azimuth and elevation. Specify angleUnit as 'degrees' (the default) or 'radians'.

Examples

Calculate NED Coordinates from AER Coordinates

A sensor in an aircraft measures the AER coordinates of a nearby landmark. Find the NED coordinates of the landmark with respect to the aircraft, using the AER coordinates of the landmark with respect to the same aircraft.

First, specify the AER coordinates of the landmark. Specify the azimuth and elevation in degrees. For this example, specify the slant range in kilometers.
$a z=155.427 ;$
elev = -23.161;
slantRange $=10.885$;
Then, calculate the NED coordinates of the landmark. The units for the NED coordinates match the units specified by the slant range. Thus, the NED coordinates are specified in kilometers.
[xNorth,yEast,zDown] = aer2ned(az,elev,slantRange)
x North $=-9.1013$
yEast $=4.1617$
zDown $=4.2812$
Reverse the transformation using the ned2aer function.

```
[az,elev,slantRange] = ned2aer(xNorth,yEast,zDown)
az = 155.4270
elev = -23.1610
```


Input Arguments

az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Specify values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

elev - Elevation angles

scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, specified as a scalar, vector, matrix, or N-D array. Specify elevations with respect to the xNorth-yEast plane that contains the local origin. If the local origin is on the surface of the spheroid, then the xNorth-yEast plane is tangent to the spheroid.

Specify values in degrees. To use values in radians, specify the angleUnit argument as ' radians '.
Data Types: single | double

slantRange - Distances from local origin

scalar value | vector | matrix | N-D array
Distances from the local origin, specified as a scalar, vector, matrix, or N-D array. Specify each distance as along a straight, 3-D, Cartesian line.
Data Types: single | double
angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees' (the default) or 'radians '.

Output Arguments

xNorth - NED x-coordinates

scalar | vector | matrix | N-D array
NED x-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N -D array. Values are returned in the same units as the slantRange argument.

yEast - NED y-coordinates

scalar | vector | matrix | N-D array
NED y-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N - D array. Values are returned in the same units as the slantRange argument.

zDown - NED z-coordinates

scalar | vector | matrix | N-D array

NED z-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N - D array. Values are returned in the same units as the slantRange argument.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

aer2enu | ned2aer | aer2ecef | aer2geodetic
Topics
"Choose a 3-D Coordinate System"
Introduced in R2012b

almanac

Parameters for Earth, planets, Sun, and Moon
$\overline{\text { Note }}$ almanac is not recommended. Use earthRadius, referenceEllipsoid, referenceSphere, or wgs84Ellipsoid instead.

Syntax

almanac
almanac (body)
data $=$ almanac (body, parameter)
data $=$ almanac (body, parameter,units)
data $=$ almanac (parameter, units, referencebody)

Description

almanac displays the names of the celestial objects available in the almanac.
almanac (body) lists the options, or parameters, available for any of the following celestial bodies:

```
'earth' 'pluto'
'jupiter' 'saturn'
'mars' 'sun'
'mercury' 'uranus'
'moon' 'venus'
'neptune'
```

data $=$ almanac (body, parameter) returns the value of the requested parameter for the celestial body specified by body.

Valid parameter values are 'radius' for the planetary radius, 'ellipsoid' or 'geoid' for the two-element ellipsoid vector, 'surfarea' for the surface area, and 'volume' for the planetary volume.

For the Earth, parameter can also be any of the following valid predefined ellipsoid values. In this case, the two-element ellipsoid vector for that ellipsoid model is returned. Valid ellipsoid definitions for the Earth are:

'everest'	1830 Everest ellipsoid
'bessel'	1841 Bessel ellipsoid
'airy'	1830 Airy ellipsoid
'clarke66'	1866 Clarke ellipsoid
'clarke80'	1880 Clarke ellipsoid
'international'	1924 International ellipsoid
'krasovsky'	1940 Krasovsky ellipsoid
'wgs60'	1960 World Geodetic System ellipsoid

```
'iau65' 1965 International Astronomical Union ellipsoid
'wgs66' 1966 World Geodetic System ellipsoid
'iau68' 1968 International Astronomical Union ellipsoid
'wgs72' 1972 World Geodetic System ellipsoid
'grs80' 1980 Geodetic Reference System ellipsoid
'wgs84' 1984 World Geodetic System ellipsoid
```

For the Earth, the parameter values 'ellipsoid' and 'geoid' are equivalent to'grs80'. data $=$ almanac (body, parameter, units) specifies the units to be used for the output measurement, where units is any valid distance units. Note that these are linear units, but the result for surface area is in square units, and for volume is in cubic units. The default units are 'kilometers'.
data = almanac(parameter, units,referencebody) specifies the source of the information. This sets the assumptions about the shape of the celestial body used in the calculation of volumes and surface areas. A reference body of 'actual' returns a tabulated value rather than one dependent upon a ellipsoid model assumption. Other possible referencebody s are 'sphere' for a spherical assumption and 'ellipsoid' for the default ellipsoid model. The default reference body is 'sphere'.

For the Earth, any of the preceding predefined ellipsoid definition s can also be entered as a reference body.

For Mercury, Pluto, Venus, the Sun, and the Moon, the eccentricity of the ellipsoid model is zero, that is, the 'ellipsoid' reference body is actually a sphere.

Tips

Take care when using angular arc length units for distance measurements. All planets have a radius of 1 radian, for example, and an area unit of square degrees indicates unit squares, 1 degree of arc length on a side, not 1-degree-by-1-degree quadrangles.

See Also

distance |earthRadius| referenceEllipsoid| referenceSphere|wgs84Ellipsoid

Introduced before R2006a

angl2str

Convert angles to character array

Syntax

```
str = angl2str(angles)
str = angl2str(angles,signcode)
str = angl2str(angles,signcode,format)
str = angl2str(angles,signcode,format,n)
```


Description

str $=$ angl2str(angles) converts numeric angles in degrees to a character array that represents the angles. This function is useful for displaying angles as text on maps.
str $=$ angl2str(angles, signcode) returns a character array that represents the angles using the signs or directions specified by signcode.
str $=$ angl2str(angles, signcode,format) returns a character array that formats the angles as degrees, degrees-minutes, degrees-minutes-seconds, or radians. The function does not convert degrees to radians or vice-versa.
str $=$ angl2str(angles, signcode, format, n) specifies the number of decimal places to use in the character array.

Examples

Convert Angles to Character Array in Degrees

Convert numeric angles to a character array. By default, the angl2str function formats the angles as degrees.

```
angles = [-9.7 12.95 24];
str = angl2str(angles)
str = 3x16 char array
    - 9.70^{\circ}
    12.95^{\circ}
    24.00^{\circ}
```

Convert the same angles to a character array and prefix a plus sign (+) to the positive angles.

```
strPlus = angl2str(angles,"pm")
strPlus = 3x16 char array
    ' - 9.70^{\circ}
    ' +12.95^{\circ}
    ' +24.00^{\circ}
```


Convert Angles to Character Array in Specified Format

Convert the coordinates of Washington, DC to a character array that uses degrees-minutes. Remove the leading and trailing whitespaces.

```
lat = 38.9072;
lon = -77.0369;
latStr = angl2str(lat,"ns","degrees2dm");
latStr = strtrim(latStr);
lonStr = angl2str(lon,"ew","degrees2dm");
lonStr = strtrim(lonStr);
coordStr = "(" + latStr + ", " + lonStr + ")";
```

Display the location and character array on a map.

```
geoscatter(lat,lon,"filled")
text(lat,lon,coordStr,VerticalAlignment="top")
```


Convert Angles to Character Array with Specified Number of Digits

Convert angles in degrees to a character array. Round the angles to the nearest tenth.

```
angles = [8.523 -34.79 -89];
str = angl2str(angles,"none","degrees",-1)
str = 3x15 char array
    8.5^{\circ}
    -34.8^{\circ}
    ' - 89.0^{\circ}
```


Input Arguments

angles - Angles

numeric array
Angles in degrees or radians, specified as a numeric array.

signcode - Signs or directions to use in character array

"none" (default) | "ew" | "ns" | "pm"
Signs or directions to use in the character array, specified as one of these options:

- "ew" - Input angles are longitudes. The character array indicates positive longitudes using E and negative longitudes using W.
- "ns" - Input angles are latitudes. The character array indicates positive latitudes using N and negative latitudes using S.
- "pm" - The character array indicates positive angles using a plus sign (+) and negative angles using a minus sign (-).
- "none" - The character array indicates negative angles using a minus sign (-) and does not use a plus sign (+) for positive angles.

Data Types: char | string

format - Format to use in character array

"degrees" (default) | "degrees2dm" | "degrees2dms" | "radians"
Format to use in the character array, specified as one of these options.

Option	Format	Example
"degrees"	Degrees	```angl2str(31.26,"none","degrees") ans = 31.26^{\circ} '```
"degrees2dm"	Degrees-minutes (DM)	```angl2str(31.26,"none","degrees2dm") ans = 31^{\circ} 15.60'```

Option	Format	Example
"degrees2dms"	Degrees-minutes-seconds (DMS)	```angl2str(31.26,"none","degrees2dms")```
"radians"	Radians	

The value ${ }^{\wedge}\{\backslash$ circ $\}$ is the LaTeX representation of ${ }^{\circ}$.
Data Types: char | string
n - Number of digits to include in character array
-2 (default) | scalar integer
Number of digits to include in the character array, specified as an integer. When you specify n, the angl2str function rounds angles to the nearest multiple of 10^{n}.

The sign convention for this argument is opposite to the one used by the round function.
Example: angl2str(31.467,"none","degrees", -2) returns ' 31.47^\{\circ\} ', which is 31.467 rounded to the nearest hundredth.

Example: angl2str(31.467,"none","degrees",0) returns ' 31^\{\circ\} ', which is 31.467 rounded to the nearest integer.

Output Arguments

str - Text representation of input angles
character array
Text representation of the input angles, returned as a character array.
Data Types: char

See Also

Functions

str2angle|dist2str|text
Topics
"Angle Representations and Angular Units"
Introduced before R2006a

angledim

Convert angles units

Note

Note The angledim function has been replaced by four, more specific, functions: fromRadians, fromDegrees, toRadians, and toDegrees. However, angledim will be maintained for backward compatibility. The functions deg2rad, rad2deg, and unitsratio provide additional alternatives.

Syntax

angleOut = angledim(angleIn,from,to)

Description

angleOut $=$ angledim(angleIn,from,to) returns the value of the input angle angleIn, which is in units specified by from, in the desired units given by to. Angle units are 'degrees' for "decimal" degrees or 'radians ' for radians.

Examples

Convert from degrees to radians:

```
angledim(23.45134,'degrees','radians')
ans =
    0.4093
```


See Also

degrees2dms | deg2rad|fromDegrees | fromRadians | toDegrees | toRadians | rad2deg | unitsratio

Introduced before R2006a

antipode

Point on opposite side of globe

Syntax

[newlat,newlon] = antipode(lat,lon)
[newlat,newlon] = antipode(lat,lon,angleunits)

Description

[newlat, newlon] = antipode(lat,lon) returns the geographic coordinates of the points exactly opposite on the globe from the input points given by lat and lon. All angles are in degrees.
[newlat, newlon] = antipode(lat,lon,angleunits) where angleunits specifies the input and output units as either 'degrees ' or 'radians'. It can be abbreviated and is case-insensitive.

Examples

Find Antipode of Given Point

Given a point ($43^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}$), find its antipode:

```
[newlat,newlong] = antipode(43,15)
newlat =
    -43
newlong =
    -165
or (43`S, 165`W).
```


Find Antipode of North and South Poles

Perhaps the most obvious antipodal points are the North and South Poles. The function antipode demonstrates this:

```
[newlat,newlong] = antipode(90,0,'degrees')
newlat =
    -90
newlong =
    180
```

Note that in this case longitudes are irrelevant because all meridians converge at the poles.

Find Antipode of MathWorks Headquarters

This example shows how to find the antipode of the location of the MathWorks corporate headquarters in Natick, Massachusetts. The example maps the headquarters location and its antipode in an orthographic projection.

Specify latitude and longitude as degree-minutes-seconds and then convert to decimal degrees.

```
mwlat = dms2degrees([ 42 18 2.5])
```

```
mwlat = 42.3007
mwlon = dms2degrees([-71 21 7.9])
mwlon = -71.3522
```

Find the antipode.

```
[amwlat amwlon] = antipode(mwlat,mwlon)
amwlat = -42.3007
amwlon = 108.6478
```

Prove that these points are antipodes. The distance function shows them to be 180 degrees apart.

```
dist = distance(mwlat,mwlon,amwlat,amwlon)
dist = 180.0000
```

Generate a map centered on the original point and then another map centered on the antipode.

```
figure
subplot(1,2,1)
axesm ('MapProjection','ortho','origin',[mwlat mwlon],...
    'frame','on','grid','on')
load coastlines
geoshow(coastlat,coastlon,'displaytype','polygon')
geoshow(mwlat,mwlon,'Marker','o','Color','red')
title(sprintf('Looking down at\n(%s,%s)', ...
    angl2str(mwlat,'ns'), angl2str(mwlon,'ew')))
subplot(1,2,2)
axesm ('MapProjection','ortho','origin',[amwlat amwlon],...
    'frame','on','grid', 'on')
geoshow(coastlat,coastlon,'displaytype','polygon')
geoshow(amwlat,amwlon,'Marker','o','Color','red')
title(sprintf('Looking down at\n(%s,%s)', ...
    angl2str(amwlat,'ns'), angl2str(amwlon,'ew')))
```


Introduced before R2006a

append

Append features to geographic or planar vector

Syntax

```
vout = append(vin,lat,lon)
vout = append(vin,x,y)
vout = append(
```

\qquad

``` ,field, value)
```


Description

vout $=$ append(vin,lat,lon) appends the latitude and longitude values in lat and lon to the Latitude and Longitude properties of the geographic vector vin. vin is either a geopoint or a geoshape object.
vout $=$ append $(v i n, x, y)$ appends the planar x - and y-coordinates in x and y to the X and Y properties of the planar vector vin. vin is either a mappoint or a mapshape object.
vout = append (\qquad , field, value) appends the values specified in value to the corresponding dynamic property, field. If the property does not exist, append adds the dynamic property to the object using the value of field for the name and assigning the field the value specified in value. You can specify multiple field-value pairs. Enclose each field name in single quotes.

Examples

Append Points to Geopoint Vector

Create a geopoint vector.

```
p = geopoint(42,-110)
p =
    1x1 geopoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
        Latitude: 42
        Longitude: -110
```

Append the vector with three new geographic points.

```
lat1 = [42.1 44 44.1];
lon1 = [-101 -120 -121];
p = append(p,lat1,lon1)
p =
    4x1 geopoint vector with properties:
```

```
Collection properties:
    Geometry: 'point'
    Metadata: [1x1 struct]
Feature properties:
    Latitude: [42 42.1000 44 44.1000]
    Longitude: [-110 -101 -120 -121]
```

The length of the geopoint vector increases by three, as expected, and the 'Latitude' and 'Longitude' feature properties list the new coordinates.

Append Points to Mapshape Vector

Create a mapshape vector, designating a dynamic 'Temperature ' property. This vector has one feature with three vertices.

```
s = mapshape(42:44,30:32,'Temperature', {65:67})
S =
    1x1 mapshape vector with properties:
    Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
    Vertex properties:
            X: [lll 42 43 44]
            Y: [30 31 32]
        Temperature: [65 66 67]
```

Append the vector with two new planar points. The points are stored as a new feature with two vertices.

```
x1 = [44.5 45];
y1 = [32.5 33];
s = append(s,x1,y1)
S =
    2x1 mapshape vector with properties:
    Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
    Vertex properties:
        (2 features concatenated with 1 delimiter)
                        X: [42 43 44 NaN 44.5000 45]
                            Y: [30 31 32 NaN 32.5000 33]
        Temperature: [65 66 67 NaN 0 0]
```

The features are separated by NaN. The 'Temperature' value of the new points is set to 0 by default, since no value was specified during the call to append. The mapshape vector grew from 1x1 to 2×1 in length because the number of features increased.

Append Point with New Property to Mappoint Vector

Create a mappoint vector with a dynamic property Temperature.

```
mp = mappoint(42,-110,'Temperature',65)
mp =
    1x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
                        X: 42
            Y: -110
        Temperature: 65
```

Add a point to this vector. The point contains a new dynamic property, Pressure.

```
mp = append(mp,42.2,-110.5,'Temperature',65.6,'Pressure', 100.0)
mp =
    2x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
            X: [42 42.2000]
            Y: [-110 -110.5000]
        Temperature: [65 65.6000]
            Pressure: [0 100]
```

A default Pressure value of 0 is automatically added to the first point.

Append Points with New Properties to Geoshape Vector

Create a geoshape vector, designating a dynamic 'Temperature' property. The 'Temperature' values are input as a cell array so that they belong to a single feature. This vector has one feature with three vertices.

```
lat1 = [42, 42.2, 43];
lon1 = [-110, -110.3, -110.5];
temp1 = {[65, 65.1, 65.2]};
s = geoshape(lat1,lon1,'Temperature',temp1)
S =
    1x1 geoshape vector with properties:
    Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
    Vertex properties:
            Latitude: [42 42.2000 43]
            Longitude: [-110 -110.3000 -110.5000]
```

Add three points to the geoshape vector, including a two new dynamic properties 'Precipitation' and 'CloudCover'. The latitude and longitude values are added as a two-element cell array, so two features are added to the geoshape vector. Note that the 'Temperature' and 'Precipitation' values are specified as two-element vectors, while the new 'CloudCover' values are specified as a one-element cell array.

```
lat2 = {[50 50.2],60};
lon2 = {[-120 -121],-130};
temp2 = [60.2 60.4];
precip = [0.07 0.19];
cloud = {[20,80]};
s2 = append(s,lat2,lon2,'Temperature',temp2,'Precipitation',precip,'CloudCover',cloud)
s2 =
    3x1 geoshape vector with properties:
    Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
    Vertex properties:
    (3 features concatenated with 2 delimiters)
                Latitude: [42 42.2000 43 NaN 50 50.2000 NaN 60]
                    Longitude: [-110 -110.3000 -110.5000 NaN -120 -121 NaN -130]
                Temperature: [65 65.1000 65.2000 NaN 60.2000 0 NaN 60.4000]
            CloudCover: [0 0 0 NaN 20 80 NaN 0]
    Feature properties:
        Precipitation: [0 0.0700 0.1900]
```

This appended vector s2 now has three features, separated by NaN, with some Vertex properties and some Feature properties. The two cells of the latitude and longitude cell arrays form the two newlyadded features, one with two vertices and the other with one vertex. Since 'Temperature' had previously been designated as a Vertex property in s , the new 'Temperature' values are added as Vertex properties. The 'Temperature ' value of one new point has not been assigned, so it is set to the default value of 0 .

However, the new 'Precipitation ' and 'CloudCover' properties are designated as a Vertex or Feature property, whichever is more appropriate for the value format. 'Precipitation' values are provided as a two-element vector, so they are assigned as Feature properties, where each element of precip2 belongs to a separate feature of the geoshape vector. Since 'CloudCover' values are provided as a cell array, the values must belong to the same feature, so they are set as Vertex properties corresponding to the first added feature. No 'CloudCover' values have been specified for the second added feature, so vertices in the second feature are assigned the default value 0 . Finally, 'Precipitation' and 'CloudCover' values for the original feature are set to the default value of 0 .

Input Arguments

vin - Input geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object

Input geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

lat - Latitude values

numeric scalar or vector
Latitude values, specified as a numeric scalar or vector.
Data Types: single | double

Lon - Longitude values

numeric scalar or vector
Longitude values, specified as a numeric scalar or vector.
Data Types: single | double
x - Planar x-coordinates
numeric scalar or vector
Planar x-coordinates, specified as a numeric scalar or vector.
Data Types: single | double

y - Planar y-coordinates

numeric scalar or vector
Planar y-coordinates, specified as a numeric scalar or vector.
Data Types: single | double

field - Field name

string scalar | character vector
Field name, specified as a string scalar or character vector. Field can specify the name of an existing property in the vector data, or the name you want assigned to a new property that you want to add to the vector data.
Data Types: char | string
value - Value you want to assign to the property specified by field cell array | scalar | vector

Value you want to assign to the property specified by field, specified as a cell array, or a scalar or vector of any numeric class or logical.

- When value is a cell array, append adds the property as a Vertex property.
- When value is a numeric array, append adds the property as a Feature property.
- When value is empty, append removes the property.

Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16|uint32|uint64 | logical|char|string|cell

Output Arguments

vout - Output geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object

Output geographic or planar vector, returned as a geopoint, geoshape, mappoint, or mapshape object. The object type of vout matches the object type of vin.

See Also

cat
Introduced in R2012a

arcgridread

(Not recommended) Read gridded data set in ArcGrid ASCII or GridFloat format

Note arcgridread is not recommended. Use readgeoraster instead. For more information, see "Compatibility Considerations".

Syntax

```
[Z,R] = arcgridread(filename)
[Z,R] = arcgridread(filename,coordinateSystemType)
```


Description

$[Z, R]=\operatorname{arcgridread}(f i l e n a m e)$ imports a grid in either ArcGrid ASCII or GridFloat format from the file specified by filename. Returns Z, a 2-D array containing the data values, and raster referencing information in R. If the input file is accompanied by a projection file (with extension .prj or . PRJ), then R is a raster reference object whose type matches the coordinate reference system defined in the projection file. Otherwise R is a referencing matrix.
[Z,R] = arcgridread(filename,coordinateSystemType) returns R as a raster reference object whose type is consistent with the value specified by coordinateSystemType. This optional input argument can be helpful in the absence of a projection file. The function throws an error if a projection file is present and coordinateSystemType contradicts the type of coordinate reference system defined in the projection file.

Examples

Load and View Mount Washington Terrain Elevation Data

Read the data.

```
[Z,R] = arcgridread('MtWashington-ft.grd');
```

Display the data as a surface. Add two labels to the display and set the colormap.

```
mapshow(Z,R,'DisplayType','surface')
xlabel('x (easting in meters)')
ylabel('y (northing in meters)')
demcmap(Z)
```


View the terrain in 3-D.

```
axis normal
view(3)
axis equal
grid on
zlabel('elevation in feet')
```


Input Arguments

filename - Name of file containing the grid
character vector
Name of file containing the grid, specified as a character vector. The arcgridread function supports the following formats.

Format	Description
ArcGrid ASCII	In this format, created by the ArcGIS GRIDASCII command, the data and header information are in a single text file. arcgridread will also read a .prj file, if one is present. This format is also known as Arc ASCII Grid or Esri ASCII Raster format.
GridFloat	In this format, created by the ArcGIS GRIDFLOAT command, data and header information are in separate files (.flt and .hdr). Specify the name of the . flt file (including the file extension). arcgridread will also read a . prj file, if one is present. This format is also known as Esri GridFloat.

Data Types: char

coordinateSystemType - Coordinate system type identifier

'auto' (default) | 'geographic'|'planar'
Coordinate system type identifier, specified as one of the following values.

Type Identifier	Description
'geographic'	Returns a geographic cells reference object appropriate to a latitude/ longitude system.
'planar'	Returns a map cells reference object appropriate to a projected map coordinate system.
'auto '	Type of raster reference object determined by the file contents.

Data Types: char

Output Arguments

Z - Gridded data set

2-D array
Gridded data set, returned as a 2-D array. The class of the array depends on the format of the data, described in the following table. arcgridread assigns NaN to elements of Z corresponding to null data values in the grid file.

Format	Class of Returned Gridded Data
ArcGrid ASCII	2-D array of class double.
GridFloat	2-D array of class single.

R - Raster referencing information

raster reference object | referencing matrix
Raster referencing information, returned as a raster reference object whose type matches the coordinates reference system defined in the projection file. If no projection file exists and you do not specify the coordinateSystemType parameter, R is a referencing matrix.

Tips

- The arcgridread function does not import data in the ArcGrid Binary format (also known as ArcGrid, Arc/INFO Grid, and Esri ArcInfo Grid). ArcGIS uses this format internally and it uses multiple files in a folder with standard names such as hdr. adf and w001001.adf.

Compatibility Considerations

arcgridread is not recommended

Not recommended starting in R2020a
arcgridread is not recommended. Use readgeoraster instead. There are no plans to remove arcgridread.

Unlike arcgridread, which returns a referencing matrix in some cases, the readgeoraster function returns a raster reference object. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop functions.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize functions.

This table shows some typical usages of arcgridread and how to update your code to use readgeoraster instead.

Not Recommended	Recommended
$[Z, R]=\operatorname{arcgridread(filename);~}$	$[Z, R]=$ readgeoraster(filename);
$[Z, R]=\operatorname{arcgridread(filename,cst);~}$	$[Z, R]=$readgeoraster(filename, \ldots CoordinateSystemType', cst) ;

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, replace instances with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


See Also

worldfileread | readgeoraster
Introduced before R2006a

areaint

Surface area of polygon on sphere or ellipsoid

Syntax

```
area = areaint(lat,lon)
area = areaint(lat,lon,ellipsoid)
area = areaint(lat,lon,units)
area = areaint(lat,lon,ellipsoid,units)
```


Description

area $=$ areaint (lat,lon) calculates the spherical surface area of the polygon specified by the input vectors lat and lon. The calculation uses a line integral approach. The output, area, is the fraction of surface area covered by the polygon on a unit sphere. To supply multiple polygons, separate the polygons by NaNs in the input vectors. Accuracy of the integration method is inversely proportional to the distance between lat/lon points.
area $=$ areaint(lat,lon,ellipsoid) calculates the surface area of the polygon on the ellipsoid or sphere defined by the input ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The output, area, is in squares units corresponding to the units of ellipsoid.
area $=$ areaint (lat,lon, units) uses the units defined by units, the string scalar or character vector 'degrees' or 'radians'. If omitted, default units of degrees are assumed.
area $=$ areaint(lat,lon,ellipsoid, units) uses both the inputs ellipsoid and units in the calculation.

Examples

Find Approximate Area of Quadrangle

Consider the area enclosed by a 30° lune from pole to pole and bounded by the prime meridian and $30^{\circ} \mathrm{E}$. You can use the function areaquad to get an exact solution:

```
area = areaquad(90,0,-90,30)
area =
    0.0833
```

This is $1 / 12$ the spherical area. The more points used to define this polygon, the more integration steps areaint takes, improving the estimate. This first attempt takes a point every 30 of latitude:

```
lats = [-90:30:90,60:-30:-60]';
lons = [zeros(1,7), 30*ones(1,5)]';
area = areaint(lats,lons)
```

```
area =
    0.0792
```

Now, calculate a better estimate, with one point every $1 \underline{0}$ of latitude:

```
lats = [-90:1:90,89:-1:-89]';
lons = [zeros(1,181), 30*ones(1,179)]';
area = areaint(lats,lons)
area =
    0.0833
```


Calculate Area of Geographic Polygons

Load the latitude and longitude coordinates of the perimeter of the conterminous United States. Display the coordinates on a map as a polygon.

```
load('conus.mat','uslat','uslon')
figure
usamap([min(uslat) max(uslat)],[min(uslon) max(uslon)])
geoshow(uslat,uslon,'DisplayType','polygon')
```


Calculate the area of the conterminous United States in square kilometers. In this case, the areaint function returns three areas. The largest area is for the polygon representing the conterminous United States. The other two areas are for the polygons representing Long Island and Martha's Vineyard.

```
rKilometers = earthRadius('km');
a = areaint(uslat,uslon,rKilometers)
a = 3\times1
106 x
    7.9256
    0.0035
    0.0004
```

Load the latitude and longitude coordinates of the perimeter of the Great Lakes. Display the coordinates on a map as a polygon.

```
load('conus.mat','gtlakelat','gtlakelon')
figure
usamap([min(gtlakelat) max(gtlakelat)],[min(gtlakelon) max(gtlakelon)])
geoshow(gtlakelat,gtlakelon,'DisplayType','polygon')
```


Calculate the areas of the Great Lakes in square miles. In this case, the areaint function returns three areas. The largest area is for the polygon representing Lake Superior, Lake Michigan, and Lake Huron. The other two areas are for the polygons representing Lake Erie and Lake Ontario.

```
rMiles = earthRadius('mi');
area = areaint(gtlakelat,gtlakelon,rMiles)
area = 3\times1
104 x
```


Tips

Regardless of the polygon vertex order, the values returned by areaint are positive.

Algorithms

This function enables the measurement of areas enclosed by arbitrary polygons. This is a numerical estimate, using a line integral based on Green's Theorem. As such, it is limited by the accuracy and resolution of the input data.

Areas are computed for arbitrary polygons on the ellipsoid or sphere

An area is returned for each NaN -separated polygon
Given sufficient data, the areaint function is the best method for determining the areas of complex polygons, such as continents, cloud cover, and other natural or derived features. The calculations in this function employ a spherical Earth assumption. For nonspherical ellipsoids, the latitude data is converted to the auxiliary authalic sphere.

See Also

almanac|areamat|areaquad

Topics

"Create and Display Polygons"

Introduced before R2006a

areamat

Surface area covered by nonzero values in binary data grid

Syntax

$A=\operatorname{areamat}(B W, R)$
$A=\operatorname{areamat}(B W, R, e l l i p s o i d)$
[A, cellarea] = areamat(...)

Description

$A=\operatorname{areamat}(B W, R)$ returns the surface area covered by the elements of the binary regular data grid BW , which contain the value 1 (true). BW can be the result of a logical expression such as $\mathrm{BW}=$ (topo60c > 0). R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If R is a geographic raster reference object, its RasterSize property must be consistent with size(BW) and its RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If R is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] $=[$ row col 1] $* \mathrm{R}$
If R is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.

The output A expresses surface area as a fraction of the surface area of the unit sphere ($4 *$ pi), so the result ranges from 0 to 1 .
$A=$ areamat(BW,R,ellipsoid) calculates the surface area on the ellipsoid or sphere defined by the input ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The units of the output, A, are the square of the length units in which the semimajor axis is provided. For example, if ellipsoid is replaced with wgs84Ellipsoid('kilometers'), then A is in square kilometers. If you do not specify ellipsoid and R is a reference object with a non-empty GeographicCRS property, then areamat uses the ellipsoid contained in the Spheroid property of the geocrs object in the GeographicCRS property of R.
[A, cellarea] = areamat (...) returns a vector, cellarea, describing the area covered by the data cells in BW. Because all the cells in a given row are exactly the same size, only one value is needed per row. Therefore cellarea has size $M-$ by -1 , where $M=\operatorname{size}(B W, 1)$ is the number of rows in BW.

Examples

Find Surface Area in Normalized Units

Find the surface area in normalized units of the part of Earth's terrain that is above sea level.
First, load elevation raster data and a geographic cells reference object. The raster contains terrain heights relative to mean sea level. Then, create a logical array representing the terrain above sea level.
load topo60c

```
topoASL = topo60c > 0;
```

Find the surface area in normalized units of the elements of the array that contain true.

```
areamat(topoASL,topo60cR)
```

ans $=0.2890$
The result means 28.9\% of Earth's terrain is above sea level.

Find Surface Area in Kilometers

Find the surface area in kilometers of the part of Earth's terrain that is above sea level.
First, load elevation raster data and a geographic cells reference object. The raster contains terrain heights relative to mean sea level. Then, create a reference sphere for Earth and specify its units as kilometers.

```
load topo60c
s = referenceSphere('earth','km');
```

Create a logical array representing the terrain above sea level.

```
topoASL = topo60c > 0;
```

Find the surface area in kilometers of the elements of the array that contain true.

```
areamat(topoASL,topo60cR,s)
ans = 1.4739e+08
```

The result means that approximately 147 million square kilometers of Earth's terrain is above sea level.

Tips

Given a regular data grid that is a logical 0-1 matrix, the areamat function returns the area corresponding to the true, or 1 , elements. The input data grid can be a logical statement, such as (topo60c > 0), which is 1 everywhere that topo60c is greater than 0 meters, and 0 everywhere else. This is an illustration of that matrix:

This calculation is based on the areaquad function and is therefore limited only by the granularity of the cellular data.

See Also

areaint | areaquad
Introduced before R2006a

areaquad

Surface area of latitude-longitude quadrangle

Syntax

```
area = areaquad(lat1,lon1,lat2,lon2)
area = areaquad(lat1,lon1,lat2,lon2,ellipsoid)
area = areaquad(lat1,lon1,lat2,lon2,ellipsoid,units)
```


Description

area $=$ areaquad (lat1,lon1,lat2,lon2) returns the surface area bounded by the parallels lat1 and lat2 and the meridians lon1 and lon2. The output area is a fraction of the unit sphere's area of 4π, so the result ranges from 0 to 1 .
area $=$ areaquad(lat1,lon1,lat2,lon2,ellipsoid) allows the specification of the ellipsoid model with ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. When ellipsoid is input, the resulting area is given in terms of the (squared) units of the ellipsoid. For example, if the ellipsoid referenceEllipsoid('grs80', 'kilometers') is used, the resulting area is in km^{2}.
area $=$ areaquad(lat1,lon1,lat2,lon2,ellipsoid,units) where units specifies the units of the inputs. The default is 'degrees'.

Examples

Find the fraction of the Earth's surface that lies between $30^{\circ} \mathrm{N}$ and $45^{\circ} \mathrm{N}$, and also between $25^{\circ} \mathrm{W}$ and $60^{\circ} \mathrm{E}$:

```
area = areaquad(30,-25,45,60)
area =
    0.0245
```

Assuming a spherical ellipsoid, find the surface area of the Earth in square kilometers.

```
earthellipsoid = referenceSphere('earth','km');
area = areaquad(-90,-180,90,180,earthellipsoid)
area =
    5.1006e+08
```

For comparison,

```
earthellipsoid.SurfaceArea
ans =
    5.1006e+08
```


More About

Latitude-Longitude Quadrangle

A latitude-longitude quadrangle is a region bounded by two meridians and two parallels. In spherical geometry, it is the intersection of a lune (a section bounded by two meridians) and a zone (a section bounded by two parallels).

Algorithms

The areaquad calculation is exact, being based on simple spherical geometry. For nonspherical ellipsoids, the data is converted to the auxiliary authalic sphere.

See Also
 almanac|areaint|areamat

Introduced before R2006a

map.geodesy.AuthalicLatitudeConverter

Convert between geodetic and authalic latitudes

Description

An AuthalicLatitudeConverter object provides conversion methods between geodetic and authalic latitudes for an ellipsoid with a given eccentricity.

The authalic latitude maps an ellipsoid (oblate spheroid) to a sphere while preserving surface area. Use authalic latitudes when implementing equal area map projections on the ellipsoid.

Creation

Syntax

converter = map.geodesy.AuthalicLatitudeConverter converter = map.geodesy.AuthalicLatitudeConverter(spheroid)

Description

converter = map.geodesy.AuthalicLatitudeConverter creates an AuthalicLatitudeConverter object for a sphere and sets the Eccentricity to 0.
converter = map.geodesy.AuthalicLatitudeConverter(spheroid) creates an authalic latitude converter object and sets the Eccentricity property to match the specified spheroid object.

Input Arguments

spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

Properties

Eccentricity - Ellipsoid eccentricity
 0 | numeric scalar

Ellipsoid eccentricity, specified as a numeric scalar. Eccentricity is in the interval [0, 0.5]. Eccentricities larger than 0.5 are possible in theory, but do not occur in practice and are not supported.
Data Types: double

Object Functions

forward Convert geodetic latitude to authalic, conformal, isometric, or rectifying latitude inverse Convert authalic, conformal, isometric, or rectifying latitude to geodetic latitude

Examples

Create an Authalic Converter

Create a Geodetic Reference System 1980 (grs80) reference ellipsoid.

```
grs80 = referenceEllipsoid('GRS 80');
```

Create an authalic converter object and set the value of the Eccentricity property.

```
conv1 = map.geodesy.AuthalicLatitudeConverter;
conv1.Eccentricity = grs80.Eccentricity
conv1 =
```

 AuthalicLatitudeConverter with properties:
 Eccentricity: 0.0818

Create an Authalic Converter Specifying a Spheroid

Create a reference ellipsoid.

```
grs80 = referenceEllipsoid('GRS 80');
```

Create an authalic latitude converter object based on the ellipsoid.
conv2 = map.geodesy.AuthalicLatitudeConverter(grs80)
conv1 =
AuthalicLatitudeConverter with properties:
Eccentricity: 0.0818

See Also

Functions

geocentricLatitude | parametricLatitude
Objects
ConformalLatitudeConverter|IsometricLatitudeConverter|
RectifyingLatitudeConverter

Introduced in R2013a

avhrrgoode

Read AVHRR data product stored in Goode Projection

Syntax

[latgrat,longrat,z] = avhrrgoode(region,filename)
[...] = avhrrgoode(region,filename,scalefactor)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows, ncols)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,... nrows, ncols, resolution)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,... nrows,ncols,resolution,precision)

Description

[latgrat,longrat,z] = avhrrgoode(region,filename) reads data from an Advanced Very High Resolution Radiometer (AVHRR) data set with a nominal resolution of 1 km that is stored in the Goode projection. Data in this format includes a nondimensional vegetation index (NDVI) and Global Land Cover Characteristics (GLCC) data sets. region specifies the geographic coverage of the file, using the following values:

- 'g' or 'global'
- 'af' or 'africa'
- 'ap' or 'australia/pacific'
- 'ea' or 'eurasia'
- 'na' or 'north america'
- 'sa' or 'south america'
filename is a string scalar or character vector specifying the name of the data file. Output Z is a geolocated data grid with coordinates latgrat and longrat in units of degrees. Z, latgrat, and longrat are of class double. Projected coordinates that lie within the interrupted areas of the projection are set to NaN. A scale factor of 100 is applied to the original data set, so that Z contains every $100^{\text {th }}$ point in both X and Y directions.
[...] = avhrrgoode(region,filename,scalefactor) uses the integer scalefactor to downsample the data. A scale factor of 1 returns every point. A scale factor of 10 returns every $10^{\text {th }}$ point. The default value is 100 .
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim) returns data for the specified region. The returned data can extend somewhat beyond the requested area. Limits are twoelement vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180]. latlim and lonlim must be ascending. If latlim and lonlim are empty, the entire area covered by the data file is returned. If the quadrangle defined by latlim and lonlim (when projected to form a polygon in the appropriate Goode projection) fails to intersect the bounding box of the data in the projected coordinates, then Z, latgrat, and longrat are returned as empty.
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. By default, latgrat, and longrat have the same size as Z .
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,... nrows, ncols) overrides the dimensions for the standard file format for the selected region. This syntax is useful for data stored on CD-ROM, which may have been truncated to fit. Some global data sets were distributed with 16347 rows and 40031 columns of data on CD-ROMs. The default size for global data sets is 17347 rows and 40031 columns of data.
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,... nrows, ncols, resolution) reads a data set with the spatial resolution specified in meters. Specify resolution as either 1000 or 8000 (meters). If empty, the full resolution of 1000 meters is assumed. Data is also available at 8000 -meter resolution. Nondimensional vegetation index data at 8km spatial resolution has 2168 rows and 5004 columns.
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,... nrows, ncols, resolution, precision) reads a data set expecting the integer precision specified. If empty, 'uint8' is assumed. 'uint16' is appropriate for some files. Check the metadata (.txt or README) file in the GLCC ftp folder for specification of the file format and contents. In either case, Z is converted to class double.

Background

The United States maintains a family of satellite-based sensors to measure climate change under the Earth Observing System (EOS) program. The precursors to the EOS data are the data sets produced by NOAA and NASA under the Pathfinder program. These are data derived from the Advanced High Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, NOAA-7, -9, and -11, and have spatial resolutions of about 1 km . The data from the AVHRR sensor is processed into separate land, sea, and atmospheric indices. Land area data is processed to a nondimensional vegetation index (NDVI) or land cover classification and stored in binary files in the Plate Carrée, Goode, and Lambert projections. Sea data is processed to surface temperatures and stored in HDF formats. avhrrgoode reads land data saved in the Goode projection with global and continental coverage at 1 km . It can also read 8 km data with global coverage.

Limitations

Most files store the data in scaled integers. Though this function returns the data as double, the scaling from integer to float is not performed. Check the data's README file for the appropriate scaling parameters.

Examples

Example 1 - Downsampled Classified Global GLCC Coverage

Read and display every 50th point from the Global Land Cover Characteristics (GLCC) file covering the entire globe with the USGS classification scheme, named gusgs2_0g.img. (To run the example, you must first download the file.)

```
[latgrat, longrat, Z] = avhrrgoode('global', ...
```

 'gusgs2_0g.img',50);
    ```
% Convert the geolocated data grid to an geolocated image.
uniqueClasses = unique(Z);
RGB = ind2rgb8(uint8(Z), jet(numel(uniqueClasses)));
% Display the data as an image using the Goode projection.
origin = [0 0 0];
ellipsoid = [6370997 0];
figure
axesm('MapProjection', 'goode', 'Origin', origin, ...
    'Geoid', ellipsoid)
geoshow(latgrat, longrat, RGB, 'DisplayType', 'image');
axis image off
% Plot the coastlines.
hold on
load coastlines
plotm(coastlat,coastlon)
```


Example 2 - Classified GLCC Data for California

Read and display every point from the Global Land Cover Characteristics (GLCC) file covering California with the USGS classification scheme, named nausgs1_2g.img. You must first download the file to run this example.

```
figure
usamap california
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
scalefactor = 1;
[latgrat, longrat, Z] = ...
    avhrrgoode('na', 'nausgsl_2g.img', scalefactor, latlim, lonlim);
geoshow(latgrat, longrat, Z,''DisplayType', 'texturemap');
% Overlay vector data from usastatehi.shp.
california = shaperead('usastatehi', 'UseGeoCoords', true,...
    'BoundingBox', [lonlim;latlim]);
geoshow([california.Lat], [california.Lon], 'Color', 'black');
```


Tips

This function reads the binary files as is. You should not use byte-swapping software on these files.
The AVHRR project and data sets are described in and provided by various U.S. Government Web sites. See the entry for Global Land Cover Characteristics (GLCC) in the tech note referred to below.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

See Also

avhrrlambert

Introduced before R2006a

avhrrlambert

Read AVHRR data product stored in eqaazim projection

Syntax

[latgrat,longrat,Z] = avhrrlambert(region,filename)
[...] = avhrrlambert(region,filename, scalefactor)
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim)
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim, gsize)
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim, gsize,precision)

Description

[latgrat,longrat, Z] = avhrrlambert(region,filename) reads data from an Advanced Very High Resolution Radiometer (AVHRR) data set with a nominal resolution of 1 km that is stored in the Lambert Equal Area Azimuthal projection. Data of this type includes the Global Land Cover Characteristics (GLCC). region specifies the coverage of the file. Valid regions are listed in the following table. filename is a string specifying the name of the data file. Z is a geolocated data grid with coordinates latgrat and longrat in units of degrees. A scale factor of 100 is applied to the original data set such that Z contains every 100th point in both X and Y .

Region Specifiers

```
'a' or 'asia'
'af' or 'africa'
'ap' or 'australia/pacific'
'e' or 'europe'
'na' or 'north america'
'sa' or 'south america'
```

[...] = avhrrlambert(region,filename, scalefactor) uses the integer scalefactor to downsample the data. A scale factor of 1 returns every point. A scale factor of 10 returns every 10th point. The default value is 100 .
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim) returns data for the specified region. The result may extend somewhat beyond the requested area. The limits are two-element vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180]. If latlim and lonlim are empty, the entire area covered by the data file is returned. If the quadrangle defined by latlim and lonlim (when projected to form a polygon in the appropriate Lambert Equal Area Azimuthal projection) fails to intersect the bounding box of the data in the projected coordinates, then latgrat, longrat, and Z are empty.
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim, gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. If omitted or empty, a graticule the size of the grid is returned.
[...] = avhrrlambert(region,filename, scalefactor, latlim, lonlim, gsize, precision) reads a data set with the integer precision specified. If omitted, 'uint8' is
assumed. 'uint16' is appropriate for some files. Check the metadata (.txt or README) file in the ftp folder for specification of the file format and contents.

Background

The United States plans to build a family of satellite-based sensors to measure climate change under the Earth Observing System (EOS) program. Early precursors to the EOS data are the data sets produced by NOAA and NASA under the Pathfinder program. These are data derived from the Advanced High Resolution Radiometer sensor flown on the NOAA Polar Orbiter satellites, NOAA-7, -9, and -11 with a spatial resolution of about 1 km . The data from the AVHRR sensor is processed into separate land, sea, and atmospheric indices. Land area data is processed to a nondimensional vegetation index or land cover classification and stored in binary files in the Plate Carrée, Goode, and Lambert Equal Area Azimuthal projections. Sea data is processed to surface temperatures and stored in HDF formats. This function reads land cover data for the continents saved in the Lambert Equal Area Azimuthal projection at 1 km .

Examples

Example 1

Read and display every 100th point from the Global Land Cover Characteristics (GLCC) file covering North America with the USGS classification scheme, named nausgs1_2l.img. To run this example, you must first download the file.

```
[latgrat, longrat, Z] = avhrrlambert('na','nausgs1_2l.img');
```

Display the data using the Lambert Equal Area Azimuthal projection.

```
origin = [50 -100 0];
ellipsoid = [6370997 0];
figure
axesm('MapProjection', 'eqaazim', 'Origin', ...
    origin, 'Geoid', ellipsoid)
geoshow(latgrat, longrat, Z, 'DisplayType', 'texturemap');
```


Example 2

Read and display every other point from the Global Land Cover Characteristics (GLCC) file covering Europe with the USGS classification scheme, named eausgs1_2le.img. To run this example, you must first download the file.
figure
worldmap france
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
scalefactor = 2;
[latgrat, longrat, Z] = avhrrlambert('e', 'eausgs1_2le.img', ...
scalefactor, latlim, lonlim);
geoshow(latgrat, longrat, Z, 'DisplayType', 'texturemap');
geoshow('landareas.shp','FaceColor','none','EdgeColor','black')

Tips

This function reads the binary files as is. You should not use byte-swapping software on these files.
The AVHRR project and data sets are described in and provided by various U.S. Government Web sites.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

See Also

avhrrgoode

Introduced before R2006a

axes2ecc

Eccentricity of ellipse from axes lengths

Syntax

ecc = axes2ecc(semimajor,semiminor)

Description

ecc $=$ axes2ecc(semimajor, semiminor) computes the eccentricity ecc of an ellipse or an ellipsoid of revolution given the semimajor and semiminor axes lengths.

Examples

Eccentricity of Ellipse from Semimajor and Semiminor Axes

Find the eccentricity of an ellipse from the lengths of the semimajor and semiminor axes.

```
ecc = axes2ecc(6378137,6356752)
ecc = 0.0818
```


Input Arguments

semimajor - Semimajor axis length

positive numeric scalar
Semimajor axis length, specified as a positive numeric scalar. The value of semimajor must be greater than that of semiminor.
Data Types: double

semiminor - Semiminor axis length

positive numeric scalar
Semiminor axis length, specified as a positive numeric scalar. The value of semiminor must be less than that of semimajor.
Data Types: double

Output Arguments

ecc - Eccentricity of ellipse

numeric scalar
Eccentricity of the ellipse, returned as a numeric scalar in the range [0, 1].

Compatibility Considerations

Only numeric scalars will be accepted as input
Not recommended starting in R2013b
The axes2ecc function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

See Also

ecc2flat|ecc2n|majaxis|minaxis
Introduced before R2006a

axesm

Create map axes

Syntax

axesm
axesm(Name, Value)
axesm(projid,Name, Value)

Description

The axesm function creates a map axes into which both vector and raster geographic data can be projected using functions such as plotm and geoshow. Properties specific to map axes can be assigned upon creation with axesm, and for an existing map axes they can be queried and changed using getm and setm. Use the standard get and set methods to query and control the standard MATLAB axes properties of a map axes.

Map axes are standard MATLAB axes with different default settings for some properties and a MATLAB structure for storing projection parameters and other data. The main differences in default settings are:

- Axes properties XGrid, YGrid, XTick, YTick are set to 'off'.
- The hold mode is 'on'.

The map projection structure stores the map axes properties, which, in addition to the special standard axes settings, allow Mapping Toolbox functions to recognize an axes or an opened FIG-file as a map axes. See Map Axes Properties for descriptions of the map axes properties.
axesm with no input arguments, initiates the axesmui map axes graphical user interface, which can be used to set map axes properties. This is detailed on the axesmui reference page.
axesm(Name, Value) creates a map axes and modifies the map axes appearance using name-value pairs to set properties. You can specify multiple name-value pairs. Enclose each property name in quotes. For example, 'FontSize' , 14 sets the font size for the map axes text. Properties may be specified in any order, but the MapProjection property must be included. For a full list of properties, see Map Axes Properties.
axesm(projid,Name,Value) specifies which map projection to use. projid should match one of the entries in the last column displayed by the maps function. You can also find these listed in "Summary and Guide to Projections".

Examples

Create Map Axes for Mercator Projection

Create map axes for a Mercator projection, with selected latitude limits:

```
axesm('MapProjection','mercator','MapLatLimit',[-70 80])
```

All properties not explicitly addressed in the call are set to either fixed or calculated defaults. The file mercator.m defines a projection function, so the same result could have been achieved with the function.
axesm('mercator','MapLatLimit',[-70 80])
Each projection function includes default values for all properties. Any following property name/ property value pairs are treated as overrides.

In either of the above examples, data displayed in the given map axes is in a Mercator projection. Any data falling outside the prescribed limits is not displayed.

Access and Change Map Axes Properties

Similar to accessing and manipulating standard axes properties by using the get and set functions, you can access and manipulate map axes properties by using the getm and setm functions.

Use the axesm function only to create a map axes object. Use the setm function to modify an existing map axes.

Create a map axes object that contains no map data. Note that you specify MapProjection ID values in lowercase.

```
axesm('MapProjection','miller','Frame','on')
```


At this point you can begin to customize the map. For example, you might decide to make the frame lines bordering the map thicker. First, you need to identify the current line width of the frame, which you do by querying the current axes, identified as gca.

```
getm(gca,'FLineWidth')
ans = 2
```

Now reset the line width to four points. The default fontunits value for axes is points. You can set fontunits to be points, normalized, inches, centimeters, or pixels.
setm(gca,'FLineWidth',4)
\square

You can set any number of properties simultaneously with setm. Continue by reducing the line width, changing the projection to equidistant cylindrical, and verify the changes.

```
setm(gca,'FLineWidth',3,'Grid','on','MapProjection','robinson')
```



```
getm(gca,'FLineWidth')
ans = 3
getm(gca,'MapProjection')
ans =
'robinson'
```

Inspect the entire set of map axes properties at their current settings. Note that the list of properties includes both those particular to map axes and general ones that apply to all MATLAB ${ }^{\circledR}$ axes.
getm (gca)

```
ans = struct with fields:
    mapprojection: 'robinson'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
    falsenorthing: 0
        falseeasting: 0
        fixedorient: []
            geoid: [1 0]
        maplatlimit: [-90 90]
        maplonlimit: [-180 180]
        mapparallels: 38
            nparallels: 0
                origin: [0 0 0]
```

```
    scalefactor: 1
        trimlat: [-90 90]
        trimlon: [-180 180]
            frame: 'on'
            ffill: 100
    fedgecolor: [0.1500 0.1500 0.1500]
    ffacecolor: 'none'
        flatlimit: [-90 90]
    flinewidth: 3
        flonlimit: [-180 180]
            grid: 'on'
        galtitude: Inf
            gcolor: [0.1500 0.1500 0.1500]
        glinestyle: ':'
        glinewidth: 0.5000
mlineexception: []
        mlinefill: 100
        mlinelimit: []
    mlinelocation: 30
        mlinevisible: 'on
plineexception: []
        plinefill: 100
        plinelimit: []
    plinelocation: 15
        plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0.1500 0.1500 0.1500]
                fontname: 'Helvetica'
                fontsize: 10
            fontunits: 'points'
            fontweight: 'normal'
            labelformat: 'compass'
    labelrotation: 'off'
            labelunits: 'degrees'
    meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 90
            mlabelround: 0
    parallellabel: 'off
plabellocation: 15
plabelmeridian: -180
    plabelround: 0
```

Similarly, use the setm function alone to display the set of properties, their enumerated values, and defaults.
setm(gca)

```
AngleUnits [ {degrees} | radians ]
Aspect [ {normal} | transverse ]
FalseEasting
FalseNorthing
FixedOrient FixedOrient is a read-only property
Geoid
MapLatLimit
MapLonLimit
MapParallels
```

```
MapProjection
NParallels NParallels is a read-only property
Origin
ScaleFactor
TrimLat TrimLat is a read-only property
TrimLon TrimLon is a read-only property
Zone
Frame [ on | {off} ]
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit
Grid [ on | {off} ]
GAltitude
GColor
GLineStyle
GLineWidth
MLineException
MLineFill
MLineLimit
MLineLocation
MLineVisible
PLineException
PLineFill
PLineLimit
PLineLocation
PLineVisible [ {on} | off ]
FontAngle [ {normal} | italic | oblique ]
FontColor
FontName
FontSize
FontUnits [ inches | centimeters | normalized | {points} | pixels ]
FontWeight
LabelFormat
LabelRotation
LabelUnits
MeridianLabel
[ {normal} | bold ]
[ {compass} | signed | none ]
[ on | {off} ]
[ {degrees} | radians ]
[ on | {off} ]
MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel
PLabelLocation
PLabelMeridian
PLabelRound
```

Many, but not all, property choices and defaults can also be displayed individually.

```
setm(gca,'FontUnits')
```

FontUnits [inches | centimeters | normalized | \{points\} | pixels]
setm(gca,'MapProjection')
An axes's "MapProjection" property does not have a fixed set of property values.
setm(gca,'Frame')

```
Frame [ on | {off} ]
setm(gca,'FixedOrient')
FixedOrient FixedOrient is a read-only property
```

In the same way, getm displays the current value of any axes property.

```
getm(gca,'FontUnits')
ans =
'points'
getm(gca,'MapProjection')
ans =
'robinson'
getm(gca,'Frame')
ans =
'on'
getm(gca,'FixedOrient')
ans =
[]
```

To identify which properties apply to a given map projection, see the reference page for that projection.

Input Arguments

projid - Map projection ID

character vector | string scalar
Map projection ID, specified as a string scalar or character vector. projid should match one of the entries in the last column displayed by the maps function. You can also find these listed in "Summary and Guide to Projections".

Note The names of projection files are case sensitive. The projection files included in Mapping Toolbox software use only lowercase letters and Arabic numerals.

Example: 'eqdcylin'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: axesm('MapProjection','pcarree','Frame', 'on') creates a map axes with a Plate Carree projection, and makes the map frame visible.

Note The properties listed here are only a subset. For a full list, see Map Axes Properties.

MapProjection - Map projection

character vector | string scalar
Map projection, specified as a string scalar or character vector. MapProjection sets the projection, and hence all transformation calculations, for the map axes object. It must be a member of the recognized projection set, which you can list by typing getm('MapProjection') or maps. For more information on projections, see the Mapping Toolbox User's Guide. Some projections set their own defaults for other properties, such as parallels and trim limits.

MapLatLimit - Geographic latitude limits of the display area

two-element vector
Geographic latitude limits of the display area, specified as a two-element vector of the form [southern_limit northern_limit]. This property can be set for many typical projections and geometries, but cannot be used with oblique projections or with globe, for example.

When applicable, the MapLatLimit property may affect the origin latitude if the Origin property is not set explicitly when calling axesm. It may also determine the value used for FLatLimit.

MapLonLimit - Geographic longitude limits of the display area

two-element vector
Geographic longitude limits of the display area, specified as a two-element vector of the form [western_limit eastern_limit]. This property can be set for many typical projections and geometries, but cannot be used with oblique projections or with globe, for example.

When applicable, the MapLonLimit property may affect the origin longitude if the Origin property is not set explicitly when calling axesm. It may also determine the value used for FLonLimit.

Tips

- In general, after re-opening a saved figure that contains a map axes, you should not attempt to modify the projection properties of that map axes.
- When you create a map axes with axesm and right click in the axes, a context menu appears. If you do not need the menu or it interferes with your application, you can disable it by resetting the 'ButtonDownFcn' property of the axes:

```
ax = axesm('mercator'); % Right-clicking brings up context menu.
set(ax,'ButtonDownFcn',[]) % Context menu has been disabled.
```

- By default, axesm does not clip graticules or labels that occur outside the boundaries of the axes. Enable clipping by setting the 'Clipping' property of these objects.

```
objects = [handlem('grid'); handlem('mlabel'); handlem('plabel')];
set(objects,'Clipping','on');
```


See Also

Properties

Map Axes Properties

Functions
axes | gcm | getm| setm
Topics
"Introduction to Mapping Graphics"
"The Map Axes"
"The Map Frame"
"Map Limit Properties"
"The Map Grid"
Introduced before R2006a

Map Axes Properties

Control axes appearance and behavior

Description

Map axes properties control the appearance and behavior of an axesm object. By changing property values, you can modify certain aspects of the map axes.

Properties

Properties That Control the Map Projection
AngleUnits - Angular unit of measure
'degrees' (default)|'radians'
Angular unit of measure - Controls the units of measure used for angles (including latitudes and longitudes) in the map axes. All input data are assumed to be in the given units; 'degrees ' is the default. For more information on angle units, see "Angle Representations and Angular Units" in the Mapping Toolbox User's Guide.

Aspect - Display aspect

'normal' (default)|'transverse'
Display aspect - Controls the orientation of the base projection of the map. When the aspect is ' normal ' (the default), north in the base projection is up. In a transverse aspect, north is to the right. A cylindrical projection of the whole world would look like a landscape display under a ' normal ' aspect, and like a portrait under a 'transverse ' aspect. Note that this property is not the same as projection aspect, which is controlled by the Origin property vector discussed later.

FalseEasting - Coordinate shift for projection calculations

0 (default) | numeric scalar

Coordinate shift for projection calculations - Modifies the position of the map within the axes. The projected coordinates are shifted in the x-direction by the amount of FalseEasting. The FalseEasting is in the same units as the projected coordinates, that is, the units of the first element of the Geoid map axes property. False eastings and northings are sometimes used to ensure nonnegative values of the projected coordinates. For example, the Universal Transverse Mercator uses a false easting of 500,000 meters.

FalseNorthing - Coordinate shift for projection calculations

0 (default) | numeric scalar
Coordinate shift for projection calculations - Modifies the position of the map within the axes. The projected coordinates are shifted in the y-direction by the amount of FalseNorthing. The FalseNorthing is in the same units as the projected coordinates, that is, the units of the first element of the Geoid map axes property. False eastings and northings are sometimes used to ensure nonnegative values of the projected coordinates. For example, the Universal Transverse Mercator uses a false northing of 0 in the northern hemisphere and 10,000,000 meters in the southern.

FixedOrient - Projection-based orientation

[] (default) | numeric scalar
This property is read-only.
Projection-based orientation - This read-only property fixes the orientation of certain projections (such as the Cassini and Wetch). When empty, which is true for most projections, the user can alter the orientation of the projection using the third element of the Origin property. When fixed, the fixed orientation is always used.

Geoid - Reference spheroid definition

[1 0] (default)|referenceSphere object | referenceEllipsoid object|oblateSpheroid object|[semimajor_axis eccentricity]

Reference spheroid definition - The spheroid (ellipsoid or sphere) for calculating the projections of any displayed map objects. It can be an referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a two-element vector of the form [semimajor_axis eccentricity]. The default value is an ellipsoid vector representing the unit sphere: [10].

MapLatLimit - Geographic latitude limits of the display area
 [southern_limit northern_limit]

Geographic latitude limits of the display area - Expressed as a two-element vector of the form [southern_limit northern_limit]. This property can be set for many typical projections and geometries, but cannot be used with oblique projections or with globe, for example. When applicable, the MapLatLimit property may affect the origin latitude if the Origin property is not set explicitly when calling axesm. It may also determine the value used for FLatLimit.

MapLonLimit - Geographic longitude limits of the display area

[western_limit eastern_limit]
Geographic longitude limits of the display area - Expressed as a two-element vector of the form [western_limit eastern_limit]. This property can be set for many typical projections and geometries, but cannot be used with oblique projections or with globe, for example. When applicable, the MapLonLimit property may affect the origin longitude if the Origin property is not set explicitly when calling axesm. It may also determine the value used for FLonLimit.

MapParallels - Projection standard parallels

[lat]|[lat1 lat2]
Projection standard parallels - Sets the standard parallels of projection. It can be an empty, one-, or two-element vector, depending upon the projection. The elements are in the same units as the map axes AngleUnits. Many projections have specific, defining standard parallels. When a map axes object is based upon one of these projections, the parallels are set to the appropriate defaults. For conic projections, the default standard parallels are set to $15^{\circ} \mathrm{N}$ and $75^{\circ} \mathrm{N}$, which biases the projection toward the northern hemisphere.

For projections with one defined standard parallel, setting the parallels to an empty vector forces recalculation of the parallel to the middle of the map latitude limits. For projections requiring two standard parallels, setting the parallels to an empty vector forces recalculation of the parallels to onesixth the distance from the latitude limits (e.g., if the map latitude limits correspond to the northern hemisphere [0 90], the standard parallels for a conic projection are set to [15 75]). For azimuthal projections, the MapParallels property always contains an empty vector and cannot be altered.

See the Mapping Toolbox User's Guide for more information on standard parallels.

MapProjection - Map projection

character vector
Map projection - Sets the projection, and hence all transformation calculations, for the map axes object. It is required in the creation of map axes. It must be a member of the recognized projection set, which you can list by typing getm('MapProjection') or maps. For more information on projections, see the Mapping Toolbox User's Guide. Some projections set their own defaults for other properties, such as parallels and trim limits.

Origin - Origin and orientation for projection calculations

[latitude longitude orientation]
Origin and orientation for projection calculations - Sets the map origin for all projection calculations. The latitude, longitude, and orientation should be in the map axes AngleUnits. Latitude and longitude refer to the coordinates of the map origin; orientation refers to an angle of skewness or rotation about the axis running through the origin point and the center of the earth. The default origin is 0^{0} latitude and a longitude centered between the map longitude limits. If a scalar is entered, it is assumed to refer to the longitude; if a two-element vector is entered, the default orientation is 0 , a normal projection. If an empty origin vector is entered, the origin is centered on the map longitude limits. For more information on the origin, see the Mapping Toolbox User's Guide.

Parallels - Number of standard parallels

0|1|2
This property is read-only.
Number of standard parallels - This read-only property contains the number of standard parallels associated with the projection. See the Mapping Toolbox User's Guide for more information on standard parallels.

ScaleFactor - Scale factor for projection calculations

1 (default) | scalar
Scale factor for projection calculations - Modifies the size of the map in projected coordinates. The geographic coordinates are transformed to Cartesian coordinates by the map projection equations and multiplied by the scale factor. Scale factors are sometimes used to minimize the scale distortion in a map projection. For example, the Universal Transverse Mercator uses a scale factor of 0.996 to shift the line of zero scale distortion to two lines on either side of the central meridian.

Zone - Zone for certain projections

[] or 31N (default) | ZoneSpec

Zone for certain projections - Specifies the zone for certain projections. A zone is a region on the globe that has a special set of projection parameters. In the Universal Transverse Mercator Projection, the world is divided into quadrangles that are generally 6 degrees wide and 8 degrees tall. The number in the zone designation refers to the longitude range, while the letter refers to the latitude range. Most projections use the same parameters for the entire globe, and do not require a zone.

Properties That Control the Frame

Frame - Frame visibility

'off' (default)|'on'
Frame visibility - Controls the visibility of the display frame box. When the frame is ' off' (the default), the frame is not displayed. When the frame is ' on' , an enclosing frame is visible. The frame
is a patch that is plotted as the lowest layer of displayed map objects. Regardless of its display status, the frame always operates in terms of trimming map data.

FFill - Frame plotting precision

100 (default) | scalar plotting point density
Frame plotting precision - Sets the number of points to be used in plotting the frame for display. The default value is 100, which for a rectangular frame results in a plot with 100 points for each side, or a total of 400 points. The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex frames, such as the Werner, look better with higher densities. The default value is generally sufficient.

FEdgeColor - Color of displayed frame edge

[0 0 0] (default)|RGB triplet | hexadecimal color code|'r'|'g'|'b'|...
Color of displayed frame edge - Specifies the color used for the displayed frame. You can specify an RGB triplet, a hexadecimal color code, a color name, or a short name. By default, the frame edge is displayed in black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

| Color Name | Short Name | RGB Triplet | Hexadecimal
 Color Code | Appearance |
| :--- | :--- | :--- | :--- | :--- |
| 'red' | 'r' | $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | $' \# F F 0000 '$ | |
| 'green' | 'g' | $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | $' \# 00 F F 00 '$ | |
| 'blue' | 'b' | $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | $' \# 0000 F^{\prime}$ | |
| 'cyan' | 'c' | $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | $' \# 00 F F F F^{\prime}$ | |
| 'magenta' | 'm' | $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | '\#FF00FF' | |
| 'yellow' | 'y' | $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | $' \# F F F F 00 '$ | |
| 'black' | 'k' | $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ | '\#000000' | |
| 'white' | 'w' | $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | '\#FFFFFF' | |
| 'none' | Not
 applicable | Not applicable | Not applicable | No color |

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

| RGB Triplet | Hexadecimal Color Code | Appearance |
| :---: | :---: | :---: |
| [0 0.4470 0.7410] | '\#0072BD' | |
| [0.8500 0.3250 0.0980] | '\#D95319' | |
| [0.9290 0.6940 0.1250] | '\#EDB120' | \square |
| [0.4940 0.1840 0.5560] | '\#7E2F8E' | |
| [0.4660 0.6740 0.1880] | '\#77AC30' | |
| [0.3010 0.7450 0.9330] | '\#4DBEEE' | |
| [0.6350 0.0780 0.1840] | '\#A2142F' | \square |

FFaceColor - Color of displayed frame face

'none' (default) | RGB triplet | hexadecimal color code | 'r' | ' g' | 'b' | ...
Color of displayed frame face - Specifies the color used for the displayed frame face. You can specify an RGB triplet, a hexadecimal color code, a color name, or a short name. The default, ' none ', means no face color is filled in.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

| Color Name | Short Name | RGB Triplet | Hexadecimal
 Color Code | Appearance |
| :--- | :--- | :--- | :--- | :--- |
| 'red' | 'r' | $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | '\#FF0000' | |
| 'green' | 'g' | $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | '\#00FF00' | |
| 'blue' | 'b' | $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | $' \# 0000 F^{\prime}$ | |
| 'cyan' | 'c' | $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | '\#00FFFF' | |
| 'magenta' | 'm' | $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | '\#FF00FF' | |
| 'yellow' | 'y' | $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | '\#FFFF00' | |
| 'black' | 'k' | $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ | '\#000000' | |
| 'white' | 'w' | $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | '\#FFFFFF' | |
| 'none' | Not
 applicable | Not applicable | Not applicable | No color |

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

| RGB Triplet | Hexadecimal Color Code | Appearance |
| :---: | :---: | :---: |
| [0 0.4470 0.7410] | '\#0072BD' | \square |
| [0.8500 0.3250 0.0980] | '\#D95319' | |
| [0.9290 0.6940 0.1250] | '\#EDB120' | \square |
| [0.4940 0.1840 0.5560] | '\#7E2F8E' | |
| [0.4660 0.6740 0.1880] | '\#77AC30' | |
| [0.3010 0.7450 0.9330] | '\#4DBEEE' | |
| [0.6350 0.0780 0.1840] | '\#A2142F' | |

FLatLimit - Latitude limits of map frame relative to projection origin

[southern_limit northern_limit]
Latitude limits of map frame relative to projection origin - The map frame encloses the area in which data and graticule lines are plotted and beyond which they are trimmed. For non-oblique and nonazimuthal projections, which have quadrangular frames, this property controls the north-south extent of the frame. If a projection is made oblique by the inclusion of a non-zero rotation angle (the third element of the Origin vector), FLatLimit still applies, but in the rotated latitude-longitude system rather than in the geographic system. In the case of azimuthal projections, which have circular frames, FLatLimit takes the special form [-Inf radius] where radius is the spherical distance (in degrees or radians, depending on the AngleUnits property of the projection) from the projection origin to the edge of the frame.

Note In most common situations, including non-oblique cylindrical and conic projections and polar azimuthal projections, there is no need to set FLatLimit; use MapLatLimit instead.

FLineWidth - Frame edge line width

2 (default) | scalar
Frame edge line width - Sets the line width of the displayed frame edge. The value is a scalar representing points, which is 2 by default.

FLonLimit - Longitude limits of map frame relative to projection origin

[western_limit eastern_limit]
Longitude limits of map frame relative to projection origin - The map frame encloses the area in which data and graticule lines are plotted and beyond which they are trimmed. For non-oblique and non-azimuthal projections, which have quadrangular frames, this property controls the east-west extent of the frame. If a projection is made oblique by the inclusion of a non-zero rotation angle (the third element of the Origin vector), FLonLimit still applies, but in the rotated latitude-longitude system rather than in the geographic system. The FLonLimit property is ignored for azimuthal projections.

Note In most common situations, including non-oblique cylindrical and conic projections, there is no need to set FLonLimit; use MapLonLimit instead.

TrimLat - Bounds on FLatLimit

[southern_limit northern_limit]

This property is read-only.
Bounds on FLatLimit - This read-only property sets bounds on the values that axesm and setm will accept for the MapLatLimit and FLatLimit properties, which is necessary because some map projections cannot display the entire globe without extending to infinity. For example, TrimLat is [-90 90] degrees for most cylindrical projections and [-86 86] degrees for the Mercator projection because the north-south scale becomes infinite as one approaches either pole.

TrimLon - Bounds on FLonLimit

[western_limit eastern_limit]
This property is read-only.
Bounds on FLonLimit - This read-only property sets bounds on the values that axesm and setm will accept for the MapLonLimit and FLonLimit properties, which is necessary because some map projections cannot display the entire globe without extending to infinity. For example, TrimLon is [-135 135] degrees for most conic projections.

Properties That Control the Grid

Grid - Grid visibility

'off' (default)|'on'
Grid visibility - Controls the visibility of the display grid. When the grid is ' off ' (the default), the grid is not displayed. When the grid is ' on ' , meridians and parallels are visible. The grid is plotted as a set of line objects.

GAltitude - Grid \mathbf{z}-axis setting

Inf (default) | scalar
Grid z-axis setting - Sets the z-axis location for the grid when displayed. Its default value is infinity, which is displayed above all other map objects. However, you can set this to some other value for stacking objects above the grid, if desired.

GColor - Color of the displayed grid

[0 0 0] (default)|RGB triplet| hexadecimal color code |'r'|'g'|'b'|...
Color of the displayed grid - Specifies the color used for the displayed grid. You can specify an RGB triplet, a hexadecimal color code, a color name, or a short name. By default, the map grid is displayed in black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

| Color Name | Short Name | RGB Triplet | Hexadecimal
 Color Code | Appearance |
| :--- | :--- | :--- | :--- | :--- |
| 'red' | 'r' | $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | $' \# F F 0000$ ' | |
| 'green' | 'g' | $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | $' \# 00 F F 00 '$ | |
| 'blue' | 'b' | $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | $' \# 0000 F F^{\prime}$ | |
| 'cyan' | 'c' | $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | $' \# 00 F F F F^{\prime}$ | |
| 'magenta' | 'm' | $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | $' \# F F 00 F F^{\prime}$ | |
| 'yellow' | 'y' | $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | '\#FFFF00' | |
| 'black' | 'k' | $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ | $' \# 000000 '$ | |
| 'white' | 'w' | $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | '\#FFFFFF' | |
| 'none' | Not
 applicable | Not applicable | Not applicable | No color |

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

| RGB Triplet | Hexadecimal Color Code | Appearance |
| :---: | :---: | :---: |
| [0 0.4470 0.7410] | '\#0072BD ' | \square |
| [0.8500 0.3250 0.0980] | '\#D95319' | \square |
| [0.9290 0.6940 0.1250] | '\#EDB120' | \square |
| [0.4940 0.1840 0.5560] | '\#7E2F8E' | |
| [0.4660 0.6740 0.1880] | '\#77AC30' | \square |
| [0.3010 0.7450 0.9330] | '\#4DBEEE' | \square |
| [0.6350 0.0780 0.1840] | '\#A2142F' | |

GLineStyle - Grid line style

: (default)| LineStyle

Grid line style - Determines the style of line used when the grid is displayed. You can specify any line style supported by the MATLAB line function. The default line style is a dotted line (that is, ': ').

GLineWidth - Grid line width

0.5 (default) | scalar

Grid line width - Sets the line width of the displayed grid. The value is a scalar representing points, which is 0.5 by default.

MLineException - Exceptions to grid meridian limits

[] (default) | vector

Exceptions to grid meridian limits - Allows specific meridians of the displayed grid to extend beyond the grid meridian limits to the poles. The value must be a vector of longitudes in the appropriate angle units. For longitudes so specified, grid lines extend from pole to pole regardless of the existence of any grid meridian limits. This vector is empty by default.

MLineFill - Grid meridian plotting precision

100 (default) | scalar plotting point density

Grid meridian plotting precision - Sets the number of points to be used in plotting the grid meridians. The default value is 100 points. The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex shapes, such as the Werner, look better with higher densities. The default value is generally sufficient.

MLineLimit - Grid meridian limits

[] (default)| [north south]|[south north]

Grid meridian limits - Establishes latitudes beyond which displayed grid meridians do not extend. By default, this property is empty, so the meridians extend to the poles. There are two exceptions to the meridian limits. No meridian extends beyond the map latitude limits, and exceptions to the meridian limits for selected meridians are allowed (see above).

MLineLocation - Grid meridian interval or specific locations

30 (default) | scalar | vector
Grid meridian interval or specific locations - Establishes the interval between displayed grid meridians. When a scalar interval is entered in the map axes MLineLocation, meridians are displayed, starting at 0 o longitude and repeating every interval in both directions, which by default is 30°. Alternatively, you can enter a vector of longitudes, in which case a meridian is displayed for each element of the vector.

PLineException - Exceptions to grid parallel limits

[] (default) | vector
Exceptions to grid parallel limits - Allows specific parallels of the displayed grid to extend beyond the grid parallel limits to the International Date Line. The value must be a vector of latitudes in the appropriate angle units. For latitudes so specified, grid lines extend from the western to the eastern map limit, regardless of the existence of any grid parallel limits. This vector is empty by default.

PLineFill - Grid parallel plotting precision

100 (default) | scalar plotting point density
Grid parallel plotting precision - Sets the number of points to be used in plotting the grid parallels. The default value is 100 . The number of points required for a reasonable display varies with the projection. Cylindrical projections such as the Miller require very few. Projections resulting in more complex shapes, such as the Bonne, look better with higher densities. The default value is generally sufficient.

PLineLimit - Grid parallel limits

[] (default)| [east west]| [west east]
Grid parallel limits - Establishes longitudes beyond which displayed grid parallels do not extend. By default, this property is empty, so the parallels extend to the date line. There are two exceptions to the parallel limits. No parallel extends beyond the map longitude limits, and exceptions to the parallel limits for selected parallels are allowed (see above).

PLineLocation - Grid parallel interval or specific locations
 15 (default) | scalar | vector

Grid parallel interval or specific locations - Establishes the interval between displayed grid parallels. When a scalar interval is entered in the map axes PLineLocation, parallels are displayed, starting at 0° latitude and repeating every interval in both directions, which by default is 155°. Alternatively,
you can enter a vector of latitudes, in which case a parallel is displayed for each element of the vector.

Properties That Control Grid Labeling

FontAngle - Select italic or normal font for all grid labels

'normal' (default)|'italic'|'oblique'

Select italic or normal font for all grid labels - Selects the character slant for all displayed grid labels. 'normal' specifies nonitalic font. 'italic' and 'oblique' specify italic font.

FontColor - Text color for all grid labels

'black' (default) | RGB triplet | hexadecimal color code | 'r'| 'g' | 'b' | ...

Text color for all grid labels - Sets the color of all displayed grid labels. You can specify an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

| Color Name | Short Name | RGB Triplet | Hexadecimal
 Color Code | Appearance |
| :--- | :--- | :--- | :--- | :--- |
| 'red' | 'r' | $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | $' \# F F 0000 '$ | |
| 'green' | 'g' | $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | $' \# 00 F F 00 '$ | |
| 'blue' | 'b' | $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | '\#0000FF' | |
| 'cyan' | 'c' | $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | '\#00FFFF' | |
| 'magenta' | 'm' | $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | '\#FF00FF' | |
| 'yellow' | 'y' | $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | '\#FFFF00' | |
| 'black' | 'k' | $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ | '\#000000' | |
| 'white' | 'w' | $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | '\#FFFFFF' | |
| 'none' | Not
 applicable | Not applicable | Not applicable | No color |

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

| RGB Triplet | Hexadecimal Color Code | Appearance |
| :--- | :--- | :--- |
| $\left[\begin{array}{lll}0 & 0.4470 ~ 0.7410]\end{array}\right.$ | $' \# 0072$ BD ' $^{\prime}$ | |
| $\left[\begin{array}{ll}0.8500 ~ 0.32500 .0980] & ' \# D 95319 '\end{array}\right.$ | | |

| RGB Triplet | Hexadecimal Color Code | Appearance |
| :---: | :---: | :---: |
| [0.9290 0.6940 0.1250] | '\#EDB120' | \square |
| [0.4940 0.1840 0.5560] | '\#7E2F8E' | |
| [0.4660 0.6740 0.1880] | '\#77AC30' | |
| [0.3010 0.7450 0.9330] | '\#4DBEEE' | \square |
| [0.6350 0.0780 0.1840] | '\#A2142F' | |

FontName - Font family name for all grid labels

'helvetica' (default)|' courier'|'symbol'|'times'
Font family name for all grid labels - Sets the font for all displayed grid labels. To display and print properly, FontName must be a font that your system supports.

FontSize - Font size

0 (default) | scalar
Font size - An integer specifying the font size to use for all displayed grid labels, in units specified by the FontUnits property. The default point size is 9 .

FontUnits - Units used to interpret the FontSize property

'points' (default)|'normalized' |'inches'|'centimeters'|'pixels'
Units used to interpret the FontSize property - When set to normalized, the toolbox interprets the value of FontSize as a fraction of the height of the axes. For example, a normalized FontSize of 0.1 sets the text characters to a font whose height is one-tenth of the axes' height. The default units (' points') are equal to $1 / 72$ of an inch.

FontWeight - Select bold or normal font

'normal' (default)|'bold'
Select bold or normal font - The character weight for all displayed grid labels.

LabelFormat - Labeling format for grid
 'compass' (default)|'signed' | 'none'

Labeling format for grid - Specifies the format of the grid labels. If ' compass ' is employed (the default), meridian labels are suffixed with an "E" for east and a "W" for west, and parallel labels are suffixed with an " N " for north and an " S " for south. If ' signed ' is used, meridian labels are prefixed with a "+" for east and a "-" for west, and parallel labels are suffixed with a "+" for north and a "-" for south. If ' none' is selected, straight latitude and longitude numerical values are employed, so western meridian labels and southern parallel labels will have a "-", but no symbol precedes eastern and northern (positive) labels.

LabelRotation - Label Rotation

'off' (default)|'on'
Label rotation - Determines whether the meridian and parallel labels are displayed without rotation (the default) or rotated to align to the graticule. This option is not available for the Globe display.

```
LabelUnits - Specify units and formatting for grid labels
'degrees' (default)|'dm'|'dms' | 'radians'
```

Specify units and formatting for grid labels - The display of meridian and parallel labels is controlled by the map axes LabelUnits property, as described in the following table.

| LabelUnits value | Label format |
| :--- | :--- |
| 'degrees ' | decimal degrees |
| 'dm' | degrees/decimal minutes |
| 'dms ' | degrees/minutes/decimal seconds |
| 'radians ' | decimal radians |

LabelUnits does not have a default of its own; instead it defaults to the value of AngleUnits at the time the map axes is constructed, which itself defaults to degrees. Although you can specify ' dm ' and 'dms ' for LabelUnits, these values are not accepted when setting AngleUnits.

MeridianLabel - Toggle display of meridian labels

'off' (default)|'on'
Toggle display of meridian labels - Specifies whether the meridian labels are visible or not.

MLabelLocation - Specify meridians for labeling
 scalar | vector

Specify meridians for labeling - Meridian labels need not coincide with the displayed meridian lines. Labels are displayed at intervals if a scalar in the map axes MLabelLocation is entered, starting at the prime meridian and repeating at every interval in both directions. If a vector of longitudes is entered, labels are displayed at those meridians. The default locations coincide with the displayed meridian lines, as specified in the MLineLocation property.

MLabelParallel - Specify parallel for meridian label placement

'north' (default)|'south'|'equator' | scalar
Specify parallel for meridian label placement - Specifies the latitude location of the displayed meridian labels. If a scalar latitude is specified, all meridian labels are displayed at that latitude. If 'north' is specified, the maximum of the MapLatLimit is used; if 'south' is specified, the minimum of the MapLatLimit is used. If 'equator' is specified, a latitude of $0{ }^{\circ}$ is used.

MLabelRound - Specify significant digits for meridian labels
 0 (default) | integer scalar

Specify significant digits for meridian labels - Specifies to which power of ten the displayed labels are rounded. For example, if MLabelRound is -1 , labels are displayed down to the tenths. The default value of MLabelRound is 0 ; that is, displayed labels have no decimal places, being rounded to the ones column (10°).

ParallelLabel - Toggle display of parallel labels

'off' (default)|'on'
Toggle display of parallel labels - Specifies whether the parallel labels are visible or not.

PLabelLocation - Specify parallels for labeling
 scalar | vector

Specify parallels for labeling - Parallel labels need not coincide with the displayed parallel lines.
Labels are displayed at intervals if a scalar in the map axes PLabelLocation is entered, starting at
the equator and repeating at every interval in both directions. If a vector of latitudes is entered, labels are displayed at those parallels. The default locations coincide with the displayed parallel lines, as specified in the PLineLocation property.

PLabelMeridian - Specify meridian for parallel label placement
 'west' (default) | 'east' | 'prime' | scalar

Specify meridian for parallel label placement - Specifies the longitude location of the displayed parallel labels. If a longitude is specified, all parallel labels are displayed at that longitude. If 'east ' is specified, the maximum of the MapLonLimit is used; if 'west' is specified, the minimum of the MapLonLimit is used. If 'prime' is specified, a longitude of 0° is used.

PLabelRound - Specify significant digits for parallel labels

0 (default) | integer scalar
Specify significant digits for parallel labels - Specifies to which power of ten the displayed labels are rounded. For example, if PLabelRound is -1 , labels are displayed down to the tenths. The default value of PLabelRound is 0 ; that is, displayed labels have no decimal places, being rounded to the ones column (10°).

See Also

axesm|axes | gcm | getm | setm

Topics

"Introduction to Mapping Graphics"
"The Map Axes"
"The Map Frame"
"Map Limit Properties"
"The Map Grid"
Introduced before R2006a

axesscale

Resize axes for equivalent scale

Syntax

```
axesscale
axesscale(hbase)
axesscale(hbase,hother)
```


Description

axesscale resizes all axes in the current figure to have the same scale as the current axes (gca). In this context, scale means the relationship between axes x - and y-coordinates and figure and paper coordinates. When axesscale is used, a unit of length in x and y is printed and displayed at the same size in all the affected axes. The XLimMode and YLimMode of the axes are set to 'manual ' to prevent autoscaling from changing the scale.
axesscale(hbase) uses the axes hbase as the reference axes, and rescales the other axes in the current figure.
axesscale(hbase, hother) uses the axes hbase as the base axes, and rescales only the axes in hother.

Examples

Display Multiple Regions with a Common Scale

Display the conterminous United States, Alaska, and Hawaii in separate axes in the same figure, with a common scale.

Read state names and coordinates. Extract Alaska and Hawaii.

```
states = readgeotable("usastatehi.shp");
alaska = states(states.Name == "Alaska",:);
hawaii = states(states.Name == "Hawaii",:);
```

Create a figure for the conterminous states.

```
f = figure;
hconus = usamap("conus");
geoshow(states,"FaceColor",[0.5 1 0.5]);
load conus gtlakelat gtlakelon
geoshow(gtlakelat,gtlakelon,...
    "DisplayType","polygon","FaceColor","cyan")
framem off
gridm off
mlabel off
plabel off
```


Display Alaska and Hawaii on different axes. For now, the axes overlap.

```
halaska = axes("Parent",f);
usamap("alaska")
geoshow(alaska,"FaceColor",[0.5 1 0.5]);
framem off
gridm off
mlabel off
plabel off
hhawaii = axes("Parent",f);
usamap("hawaii")
geoshow(hawaii,"FaceColor",[0.5 1 0.5]);
framem off
gridm off
mlabel off
plabel off
```


Arrange the axes so they do not overlap. However, this changes the scale of the axes.

```
set(hconus, "Position",[0.1 0.35 0.85 0.6])
set(halaska,"Position",[0.02 0.08 0.2 0.2])
set(hhawaii,"Position",[0.5 0.1 0.2 0.2])
```


Resize the Alaska and Hawaii axes based on the size of the conterminous United States. axesscale(hconus)

Limitations

The equivalence of scales holds only as long as no commands are issued that can change the scale of one of the axes. For example, changing the units of the ellipsoid or the scale factor in one of the axes would change the scale.

Tips

To ensure the same map scale between axes, use the same ellipsoid and scale factors.

See Also

paperscale

Introduced before R2006a

azimuth

Azimuth between points on sphere or ellipsoid

Syntax

```
az = azimuth(lat1,lon1,lat2,lon2)
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid)
az = azimuth(lat1,lon1,lat2,lon2,units)
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid,units)
az = azimuth(track,...)
```


Description

az = azimuth(lat1,lon1,lat2,lon2) calculates the great circle azimuth from point 1 to point 2 , for pairs of points on the surface of a sphere. The input latitudes and longitudes can be scalars or arrays of matching size. If you use a combination of scalar and array inputs, the scalar inputs will be automatically expanded to match the size of the arrays. The function measures azimuths clockwise from north and expresses them in degrees or radians.
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid) computes the azimuth assuming that the points lie on the ellipsoid defined by the input ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The default ellipsoid is a unit sphere.
az = azimuth(lat1,lon1,lat2,lon2,units) uses the input units to define the angle units of az and the latitude-longitude coordinates. Use 'degrees' (the default value), in the range from 0 to 360 , or ' radians ', in the range from 0 to 2 *pi.
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid,units) specifies both the ellipsoid vector and the units of az.
az = azimuth(track,...) uses the input track to specify either a great circle or a rhumb line azimuth calculation. Enter ' gc' for the track (the default value), to obtain great circle azimuths for a sphere or geodesic azimuths for an ellipsoid. (Hint to remember name: the letters " g " and " c " are in both great circle and geodesic.) Enter 'rh' for the track to obtain rhumb line azimuths for either a sphere or an ellipsoid.

Examples

Find the azimuth between two points on the same parallel, for example, $\left(10^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right)$ and $\left(10^{\circ} \mathrm{N}\right.$, $40^{\circ} \mathrm{E}$). The azimuth between two points depends on the track value selected.

```
% Try the 'gc' track value.
az = azimuth('gc',10,10,10,40)
```

\% Compare to the result obtained from the 'rh' track value.
az = azimuth('rh',10,10,10,40)

Find the azimuth between two points on the same meridian, say $\left(10^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right)$ and $\left(40^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right)$:

```
% Try the 'gc' track .
az = azimuth(10,10,40,10)
% Compare to the 'rh' track .
az = azimuth('rh',10,10,40,10)
```

Rhumb lines and great circles coincide along meridians and the Equator. The azimuths are the same because the paths coincide.

More About

Azimuth

An azimuth is the angle at which a smooth curve crosses a meridian, taken clockwise from north. The North Pole has an azimuth of 0° from every other point on the globe. You can calculate azimuths for great circles or rhumb lines.

Geodesic

A geodesic is the shortest distance between two points on a curved surface, such as an ellipsoid.

Great Circle

A great circle is a type of geodesic that lies on a sphere. It is the intersection of the surface of a sphere with a plane passing through the center of the sphere. For great circles, the azimuth is calculated at the starting point of the great circle path, where it crosses the meridian. In general, the azimuth along a great circle is not constant. For more information, see "Great Circles".

Rhumb Line

A rhumb line is a curve that crosses each meridian at the same angle. For rhumb lines, the azimuth is the constant angle between true north and the entire rhumb line passing through the two points. For more information, see "Rhumb Lines".

Algorithms

Azimuths over Long Geodesics

Azimuth calculations for geodesics degrade slowly with increasing distance and can break down for points that are nearly antipodal or for points close to the Equator. In addition, for calculations on an ellipsoid, there is a small but finite input space. This space consists of pairs of locations in which both points are nearly antipodal and both points fall close to (but not precisely on) the Equator. In such cases, you will receive a warning and az will be set to NaN for the "problem pairs."

Eccentricity

Geodesic azimuths on an ellipsoid are valid only for small eccentricities typical of the Earth (for example, 0.08 or less).

Alternatives

If you are calculating both the distance and the azimuth, you can call just the distance function. The function returns the azimuth as the second output argument. It is unnecessary to call azimuth separately.

See Also

distance |ecef2aer|reckon|track|track1|track2
Introduced before R2006a

boundImageSize

Bound size of raster map

Syntax

mapBound $=$ boundImageSize(mapRequest,imageLength)

Description

mapBound $=$ boundImageSize(mapRequest,imageLength) sets the bounds of the raster map mapRequest based on imageLength, the length in pixels for the row (ImageHeight) or column (ImageWidth) dimension.

Examples

Read and Display VMAPO Basic Layer for Entire Globe

Read the VMAP0 basic layer for the entire globe.

```
vmap0 = wmsfind('vmap0.tiles','SearchField','serverurl');
vmap0 = wmsupdate(vmap0);
layer = refine(vmap0,'basic');
request = WMSMapRequest(layer);
request.Transparent = true;
imageLength = 720;
request = boundImageSize(request,imageLength);
globalImage = getMap(request.Server, request.RequestURL);
```

Display the map. The rendered map has a spatial resolution of 0.5 degrees per cell and an image size of 360 -by- 720 pixels.

```
figure
worldmap('world')
geoshow(globalImage,request.RasterReference);
title(['VMAP0 ' layer.LayerTitle ' Layer'])
```


The data used in this example is from Metacarta.

Read and Display Multiple Layers Centered Around London

Read multiple layers centered around London.

```
vmap0 = wmsfind('vmap0.tiles','SearchField','serverurl');
vmap0 = wmsupdate(vmap0);
layers = [ refine(vmap0, 'rail'); refine(vmap0, 'river'); ...
    refine(vmap0, 'priroad'); refine(vmap0, 'secroad'); ...
    refine(vmap0, 'ctylabel'); refine(vmap0, 'basic')];
request = WMSMapRequest(layers);
cities = readgeotable('worldcities.shp');
row = cities.Name == 'London';
london = cities(row,:);
extent = [-. 25 .25];
request.Latlim = london.Shape.Latitude + extent;
request.Lonlim = london.Shape.Longitude + extent;
request.Transparent = true;
imageLength = 1024;
request = boundImageSize(request,imageLength);
londonImage = getMap(request.Server,request.RequestURL);
```

Display the map. The rendered map has a spatial extent of 0.5 degrees and an image size of 1024-by-1024 pixels.

```
figure
worldmap(londonImage,request.RasterReference)
geoshow(londonImage,request.RasterReference)
title({'Region Surrounding London, England', ...
    ['with Primary and Secondary Roads, ', ...
        'Rivers, Rails, City Label, and Basic Layers']})
```

Region Surrounding London, England
with Primary and Secondary Roads, Rivers, Rails, City Label, and Basic Layers

The data used in this example is from Metacarta.

Input Arguments

mapRequest - Original Web map service map

WMSMapRequest object
Original Web map service map, specified as a WMSMapRequest object.

imageLength - Row or column length of input WMS map
 positive scalar

Row or column length of input WMS map, specified as a positive scalar. imageLength indicates the length in pixels for the row (ImageHeight) or column (ImageWidth) dimension.
Example: 720

Data Types: double

Output Arguments

```
mapBound - Bound Web map service map
WMSMapRequest object
```

Bound Web map service map, returned as a WMSMapRequest object.

Algorithms

The boundImageSize function calculates the row or column dimension length by using the aspect ratio of the Latlim and Lonlim properties or the aspect ratio of the XLim and YLim properties of , if they are set.
boundImageSize measures image dimensions in geographic or map coordinates. The function sets the longest image dimension to imageLength, and the shortest to the nearest integer value that preserves the aspect ratio, without changing the coordinate limits. The maximum value of the MaximumHeight and MaximumWidth properties becomes the maximum value of imageLength.

See Also

Introduced in R2009b

bufferm

Buffer zones for latitude-longitude polygons

Syntax

[latb,lonb] = bufferm(lat,lon,bufwidth)
[latb,lonb] = bufferm(lat,lon,bufwidth,direction)
[latb,lonb] = bufferm(lat,lon,bufwidth, direction,npts)

Description

[latb,lonb] = bufferm(lat,lon,bufwidth) computes the buffer zone around a line or polygon. If the vectors lat and lon, in units of degrees, define a line, then latb and lonb define a polygon that contains all the points that fall within a certain distance, bufwidth, of the line. bufwidth is a scalar specified in degrees of arc along the surface. If the vectors lat and lon define a polygon, then latb and lonb define a region that contains all the points exterior to the polygon that fall within bufwidth of the polygon.
[latb,lonb] = bufferm(lat,lon,bufwidth,direction) where direction specifies whether the buffer zone is inside ('in') or outside ('out') of the polygon. A third option, 'outPlusInterior', returns the union of an exterior buffer (as would be computed using 'out') with the interior of the polygon. If you do not supply a direction value, bufferm uses 'out' as the default and returns a buffer zone outside the polygon. If you supply 'in' as the direction value, bufferm returns a buffer zone inside the polygon. If you are finding the buffer zone around a line, ' out ' is the only valid option.
[latb,lonb] = bufferm(lat,lon,bufwidth,direction,npts) controls the number of points used to construct circles about the vertices of the polygon. A larger number of points produces smoother buffers, but requires more time. If npts is omitted, 13 points per circle are used.

Examples

Display Buffer Zones Inside and Outside the Great Lakes

Display a simplified version of the five polygons that represent the Great Lakes.

```
load conus
tol = 0.05;
[latr, lonr] = reducem(gtlakelat, gtlakelon, tol);
figure('Color','w')
ax = usamap({'MN','NY'});
setm(ax,'MLabelLocation',5)
geoshow(latr, lonr, 'DisplayType', 'polygon', ...
    'FaceColor', 'blue')
title('Great Lakes')
```


Set the buffer width and display a buffer zone outside the lakes.

```
figure;
bufwidth = 1;
[latb, lonb] = bufferm(latr, lonr, bufwidth);
geoshow(latb, lonb, 'DisplayType', 'polygon', ...
    'FaceColor', 'yellow')
title('Exterior Buffer Zone')
```


Display a buffer zone inside the polygon.
figure;
[lati, loni] = bufferm(latr, lonr, 0.3*bufwidth, 'in');
geoshow(lati, loni, 'DisplayType', 'polygon', ...
'FaceColor', 'magenta')
title('Interior Buffer Zone')

Display the Great Lakes with interior and exterior buffer zones on a backdrop of neighboring states.

```
figure('Color','w')
ax = usamap({'MN','NY'});
setm(ax,'MLabelLocation',5)
geoshow(latb, lonb, 'DisplayType', 'polygon', 'FaceColor', 'yellow')
geoshow(latr, lonr, 'DisplayType', 'polygon', 'FaceColor', 'blue')
geoshow(lati, loni, 'DisplayType', 'polygon', 'FaceColor', 'magenta')
geoshow(uslat, uslon)
geoshow(statelat, statelon)
title('Great Lakes and Buffer Zones with Neighboring States')
```


Use the 'outPlusInterior' option.
bufWidth = 0.5;
[latz, lonz] = bufferm(latr, lonr, bufWidth,'outPlusInterior');
figure
geoshow(latz,lonz,'DisplayType','polygon','FaceColor','yellow') title('Exterior Buffer Zone including Polygon Interior');

Tips

Close all polygons before processing them with bufferm. If a polygon is not closed, bufferm assumes it is a line.

See Also

Functions
polyshape

Topics

"Create and Display Polygons"
Introduced before R2006a

bufgeoquad

Expand limits of geographic quadrangle

Syntax

[latlim,lonlim] = bufgeoquad(latlim,lonlim,buflat,buflon)

Description

[latlim,lonlim] = bufgeoquad(latlim,lonlim,buflat,buflon) returns an expanded version of the geographic quadrangle defined by latlim and lonlim.

Examples

Bounding Quadrangle for U.S.

Bounding quadrangle for the Conterminous United States, buffered 2 degrees to the north and south and 3 degrees to the east and west.

Load data and expand the limits of the quadrangle.

```
conus = load('conus.mat');
[latlim, lonlim] = geoquadline(conus.uslat,conus.uslon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,2,3)
latlim =
    23.1200 51.3800
```

lonlim =
$-127.7200-63.9700$

Input Arguments

latlim - Latitude limits

1-by-2 vector
Latitude limits of a geographic quadrangle, specified as a 1-by-2 vector of the form [southern_limit northern_limit], with latitudes in degrees. The two elements must be in ascending order, and lie in the closed interval [-90 90].
Data Types: single|double

Lonlim - Longitude limits

1-by-2 vector

Longitude limits of a geographic quadrangle, specified as a 1-by-2 vector of the form [western_limit eastern_limit], with longitudes in degrees. The two limits need not be in numerical ascending order.
Data Types: single | double
buflat - Latitude buffer size
nonnegative scalar
Latitude buffer size, specified as a nonnegative scalar, in units of degrees.
Data Types: double
buflon - Longitude buffer size
nonnegative scalar
Longitude buffer size, specified as a nonnegative scalar, in units of degrees.
Data Types: double

Output Arguments

latlim - Latitude limits

1-by-2 vector
Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [southern_limit northern_limit], in units of degrees. The elements are in ascending order, and both lie in the closed interval [-90 90].

Lonlim - Longitude limits

1-by-2 vector
Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [western_limit eastern_limit], in units of degrees. The limits are wrapped to the interval [-180 180]. They are not necessarily in numerical ascending order.

See Also
geoquadpt | geoquadline |outlinegeoquad
Introduced in R2012b

camheading

Set or query heading angle of camera for geographic globe

Syntax

camheading(g,heading)
camheading(g,'auto')
camheading(g,'manual')
outHeading = camheading(g)
outHeading = camheading(\qquad)

Description

Set Heading and Mode

camheading (g , heading) sets the heading angle of the camera for the specified geographic globe. Setting the heading angle shifts the camera left or right. For more information about how camera rotations affect your view of the globe, see "How Camera Orientation Affects Globe View" on page 1136.

camheading(g, 'auto') sets the camera heading to automatic mode, enabling the geographic globe to determine the heading angle based on plotted data. The mode defaults to automatic when you create a geographic globe. If you interact with the globe using your mouse, then the mode switches to automatic.
camheading (g , 'manual ') sets the camera heading to manual mode, specifying that the geographic globe preserve the heading angle when the plotted data changes. If you change the heading angle using the camheading function, then the mode switches to manual.

Query Heading

outHeading $=$ camheading (g) returns the heading angle of the camera.
outHeading = camheading (__) sets the heading angle or mode and then returns the heading angle of the camera. You can return the heading angle using any combination of input arguments from the previous syntaxes.

Examples

Change Heading Angle of Camera

Create a geographic globe. Position the camera near Mount Kilimanjaro by specifying a latitude, longitude, and ellipsoidal height. Set the pitch angle to 0 degrees, so that the camera points across the summit.

```
uif = uifigure;
```

g = geoglobe(uif);
campos ($\mathrm{g},-3.1519,37.3561,5500$)
campitch (g,0)

By default, the heading angle is 360 degrees, which is equivalent to a heading angle of 0 degrees. Shift the camera to the right by changing the heading angle to 15 degrees.

```
camheading(g,15)
```


Animate Changes to Heading Angle

Create a geographic globe. Position the camera at the top of Mount Washington by specifying a latitude, longitude, and ellipsoidal height. Change the pitch angle so that the camera faces the horizon instead straight down.
uif = uifigure;
g = geoglobe(uif);
campos($\mathrm{g}, 44.2700,-71.3038,2000)$
campitch (g,0)

Animate the view by incrementally changing the heading angle. As the heading angle increases, the camera view shifts to the right.

```
for heading = 0:5:180
    camheading(g,heading)
    drawnow
end
```


Get Information About Camera View

Get the position and the heading, pitch, and roll angles of the camera. Use this information to control the view of a different geographic globe or to automate navigation.

Create a geographic globe. Navigate to an area of interest using your mouse or gestures. For this example, navigate to an area around Hawaii.

Query the latitude, longitude, and ellipsoidal height of the camera, and assign each to a variable.

```
[camlat,camlon,camh] = campos(g)
camlat =
    18.1781
camlon =
    -155.9297
camh =
    6.6664e+04
```

Query the heading, pitch, and roll angles of the camera, and assign each to a variable.

```
heading = camheading(g)
pitch = campitch(g)
roll = camroll(g)
heading =
    16.7613
pitch =
    -24.1507
roll =
    359.9977
```

Use these values to control the view of a different geographic globe. For example, create a new geographic globe and programmatically set the view.

```
uif2 = uifigure;
g2 = geoglobe(uif2);
campos(g2,camlat,camlon, camh)
camheading(g2,heading)
campitch(g2,pitch)
camroll(g2,roll)
```


Preserve Camera View

Preserve the position and the heading, pitch, and roll angles of the camera by setting the camera modes to manual. If you do not set the camera modes to manual, then the camera view resets when you plot new data.

Import a sample route along roads in Massachusetts using the gpxread function. Create a geographic globe with a road map and no terrain data. Preserve the basemap and terrain settings by using the hold function. Then, navigate to an area near Eastern Massachusetts using your mouse.
track = gpxread('sample_tracks.gpx','Index',2);
lat = track.Latitude;
lon = track. Longitude;
height = track.Elevation;
uif = uifigure;
g = geoglobe(uif,'Basemap','streets','Terrain','none');
hold(g,'on')

Set the camera modes to manual and plot the data. Note that the camera position does not change.

```
campos(g,'manual')
camheight(g,'manual')
camheading(g,'manual')
campitch(g,'manual')
camroll(g,'manual')
geoplot3(g,lat,lon,height,'LineWidth',3)
```


Input Arguments

g - Geographic globe
GeographicGlobe object
Geographic globe, specified as a GeographicGlobe object. ${ }^{1}$

heading - Heading angle of camera

360 (default) | scalar
Heading angle of the camera, specified as a scalar value in the range [-360, 360] degrees.

More About

How Camera Orientation Affects Globe View

The values of the camera heading, pitch, and roll angles affect your view of a geographic globe. Mapping Toolbox references these values to the globe using a north-east-down (NED) coordinate system. As a result, when the heading, pitch, and roll angles of the camera are zero, the camera sits on a plane that is parallel to the tangent plane of the globe at the current latitude and longitude. For more information about NED coordinate systems, see "Choose a 3-D Coordinate System".

[^0]

Change your view of a geographic globe by changing the heading, pitch, and roll angles of the camera:

- Heading - Rotate the camera about its z-axis, which shifts the view left or right. Move the view to the right by increasing the heading angle.
- Pitch - Rotate the camera about its y-axis, which tilts the view up or down. Tilt the view up by increasing the pitch angle.
- Roll - Rotate the camera about its x-axis, which spins the camera around its lens. Spin the view counterclockwise by increasing the roll angle.

Tips

- When the pitch angle is near -90 (the default) or 90 degrees, the camera loses one rotational degree of freedom. As a result, when you change the roll angle, the heading angle may change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, use the camheading function instead of the camroll function.

See Also

Functions

geoglobe | campos | camroll | camheight | campitch

Topics

"Visualize Aircraft Line-of-Sight Over Terrain"
"Visualize UAV Flight Path on 2-D and 3-D Maps" Introduced in R2020b

camheight

Set or query height of camera for geographic globe

Syntax

```
camheight(g,height)
camheight(g,'auto')
camheight(g,'manual')
height0ut = camheight(g)
height0ut = camheight(____)
```


Description

Set Height and Mode

camheight (g , height) sets the ellipsoidal height of the camera for the specified geographic globe.
camheight (g, 'auto') sets the camera height to automatic mode, enabling the geographic globe to determine the height of the camera based on the plotted data. The mode defaults to automatic when you create a geographic globe. If you change the camera height using your mouse, then the mode switches to automatic.
camheight (g , 'manual') sets the camera height to manual mode, specifying that the geographic globe preserve the height of the camera when the plotted data changes. If you change the camera height using the camheight function, then the mode switches to manual.

Query Height

heightOut $=$ camheight (g) returns the ellipsoidal height of the camera.
height0ut = camheight (__) sets the height or mode and then returns the ellipsoidal height of the camera. You can return the camera height using any combination of input arguments from the previous syntaxes.

Examples

Change Camera Height

Create a geographic globe. Specify the latitude and longitude of the Eiffel Tower, and specify a height that is 700 meters above the WGS84 reference ellipsoid. Then, move the camera using the campos function.

```
uif = uifigure;
g = geoglobe(uif);
lat = 48.8584;
lon = 2.2945;
h = 700;
campos(g,lat,lon,h)
```


Change only the height of the camera by using the camheight function. Increase the camera height to 1500 meters above the WGS84 reference ellipsoid.
camheight ($\mathrm{g}, 1500$)

Animate Changes to Camera Height

Create a geographic globe. Position the camera above Mount Washington by specifying a latitude, longitude, and ellipsoidal height.
uif = uifigure;
g = geoglobe(uif);
height0 $=2500$;
campos($\mathrm{g}, 44.2706,-71.3025$, height0)

Animate the view by incrementally changing the camera height. As the camera height increases, the view zooms out.

```
for height = 2500:50:5000
    camheight(g,height)
    drawnow
end
```


Get Height of Camera

Get the height of the camera. Use this information to control the view of a different geographic globe or to automate navigation.

Create a geographic globe. Zoom in on an area around Spain using your mouse or gestures.
uif = uifigure;
g = geoglobe(uif);

Query the height of the camera and assign it to a variable.

```
outHeight = camheight(g)
outHeight =
    1.8803e+06
```

Use this value to control the camera height for a different geographic globe. For example, create a new geographic globe and programmatically set the camera height.
uif2 = uifigure;
g2 = geoglobe(uif2);
camheight(g2,outHeight)

Preserve Camera View

Preserve the position and the heading, pitch, and roll angles of the camera by setting the camera modes to manual. If you do not set the camera modes to manual, then the camera view resets when you plot new data.

Import a sample route along roads in Massachusetts using the gpxread function. Create a geographic globe with a road map and no terrain data. Preserve the basemap and terrain settings by using the hold function. Then, navigate to an area near Eastern Massachusetts using your mouse.
track = gpxread('sample_tracks.gpx','Index',2);
lat = track.Latitude;
lon = track. Longitude;
height = track.Elevation;
uif = uifigure;
g = geoglobe(uif,'Basemap','streets','Terrain','none');
hold(g,'on')

Set the camera modes to manual and plot the data. Note that the camera position does not change.

```
campos(g,'manual')
camheight(g,'manual')
camheading(g,'manual')
campitch(g,'manual')
camroll(g,'manual')
geoplot3(g,lat,lon,height,'LineWidth',3)
```


Convert Between Zoom Level and Camera Height

The strategies you use to programmatically zoom in and out of GeographicGlobe and GeographicAxes objects are different. For GeographicGlobe objects, you specify a camera height using the camheight function. For GeographicAxes objects, you specify a zoom level using the ZoomLevel property or specify latitude and longitude limits using the geolimits function. To create GeographicGlobe and GeographicAxes objects with similar map scales, approximate camera height and zoom level using the heightToZoomLevel and zoomLevelToHeight local functions (defined here).

You can verify the behavior of the zoomLevelToHeight local function by displaying GeographicAxes and GeographicGlobe objects using comparable magnification levels.

Specify the latitude and longitude of the Sydney Opera House. Create geographic axes with a basemap, map center, and zoom level that allows you to clearly see the building.

```
lat = -33.8572;
lon = 151.2150;
z = 17;
gx = geoaxes('Basemap','satellite','MapCenter',[lat lon],'ZoomLevel',z);
```


Create a geographic globe. Position the camera above the Sydney Opera House using the campos function.
uif = uifigure;
g = geoglobe(uif);
campos(g,lat,lon)
Calculate an approximate camera height from the zoom level using the zoomLevelToHeight local function. Then, set the camera height using the camheight function. Note that the geographic axes and geographic globe displays are comparable.

```
h = zoomLevelToHeight(z,lat);
camheight(g,h)
```


To verify the behavior of the heightToZoomLevel function, calculate an approximate zoom level from the camera height.

```
z2 = heightToZoomLevel(h,lat)
z2 = 17
```

Note that z and z 2 are equal.
This code defines a local function called zoomLevelToHeight that approximates the camera height h for a GeographicGlobe object using the zoom level z and map center latitude lat of a GeographicAxes object.

```
function h = zoomLevelToHeight(z,lat)
    earthCircumference = 2*pi*6378137;
    h = (earthCircumference*cosd(lat)) / 2^(z-1);
end
```

This code defines a local function called heightToZoomLevel that approximates the zoom level z for a GeographicAxes object using the camera height h and latitude lat of a GeographicGlobe object.

```
function z = heightToZoomLevel(h,lat)
    earthCircumference = 2*pi*6378137;
    z = log2((earthCircumference*cosd(lat)) / h) + 1;
    z = max(0,z);
    z = min(19,z);
end
```


Input Arguments

g - Geographic globe
 GeographicGlobe object

Geographic globe, specified as a GeographicGlobe object. ${ }^{2}$

height - Ellipsoidal height of camera

15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Geographic globe objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

If you specify the height so that the camera is level with or below the terrain, then the camheight function sets the height to a value one meter above the terrain.

See Also

Functions

geoglobe | campitch | campos | camroll| camheading
Topics
"Visualize UAV Flight Path on 2-D and 3-D Maps"
"Visualize Aircraft Line-of-Sight Over Terrain"
Introduced in R2020b

[^1]
campitch

Set or query pitch angle of camera for geographic globe

Syntax

```
campitch(g,pitch)
campitch(g,'auto')
campitch(g,'manual')
outPitch = campitch(g)
outPitch = campitch(
```

\qquad

Description

Set Pitch and Mode

campitch ($\mathrm{g}, \mathrm{pitch}$) sets the pitch angle of the camera for the specified geographic globe. Setting the pitch angle tilts the camera up or down. For more information about how camera rotations affect your view of the globe, see "How Camera Orientation Affects Globe View" on page 1-154.

campitch(g, 'auto') sets the camera pitch to automatic mode, enabling the geographic globe to determine the pitch angle based on plotted data. The mode defaults to automatic when you create a geographic globe. If you interact with the globe using your mouse, then the mode switches to automatic.
campitch(g , 'manual') sets the camera pitch to manual mode, specifying that the geographic globe preserve the pitch angle when the plotted data changes. If you change the pitch angle using the campitch function, then the mode switches to manual.

Query Pitch

outPitch $=$ campitch (g) returns the pitch angle of the camera.
outPitch = campitch (__) sets the pitch angle or mode and then returns the pitch angle of the camera. You can return the pitch angle using any combination of input arguments from the previous syntaxes.

Examples

Change Pitch Angle of Camera

Create a geographic globe. Position the camera near Mount Kilimanjaro by specifying a latitude, longitude, and ellipsoidal height. Set the pitch angle to 0 degrees, so that the camera points across the summit.
uif = uifigure;
$\mathrm{g}=$ geoglobe(uif);
campos(g,-3.1519, 37.3561,5500)
campitch (g,0)

Tilt the camera up by increasing the pitch angle to 15 degrees.
campitch ($\mathrm{g}, 15$)

Animate Changes to Pitch Angle

Create a geographic globe. Position the camera near Mount Washington by specifying a latitude, longitude, and ellipsoidal height. Change the heading angle so that the camera faces the mountain. By default, the pitch angle is -90 degrees, so that the camera points at the ground.
uif = uifigure;
g = geoglobe(uif);
campos($\mathrm{g}, 44.2668,-71.3849,1757$)
camheading(g,90)

Animate the view by incrementally changing the pitch angle. As the pitch angle increases, the camera changes from pointing at the ground to pointing at the sky. After the animation finishes, change the pitch angle to 0 degrees.

```
for pitch = -90:2:90
    campitch(g,pitch)
    drawnow
end
campitch(g,0)
```


Get Information About Camera View

Get the position and the heading, pitch, and roll angles of the camera. Use this information to control the view of a different geographic globe or to automate navigation.

Create a geographic globe. Navigate to an area of interest using your mouse or gestures. For this example, navigate to an area around Hawaii.

Query the latitude, longitude, and ellipsoidal height of the camera, and assign each to a variable.

```
[camlat,camlon,camh] = campos(g)
camlat =
    18.1781
camlon =
    -155.9297
camh =
    6.6664e+04
```

Query the heading, pitch, and roll angles of the camera, and assign each to a variable.

```
heading = camheading(g)
pitch = campitch(g)
roll = camroll(g)
heading =
    16.7613
pitch =
    -24.1507
roll =
    359.9977
```

Use these values to control the view of a different geographic globe. For example, create a new geographic globe and programmatically set the view.

```
uif2 = uifigure;
g2 = geoglobe(uif2);
campos(g2,camlat,camlon, camh)
camheading(g2,heading)
campitch(g2,pitch)
camroll(g2,roll)
```


Preserve Camera View

Preserve the position and the heading, pitch, and roll angles of the camera by setting the camera modes to manual. If you do not set the camera modes to manual, then the camera view resets when you plot new data.

Import a sample route along roads in Massachusetts using the gpxread function. Create a geographic globe with a road map and no terrain data. Preserve the basemap and terrain settings by using the hold function. Then, navigate to an area near Eastern Massachusetts using your mouse.
track = gpxread('sample_tracks.gpx','Index',2);
lat = track.Latitude;
lon = track. Longitude;
height = track.Elevation;
uif = uifigure;
g = geoglobe(uif,'Basemap','streets','Terrain','none');
hold(g,'on')

Set the camera modes to manual and plot the data. Note that the camera position does not change.

```
campos(g,'manual')
camheight(g,'manual')
camheading(g,'manual')
campitch(g,'manual')
camroll(g,'manual')
geoplot3(g,lat,lon,height,'LineWidth',3)
```


Input Arguments

g - Geographic globe
GeographicGlobe object
Geographic globe, specified as a GeographicGlobe object. ${ }^{3}$
pitch - Pitch angle of camera
-90 (default) | scalar
Pitch angle of the camera, specified as a scalar value in the range [-90, 90] degrees. By default, the pitch angle is -90 degrees, which means that camera points directly toward the surface of the globe.

More About

How Camera Orientation Affects Globe View

The values of the camera heading, pitch, and roll angles affect your view of a geographic globe. Mapping Toolbox references these values to the globe using a north-east-down (NED) coordinate system. As a result, when the heading, pitch, and roll angles of the camera are zero, the camera sits on a plane that is parallel to the tangent plane of the globe at the current latitude and longitude. For more information about NED coordinate systems, see "Choose a 3-D Coordinate System".

[^2]

Change your view of a geographic globe by changing the heading, pitch, and roll angles of the camera:

- Heading - Rotate the camera about its z-axis, which shifts the view left or right. Move the view to the right by increasing the heading angle.
- Pitch - Rotate the camera about its y-axis, which tilts the view up or down. Tilt the view up by increasing the pitch angle.
- Roll - Rotate the camera about its x-axis, which spins the camera around its lens. Spin the view counterclockwise by increasing the roll angle.

Tips

- When the pitch angle is near -90 (the default) or 90 degrees, the camera loses one rotational degree of freedom. As a result, when you change the roll angle, the heading angle may change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call the camheading function instead of the camroll function.

See Also

Functions

geoglobe | campos | camheight | camroll| camheading

Topics

"Visualize Aircraft Line-of-Sight Over Terrain"
"Visualize UAV Flight Path on 2-D and 3-D Maps" Introduced in R2020b

campos

Set or query position of camera for geographic globe

Syntax

```
campos(g,lat,lon)
campos(g,lat,lon,height)
campos(g,'auto')
campos(g,'manual')
campos(g)
[latOut,lonOut,heightOut] = campos(
```

\qquad

``` )
```


Description

Set Position

campos(g , lat, lon) sets the latitude and longitude of the camera for the specified geographic globe.
campos(g , lat, lon, height) sets the latitude, longitude, and ellipsoidal height of the camera. If you want to set only the height of the camera, then use the camheight function instead.

Set Mode

campos(g , 'auto') sets the camera position to an automatic mode, enabling the geographic globe to determine the latitude and longitude of the camera based on the plotted data. The mode defaults to automatic when you create a geographic globe. If you change the camera position using your mouse, then the mode switches to automatic. To control the mode for the height of the camera, use the camheight function instead.
campos(g , 'manual') sets the camera position to a manual mode, specifying that the geographic globe preserve the latitude and longitude of the camera when the plotted data changes. If you change the camera position using the campos function, then the mode switches to manual.

Query Position

campos (g) displays the latitude, longitude, and ellipsoidal height of the camera as a three-element vector.
[latOut,lonOut, height0ut] = campos(__) sets the position or mode and then returns the latitude, longitude, and height of the camera. You can return the camera position using any of the previous syntaxes.

Examples

Change Camera Position

Create a geographic globe. Specify the latitude and longitude of the Eiffel Tower, and specify a height that is 400 meters above the WGS84 reference ellipsoid. Use these values to move the camera.
uif = uifigure;
g = geoglobe(uif);
lat $=48.8584$;
lon = 2.2945;
h = 400;
campos(g,lat,lon, h)

Get Information About Camera View

Get the position and the heading, pitch, and roll angles of the camera. Use this information to control the view of a different geographic globe or to automate navigation.

Create a geographic globe. Navigate to an area of interest using your mouse or gestures. For this example, navigate to an area around Hawaii.
uif = uifigure; g = geoglobe(uif);

Query the latitude, longitude, and ellipsoidal height of the camera, and assign each to a variable.
[camlat, camlon, camh] = $\operatorname{campos}(\mathrm{g})$
camlat =
18.1781
camlon =

- 155.9297
camh =
$6.6664 \mathrm{e}+04$
Query the heading, pitch, and roll angles of the camera, and assign each to a variable.
heading = camheading (g)
pitch $=$ campitch(g)
roll = camroll(g)
heading =
16.7613
pitch $=$
-24.1507
roll =
359.9977

Use these values to control the view of a different geographic globe. For example, create a new geographic globe and programmatically set the view.

```
uif2 = uifigure;
g2 = geoglobe(uif2);
campos(g2,camlat,camlon,camh)
camheading(g2,heading)
campitch(g2,pitch)
camroll(g2,roll)
```


Preserve Camera View

Preserve the position and the heading, pitch, and roll angles of the camera by setting the camera modes to manual. If you do not set the camera modes to manual, then the camera view resets when you plot new data.

Import a sample route along roads in Massachusetts using the gpxread function. Create a geographic globe with a road map and no terrain data. Preserve the basemap and terrain settings by using the hold function. Then, navigate to an area near Eastern Massachusetts using your mouse.

```
track = gpxread('sample_tracks.gpx','Index',2);
lat = track.Latitude;
lon = track.Longitude;
height = track.Elevation;
uif = uifigure;
g = geoglobe(uif,'Basemap','streets','Terrain','none');
hold(g,'on')
```


Set the camera modes to manual and plot the data. Note that the camera position does not change.

```
campos(g,'manual')
camheight(g,'manual')
camheading(g,'manual')
```

```
campitch(g,'manual')
camroll(g,'manual')
geoplot3(g,lat,lon,height,'LineWidth',3)
```


Input Arguments

g - Geographic globe
GeographicGlobe object
Geographic globe, specified as a GeographicGlobe object. ${ }^{4}$

lat - Geodetic latitude of camera

0 (default) | numeric scalar
Geodetic latitude of the camera, specified as a numeric scalar in the range [-90, 90] degrees.

Lon - Geodetic longitude of camera

0 (default) | numeric scalar
Geodetic longitude of the camera, specified as a numeric scalar in the range [-360, 360].

height - Ellipsoidal height of camera

15000000 (default) | numeric scalar
Ellipsoidal height of the camera, specified as a numeric scalar in meters. Geographic globe objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

If you specify the height so that the camera is level with or below the terrain, then the campos function sets the height to a value one meter above the terrain.

[^3]
Output Arguments

latOut - Geodetic latitude of camera

numeric scalar
Geodetic latitude of the camera, returned as a numeric scalar in degrees.

lonOut - Geodetic longitude of camera

numeric scalar
Geodetic longitude of the camera, returned as a numeric scalar in degrees.

heightOut - Ellipsoidal height of camera

numeric scalar

Ellipsoidal height of the camera, returned as a numeric scalar in meters. Geographic globe objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

See Also

Functions

geoglobe | campitch | camheight | camroll | camheading
Topics
"Visualize Aircraft Line-of-Sight Over Terrain"
"Visualize UAV Flight Path on 2-D and 3-D Maps"
Introduced in R2020b

camposm

Set camera position using geographic coordinates

Syntax

camposm(lat,long, alt)
[$\mathrm{x}, \mathrm{y}, \mathrm{z}$] = camposm(lat,long,alt)

Description

camposm(lat,long, alt) sets the axes CameraPosition property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[\mathrm{x}, \mathrm{y}, \mathrm{z}]=$ camposm(lat,long, alt) returns the camera position in the projected Cartesian coordinate system.

Examples

Look at northern Australia from a point south and one Earth radius above New Zealand.

```
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)
camlight
material(0.6*[ l 1 1])
plat = -50;
plon = 160;
tlat = -10;
tlon = 130;
camtargm(tlat,tlon,0)
camposm(plat,plon,1)
camupm(tlat,tlon)
set(gca,'CameraViewAngle',75)
land = shaperead('landareas.shp','UseGeoCoords',true);
linem([land.Lat],[land.Lon])
axis off
```


See Also

camtargm | camupm | campos | camva
Introduced before R2006a

camroll

Set or query roll angle of camera for geographic globe

Syntax

camroll(g, roll)
camroll(g,'auto')
camroll(g,'manual')
outRoll = camroll(g)
outRoll = camroll(\qquad)

Description

Set Roll and Mode

camroll ($\mathrm{g}, \mathrm{roll}$) sets the roll angle of the camera for the specified geographic globe. Setting the roll angle rotates the camera around its lens. For more information about how camera rotations affect your view of the globe, see "How Camera Orientation Affects Globe View" on page 1-171.

camroll(g , 'auto') sets the camera roll to automatic mode, enabling the geographic globe to determine the roll angle based on plotted data. The mode defaults to automatic when you create a geographic globe. If you interact with the globe using your mouse, then the mode switches to automatic.
camroll (g, 'manual') sets a manual mode, specifying that the geographic globe preserve the roll angle when the plotted data changes. If you change the roll angle using the camroll function, then the mode switches to manual.

Query Roll

outRoll $=$ camroll (g) returns the roll angle of the camera.
outRoll = camroll(\qquad) sets the roll angle or mode and then returns the roll angle of the camera. You can return the roll angle using any combination of input arguments from the previous syntaxes.

Examples

Change Roll Angle of Camera

Create a geographic globe. Position the camera near Mount Kilimanjaro by specifying a latitude, longitude, and ellipsoidal height. Set the pitch angle to 0 degrees, so that the camera points across the summit.
uif = uifigure;
$\mathrm{g}=\mathrm{geoglobe}(\mathrm{uif})$;
campos ($\mathrm{g},-3.1519,37.3561,5500$)
campitch (g,0)

By default, the roll angle is 0 degrees. Rotate the mountain in a counterclockwise direction by increasing the roll angle to 30 degrees.
camroll(g,30)

Animate Changes to Roll Angle

Create a geographic globe. Position the camera near Mount Washington by specifying a latitude, longitude, and ellipsoidal height. Change the heading and pitch angles so that the camera faces the mountain.
uif = uifigure;
$\mathrm{g}=$ geoglobe(uif);
campos ($\mathrm{g}, 44.2668,-71.3849,1757$)
camheading(g,90)
campitch ($\mathrm{g}, 0$)

Animate the view by incrementally changing the roll angle. As the roll angle increases, the mountain rotates in a counterclockwise direction.

```
for roll = 0:5:180
    camroll(g,roll)
    drawnow
end
```


Get Information About Camera View

Get the position and the heading, pitch, and roll angles of the camera. Use this information to control the view of a different geographic globe or to automate navigation.

Create a geographic globe. Navigate to an area of interest using your mouse or gestures. For this example, navigate to an area around Hawaii.

```
uif = uifigure;
```

g = geoglobe(uif);

Query the latitude, longitude, and ellipsoidal height of the camera, and assign each to a variable.

```
[camlat,camlon,camh] = campos(g)
camlat =
    18.1781
camlon =
    -155.9297
camh =
    6.6664e+04
```

Query the heading, pitch, and roll angles of the camera, and assign each to a variable.

```
heading = camheading(g)
pitch = campitch(g)
roll = camroll(g)
heading =
    16.7613
pitch =
    -24.1507
roll =
    359.9977
```

Use these values to control the view of a different geographic globe. For example, create a new geographic globe and programmatically set the view.

```
uif2 = uifigure;
g2 = geoglobe(uif2);
campos(g2,camlat,camlon,camh)
camheading(g2,heading)
campitch(g2,pitch)
camroll(g2,roll)
```


Preserve Camera View

Preserve the position and the heading, pitch, and roll angles of the camera by setting the camera modes to manual. If you do not set the camera modes to manual, then the camera view resets when you plot new data.

Import a sample route along roads in Massachusetts using the gpxread function. Create a geographic globe with a road map and no terrain data. Preserve the basemap and terrain settings by using the hold function. Then, navigate to an area near Eastern Massachusetts using your mouse.
track = gpxread('sample_tracks.gpx','Index',2);
lat = track.Latitude;
lon = track. Longitude;
height = track.Elevation;
uif = uifigure;
g = geoglobe(uif,'Basemap','streets','Terrain','none');
hold(g,'on')

Set the camera modes to manual and plot the data. Note that the camera position does not change.

```
campos(g,'manual')
camheight(g,'manual')
camheading(g,'manual')
campitch(g,'manual')
camroll(g,'manual')
geoplot3(g,lat,lon,height,'LineWidth',3)
```


Input Arguments

g - Geographic globe
GeographicGlobe object
Geographic globe, specified as a GeographicGlobe object. ${ }^{5}$
roll - Roll angle of camera
0 (default) | scalar
Roll angle of the camera, specified as a scalar value in the range [-360, 360] degrees.

More About

How Camera Orientation Affects Globe View

The values of the camera heading, pitch, and roll angles affect your view of a geographic globe. Mapping Toolbox references these values to the globe using a north-east-down (NED) coordinate system. As a result, when the heading, pitch, and roll angles of the camera are zero, the camera sits on a plane that is parallel to the tangent plane of the globe at the current latitude and longitude. For more information about NED coordinate systems, see "Choose a 3-D Coordinate System".

[^4]

Change your view of a geographic globe by changing the heading, pitch, and roll angles of the camera:

- Heading - Rotate the camera about its z-axis, which shifts the view left or right. Move the view to the right by increasing the heading angle.
- Pitch - Rotate the camera about its y-axis, which tilts the view up or down. Tilt the view up by increasing the pitch angle.
- Roll - Rotate the camera about its x-axis, which spins the camera around its lens. Spin the view counterclockwise by increasing the roll angle.

Tips

- When the pitch angle is near -90 (the default) or 90 degrees, the camera loses one rotational degree of freedom. As a result, when you change the roll angle, the heading angle may change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call the camheading function instead of the camroll function.

See Also

Functions

geoglobe | campos | camheading | camheight | campitch

Topics

"Visualize Aircraft Line-of-Sight Over Terrain"
"Visualize UAV Flight Path on 2-D and 3-D Maps" Introduced in R2020b

camtargm

Set camera target using geographic coordinates

Syntax

camtargm(lat,long, alt)
$[x, y, z]=$ camtargm(lat,long,alt)

Description

camtargm(lat,long, alt) sets the axes CameraTarget property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[x, y, z]=$ camtargm(lat,long, alt) returns the camera target in the projected Cartesian coordinate system.

Examples

Look down the spine of the Andes from a location three Earth radii above the surface.

```
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap');
demcmap(topo60c)
lightm(-80,-180);
material(0.6*[ 1 1 1])
plat = 10;
plon = -65;
tlat = -30;
tlon = -70;
camtargm(tlat,tlon,0);
camposm(plat,plon,3);
camupm(tlat,tlon);
camva(20)
set(gca,'CameraViewAngle',30)
land = shaperead('landareas.shp','UseGeoCoords',true);
linem([land.Lat],[land.Lon])
axis off
```



```
See Also
camposm | camupm | camtarget | camva
```

Introduced before R2006a

camupm

Set camera up vector using geographic coordinates

Syntax

camupm(lat,long)
[$\mathrm{x}, \mathrm{y}, \mathrm{z}]=$ camupm(lat,long)

Description

camupm(lat,long) sets the axes CameraUpVector property of the current map axes to the position specified in geographic coordinates. The inputs lat and long are assumed to be in the angle units of the current map axes.
$[\mathrm{x}, \mathrm{y}, \mathrm{z}]=$ camupm(lat,long) returns the camera position in the projected Cartesian coordinate system.

Examples

Look at northern Australia from a point south of and one Earth radius above New Zealand. Set CameraUpVector to the antipode of the camera target for that down under view.

```
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap');
demcmap(topo60c)
camlight
material(0.6*[ 1 1 1])
plat = -50;
plon = 160;
tlat = -10;
tlon = 130;
[alat,alon] = antipode(tlat,tlon);
camtargm(tlat,tlon,0)
camposm(plat,plon,1)
camupm(alat,alon)
set(gca,'CameraViewAngle',80)
land = shaperead('landareas.shp','UseGeoCoords',true);
linem([land.Lat],[land.Lon])
axis off
```


See Also

camtargm | camposm | camup | camva

Introduced before R2006a

cart2grn

Transform projected coordinates to Greenwich system

Syntax

[lat,lon,alt] = cart2grn
[lat,lon,alt] = cart2grn(hndl)
[lat,lon,alt] = cart2grn(hndl,mstruct)

Description

When objects are projected and displayed on map axes, they are plotted in Cartesian coordinates appropriate for the selected projection. This function transforms those coordinates back into the Greenwich frame, in which longitude is measured positively East from Greenwich (longitude 0), England and negatively West from Greenwich.
[lat,lon,alt] = cart2grn returns the latitude, longitude, and altitude data in geographic coordinates of the current map object, removing any clips or trims introduced during the display process from the output data.
[lat,lon, alt] = cart2grn(hndl) specifies the displayed map object desired with its handle hndl. The default handle is gco.
[lat,lon,alt] = cart2grn(hndl,mstruct) specifies the map structure associated with the object. The map structure of the current axes is the default.

See Also

gcm | projinv | projfwd
Introduced before R2006a

cat

Concatenate geographic or planar vector

Syntax

$\mathrm{v}=\operatorname{cat}(1, \mathrm{v} 1, \mathrm{v} 2, \ldots)$

Description

$\mathrm{v}=\operatorname{cat}(1, \mathrm{v} 1, \mathrm{v} 2, \ldots)$ concatenates the geographic or planar vectors $\mathrm{v} 1, \mathrm{v} 2$, and so on, along the first dimension. If the class type of any property is a cell array, then the resultant field in the output v is also a cell array.

Examples

Concatenate Two Geopoint Vectors

Create two geopoint vectors. The first vector has one feature, and the second vector has two features. The vectors have different dynamic properties.

```
gp1 = geopoint(52,-101, 'Weather','Cloudy');
gp2 = geopoint([42 42.2], [-110.5 -110.7], 'Temperature', [65.6 63.2]);
```

Concatenate the vectors into a single geopoint vector. Note that the first input argument must be 1.

```
p = cat(1,gp1,gp2)
p =
    3x1 geopoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
Feature properties:
            Latitude: [52 42 42.2000]
            Longitude: [-101 -110.5000 -110.7000]
            Weather: {'Cloudy' '' ''}
        Temperature: [0 65.6000 63.2000]
```

The concatenated vector has three features, and all features have all dynamic properties. Default property values are used when the value was not specified in the original geopoint vector. For example, the 'Temperature' value of the first feature is set to 0 since no 'Temperature' value was specified in gp1.

Input Arguments

v1, v2, ... - Geographic or planar vectors to be concatenated geopoint, geoshape, mappoint, or mapshape objects

Geographic or planar vectors to be concatenated, specified as geopoint, geoshape, mappoint, or mapshape objects. All of $\mathrm{v} 1, \mathrm{v} 2, \ldots$ are the same type of object.

Output Arguments

v-Concatenated geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Concatenated geographic or planar vector, returned as a geopoint, geoshape, mappoint, or mapshape object. The object type of v matches the object type of $\mathrm{v} 1, \mathrm{v} 2, \ldots$.

See Also

vertcat
Introduced in R2012a

changem

Replace values in array

Syntax

$B=$ changem (A, new)
$B=$ changem $(A$, new, old $)$

Description

$B=$ changem(A, new) replaces all occurrences of 0 in array A with the specified scalar new. This function is useful for replacing values in classification grids.
$B=$ changem $(A, n e w, o l d)$ replaces all occurrences of old with new.

Examples

Replace Values in Land Cover Classification

Read a land cover classification of Oahu, Hawaii as an array, a map cells reference object, and a colormap. The elements of the array index into the colormap.

```
[A,R,cmap] = readgeoraster("oahu_landcover.img");
```

Deciduous forest, evergreen forest, and mixed forest are indicated by the values 9,10 , and 11 in the array, respectively. Create an array that uses the same color for all forests by replacing occurrences of 9 and 10 with 11.

```
new = [11 11];
old = [9 10];
B = changem(A,new,old);
```

Display the old and new land cover classifications.

```
figure
mapshow(A,cmap,R)
title("Land Cover Classification with Three Forest Types")
```


figure
mapshow(B, cmap, R)
title("Land Cover Classification with One Forest Type")

Input Arguments

A - Input array

array
Input array.

new - New value

scalar | vector
New value, specified as a scalar or vector. When new and old are vectors, the function replaces occurrences of old (k) with new (k).

The size of new must match the size of old.

old - Value to replace

scalar | vector
Value to replace, specified as a scalar or vector. When new and old are vectors, the function replaces occurrences of old(k) with new(k).

The size of new must match the size of old.

See Also

Functions

replace|fillmissing|readgeoraster
Introduced before R2006a

circcirc

Find intersection of circles in Cartesian coordinates

Syntax

[xout,yout] = circcirc(centerx1,centery1,radius1,centerx2,centery2,radius2)

Description

[xout,yout] = circcirc(centerx1,centery1,radius1,centerx2,centery2,radius2) finds the intersection of two circles with the specified centers and radii, in Cartesian coordinates.

Examples

Find Intersection of Two Circles

Find the intersection of two circles. The first circle has its center at $(-2,3)$ and a radius of 4 . The second circle has its center at $(1,-5)$ and a radius of 6 .

```
[xout,yout] = circcirc(-2,3,4,1,-5,6)
xout = 1\times2
    1.4541 -3.2760
yout = 1×2
    0.9828 -0.7910
```


Input Arguments

centerx1 - x-coordinate of center of first circle

numeric scalar
x-coordinate of the center of the first circle, specified as a numeric scalar.

centery1 - \boldsymbol{y}-coordinate of center of first circle

numeric scalar
y-coordinate of the center of the first circle, specified as a numeric scalar.
radius1 - Radius of first circle
positive scalar
Radius of the first circle, specified as a positive scalar.

centerx2 - x-coordinate of center of second circle

 numeric scalarx-coordinate of the center of the second circle, specified as a numeric scalar.
centery2 - y-coordinate of center of second circle numeric scalar
y-coordinate of the center of the second circle, specified as a numeric scalar.

radius2 - Radius of second circle

positive scalar
Radius of the second circle, specified as a positive scalar.

Output Arguments

xout - x-coordinates of intersections

two-element vector
x-coordinates of the intersections, returned as a two-element vector.

- When the circles are tangent, the elements of the vector are equal.
- When the circles do not intersect or are identical, both elements are NaN.

yout - \boldsymbol{y}-coordinates of intersections

two-element vector
y-coordinates of the intersections, returned as a two-element vector.

- When the circles are tangent, the elements of the vector are equal.
- When the circles do not intersect or are identical, both elements are NaN.

See Also

Functions

linecirc

Introduced before R2006a

clabelm

Add contour labels to map contour display

Syntax

```
clabelm(C)
clabelm(C,h)
clabelm(C,v)
clabelm(C,h,v)
clabelm(___,Name,Value)
clabelm(C,'manual')
clabelm(C,h,'manual')
text_handles = clabel(
```

\qquad

Description

clabelm(C) labels all contours displayed in the current contour plot. Labels are upright and displayed with ' + ' symbols. clabelm randomly selects label positions.
clabelm(C, h) rotates the labels and inserts them in the contour lines. This syntax inserts only those labels that fit within the contour, depending on the size of the contour.
clabelm(C, v) labels only the contour levels specified by the vector, v .
$\mathrm{clabelm}(\mathrm{C}, \mathrm{h}, \mathrm{v})$ labels only the contour levels specified by vector v , rotates the labels, and inserts them in the contour lines.
clabelm(\qquad ,Name, Value) specifies the text object properties and the 'LabelSpacing' contour group property, using one or more Name, Value pair arguments, in addition to any of the input arguments in previous syntaxes.
clabelm(C,'manual') places contour labels at locations you select with a mouse. Click the mouse or press the space bar to label the contour closest to the center of the crosshair. Press the Return key while the cursor is within the figure window to terminate labeling.
clabelm(C, h, 'manual') places contour labels at locations you select with a mouse. Press the Return key while the cursor is within the figure window to terminate labeling. The labels are rotated and inserted in the contour lines.
text_handles = clabel (__) additionally returns an array containing the handles of the text objects created, using any of the input arguments in the previous syntaxes. If you call clabel without the h argument, text_handles also contains the handles of line objects used to create the '+' symbols.

Input Arguments

C - Contour matrix

2-by-n matrix

Contour matrix containing the data that defines the contour lines. C is returned by the contourm, contourfm, or contour3m functions.
h - Handle to the contour group object
Handle to the contour group object returned by the contourm, contourfm, or contour 3 m functions.
v - Contour level values
vector
Contour level values, specified as a row or column vector of individual values.
Example: [0, 10, 20]

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LabelSpacing - Spacing between labels

144 (default) | scalar
Spacing between labels on each contour line, specified as the comma-separated pair consisting of 'LabelSpacing' and a scalar. Specify the label spacing in points, where 1 point $=1 / 72$ inch.

Example: 'LabelSpacing', 72

Output Arguments

text_handles - Handles of text objects

Handles of the text objects that clabelm creates. The UserData properties of the text objects contain the contour values displayed.

If you call clabelm without the h argument, text_handles also contains the handles of line objects used to create the ' + ' symbols.

Examples

Add Labels to Contour Plot

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then, create a contour plot using a Miller projection. Add a frame using framem and eliminate extra white space using tightmap.

```
[N,R] = egm96geoid;
axesm miller
[C,h] = contourm(N,R,-100:50:80);
framem
tightmap
```


Add labels to the contour plot.
clabelm(C, h)

See Also

clegendm | contourm | contour3m | contourfm | clabel
Introduced before R2006a

clegendm

Add legend labels to map contour display

Syntax

clegendm (C, h)
clegendm(C, h, loc)
clegendm(, unitstr)
clegendm(_, labels)
$\mathrm{hl}=\mathrm{clegendm}($ \qquad)

Description

clegendm (C, h) adds a legend specifying the contour line heights, C , to the current map contour plot, h.
$\mathrm{clegendm}(\mathrm{C}, \mathrm{h}, \mathrm{loc})$ places the legend in a specified location.
clegendm (__ , unitstr) appends a string unitstr to each entry in the legend.
clegendm(\qquad , labels) uses the text specified in labels to label the legend.
$\mathrm{hl}=\mathrm{clegendm}(\ldots \ldots)$ returns the handle to the legend object created.

Examples

Create Legend for Contour Display

Load elevation raster data and a geographic cells reference object. Create a map axes object for the world. Display a contour plot using the raster data. Then, create a legend in the lower-right corner of the map. Specify the contour elevations as meters.

```
load topo60c
worldmap('world')
[c,h] = contourm(topo60c,topo60cR,-6000:1500:6000);
clegendm(c,h,4,'m')
```


Input Arguments

C - Contour matrix

numeric matrix
Contour matrix, specified as a matrix with two rows. The first row represents longitude data and the second row represents latitude data. You can create a contour matrix by using contourm, contour3m, or contourfm.

h - Handle of contour patches

hggroup
Handle to the contour patches drawn onto the current axes, returned as an hggroup. You can get a handle to contour patches by usingcontourm, contour3m, or contourfm.

loc - Location

0 (default) | 1 | 2 | 3 | 4 |-1
Location to place legend, specified as one of the following integers.

Value	Placement
0	Automatic placement (default)
1	Upper right corner

Value	Placement
2	Upper left corner
3	Lower left corner
4	Lower right corner
-1	To the right of the plot

unitstr - Text to append

character vector | string scalar
Text to append to each entry in the legend, specified as a character vector or string scalar.

labels - Labels

cell array of character vectors | string array
Labels in the legend, specified as a string array or cell array of character vectors. labels must have the same number of entries as the line children of h.

Output Arguments

hl - Handle to legend object

handle
Handle to legend object created by the clegendm function, returned as a handle.

See Also

clabelm | contourm | contour3m | contourfm | contourc| contourcbar
Introduced before R2006a

clipdata

Clip data at +/-pi in longitude, +/-pi in latitude

Syntax

[lat,long,splitpts] = clipdata(lat,long,object)

Description

[lat,long,splitpts] = clipdata(lat,long,object) inserts NaNs at the appropriate locations in a map object so that a displayed map is clipped at the appropriate edges. It assumes that the clipping occurs at $+/-\mathrm{pi} / 2$ radians in the latitude (y) direction and $+/-$ pi radians in the longitude (x) direction.

The input data must be in radians and properly transformed for the particular aspect and origin so that it fits in the specified clipping range.

The output data is in radians, with NaNs placed at the proper locations. The output variable splitpts returns the row and column indices of the clipped elements (columns 1 and 2 respectively). These indices are necessary to restore the original data if the map parameters or projection are ever changed.

The object parameter can have any of the following values:

Object to clip	Description
'surface'	graticules
'light'	lights
' line '	lines
'patch '	patches
'text '	text object location points
'point '	point data
'none '	skip all clipping operations

See Also

trimdata|undoclip|undotrim
Introduced before R2006a

clma

Clear current map axes

Syntax

clma
clma all
clma purge

Description

clma deletes all displayed map objects from the current map axes but leaves the frame if it is displayed.
clma all deletes all displayed map objects, including the frame, but it leaves the map structure intact, thereby retaining the map axes.
clma purge removes the map definition from the current axes, but leaves all objects projected on the axes intact.

See Also

cla | clmo | handlem | hidem | namem | showm | tagm
Introduced before R2006a

clmo

Clear specified graphics objects from map axes

Syntax

clmo
clmo(handle)
clmo(object)

Description

clmo deletes all displayed graphics objects on the current axes.
clmo(handle) deletes those objects specified by their handles.
clmo(object) deletes those objects with names identical to the value object. This can be any value recognized by the handlem function, including entries in the Tag property of each object, or the object Type if the Tag property is empty.

See Also

clma | handlem | hidem | namem | showm | tagm
Introduced before R2006a

closePolygonParts

Close all rings in multipart polygon

Syntax

[xdata, ydata] = closePolygonParts(xdata, ydata)
[lat, lon] = closePolygonParts(lat, lon, angleunits)

Description

[xdata, ydata] = closePolygonParts(xdata, ydata) ensures that each ring in a multipart (NaN-separated) polygon is "closed" by repeating the start point at the end of each ring, unless the start and end points are already identical. Coordinate vectors xdata and ydata must match in size and have identical NaN locations.
[lat, lon] = closePolygonParts(lat, lon, angleunits) works with latitude-longitude data and accounts for longitude wrapping with a period of 360 if angleunits is 'degrees ' and $2 *$ pi if angleunits is 'radians '. For a ring to be considered closed, the latitudes of its first and last vertices must match exactly, but their longitudes need only match modulo the appropriate period. Such rings are returned unaltered.

Examples

Close Polygon in Plane Coordinates

Create two vectors of planar coordinates.

```
xOpen = [1 0 2 NaN 0.5 0.5 1 1];
yOpen = [0 1 2 NaN 0.8 1 1 0.8];
```

Create a closed polygon from these coordinates.

```
[xClosed, yClosed] = closePolygonParts(xOpen,yOpen)
xClosed = 1\times10
    1.0000 0 2.0000 1.0000 NaN 0.5000 0.5000 1.0000 1.0000
yClosed = 1\times10
    0 1.0000 2.0000 0 0 NaN 0.8000 1.0000 1.0000 0.8000
```

Display all variables.
whos

| Name | Size | Bytes Class | Attributes |
| :--- | ---: | ---: | :--- | ---: |
| xClosed | 1×10 | 80 | double |

xOpen	1×8	64	double
yClosed	1×10	80	double
yOpen	1×8	64	double

Close Polygon in Latitude-Longitude Coordinates

Load coastline data from MAT-file.
load coastlines
Construct a two-part polygon based on the coastlines data. The first ring is Antarctica. The longitude of its first vertex is -180 and the longitude of its last vertex is 180 . The second ring is a small island from which the last vertex, a replica of the first vertex, is removed.

```
[latparts, lonparts] = polysplit(coastlat, coastlon);
latparts{2}(end) = [];
lonparts{2}(end) = [];
latparts(3:end) = [];
lonparts(3:end) = [];
[lat, lon] = polyjoin(latparts, lonparts);
```

Examine how closePolygonParts treats the two rings. In both cases, the first and last vertices differ. However, Antarctica remains unchanged while the small island is closed back up.

```
[latClosed, lonClosed] = closePolygonParts(lat, lon, 'degrees');
[latpartsClosed, lonpartsClosed] = polysplit(latClosed, lonClosed);
lonpartsClosed{1}(end) - lonpartsClosed{1}(1) % Result is 360
ans = 360
lonpartsClosed{2}(end) - lonpartsClosed{2}(1) % Result is 0
ans = 0
```


See Also

isShapeMultipart| removeExtraNanSeparators
Topics
"Create and Display Polygons"
Introduced in R2006a

colorui

(Removed) Interactively define RGB color

Note The colorui function has been removed. Use the uisetcolor function instead.

Syntax

c = colorui
c = colorui(InitClr)
c = colorui(InitClr,FigTitle)

Description

$c=$ colorui creates an interface for the definition of an RGB color triplet. On Windows ${ }^{\circledR}$ platforms, colorui produces the same interface as uisetcolor. On other machines, colorui produces a platform-independent dialog for specifying the color values.
$c=$ colorui(InitClr) initializes the color value to the RGB triple given in initclr.
$c=$ colorui(InitClr,FigTitle) where the character vector FigTitle specifies the window label.

The output value c is the selected RGB triple if the Accept or $\mathbf{O K}$ button is pushed. If the user presses Cancel, then the output value is set to 0 .

See Also
uisetcolor

combntns

(To be removed) All possible combinations of set of values

Note The combntns function will be removed in a future release. Use the nchoosek function instead. For more information, see "Compatibility Considerations".

Syntax

C = combntns(v,k)

Description

$\mathrm{C}=$ combntns (v, k) returns all possible combinations of the set of values v , given combinations of length k .

Examples

All Combinations of Five Numbers Taken Three at a Time

Find all possible combinations of five numbers taken three at a time.
v = 1:5;
C = combntns(v,3)
C =

1	2	3
1	2	4
1	2	5
1	3	4
1	3	5
1	4	5
2	3	4
2	3	5
2	4	5
3	4	5

Input Arguments

v - Set of all choices
vector
Set of all choices, specified as a vector.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64|
logical|char
Complex Number Support: Yes

k - Number of selected choices
 nonnegative integer scalar

Number of selected choices, specified as a nonnegative integer scalar. This argument can be any numeric type, but must be real.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

Output Arguments

C - All combinations of v
matrix
All combinations of v, returned as a matrix of the same data type as v. The number of columns in C is the same as the value of k.

Compatibility Considerations

combntns will be removed

Warns starting in R2014a
The combntns function will be removed in a future release. Use the nchoosek function instead. To update your code, replace instances of the combntns function with the nchoosek function.

See Also

nchoosek
Introduced before R2006a

comet3m

(Removed) Project 3-D comet plot on map axes

Note The comet3m function has been removed. Use the proj fwd and comet3 functions instead. For more information, see "Compatibility Considerations".

Syntax

```
comet3m(lat,lon,z)
```

comet3m(lat,lon, z, p)

Description

comet3m(lat, lon, z) traces a comet plot through the points specified by the input latitude, longitude, and altitude vectors.
comet3m(lat,lon, z, p) specifies a comet body of length $p *$ length(lat). The input p is 0.1 by default.

A comet plot is an animated graph in which a circle (the comet head) traces the data points on the screen. The comet body is a trailing segment that follows the head. The tail is a solid line that traces the entire function.

Examples

Create a 3-D comet plot of the coastlines data:

```
load coastlines
z = (1:length(coastlat))'/3000;
axesm miller
framem; gridm;
setm(gca,'galtitude',max(z)+.5)
view(3)
comet3m(coastlat,coastlon,z,0.01)
```


Compatibility Considerations

comet 3 m will be removed

Errors starting in R2022a
The comet3m function has been removed. Use the projfwd and comet3 functions instead. You can update your code using these replacement patterns.

Has Been Removed	Recommended
comet3m(lat,lon,z)	mstruct $=\mathrm{gcm} ;$ $[x, y]=$ projfwd (mstruct, lat,lon); comet3($x, y, z)$

Has Been Removed	Recommended
comet3m(lat, lon $, z, p)$	mstruct $=\mathrm{gcm} ;$ $[x, y]=$ projfwd (mstruct, lat, lon $) ;$ $\operatorname{comet} 3(x, y, z, p)$

See Also

comet3 | comet | projfwd
Introduced before R2006a

cometm

(Removed) Project 2-D comet plot on map axes

Note The cometm function has been removed. Use the proj fwd and comet functions instead. For more information, see "Compatibility Considerations".

Syntax

cometm(lat,lon)
cometm(lat,lon, p)

Description

cometm(lat,lon) traces a comet plot through the points specified by the input latitude and longitude vectors.
cometm(lat, lon, p) specifies a comet body of length p^{*} length(lat). The input p is 0.1 by default.

A comet plot is an animated graph in which a circle (the comet head) traces the data points on the screen. The comet body is a trailing segment that follows the head. The tail is a solid line that traces the entire function.

Examples

Create a comet plot of the coastlines data:
load coastlines
axesm miller
framem
cometm(coastlat, coastlon, 0.01)

Compatibility Considerations

cometm will be removed
Errors starting in R2022a
The cometm function has been removed. Use the projfwd and comet functions instead. You can update your code using these replacement patterns.

Has Been Removed	Recommended
cometm(lat,lon)	mstruct $=$ gcm; $[x, y]=$ projfwd (mstruct, lat, lon) ; comet (x,y)
cometm(lat,lon, p)	mstruct = gcm; $[x, y]=$ proj fwd (mstruct, lat,lon) ; comet (x,y,p)

See Also

comet | comet3 | projfwd
Introduced before R2006a

map.geodesy.ConformalLatitudeConverter

Convert between geodetic and conformal latitudes

Description

A ConformalLatitudeConverter object provides conversion methods between geodetic and conformal latitudes for an ellipsoid with a given eccentricity.

The conformal latitude maps an ellipsoid (oblate spheroid) to a sphere while preserving shapes and angles locally. (Curves that meet at a given angle on the ellipsoid meet at the same angle on the sphere.) Use conformal latitudes when implementing conformal map projections on the ellipsoid.

Creation

Syntax

```
converter = map.geodesy.ConformalLatitudeConverter
converter = map.geodesy.ConformalLatitudeConverter(spheroid)
```


Description

converter = map.geodesy.ConformalLatitudeConverter creates a
ConformalLatitudeConverter object for a sphere and sets the Eccentricity property to 0.
converter = map.geodesy. ConformalLatitudeConverter(spheroid) creates a conformal latitude converter object and sets the Eccentricity property to match the specified spheroid object.

Input Arguments

spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

Properties

Eccentricity - Ellipsoid eccentricity
 0 | numeric scalar

Ellipsoid eccentricity, specified as a numeric scalar. Eccentricity is in the interval [0, 0.5]. Eccentricities larger than 0.5 are possible in theory, but do not occur in practice and are not supported.
Data Types: double

Object Functions

forward Convert geodetic latitude to authalic, conformal, isometric, or rectifying latitude inverse Convert authalic, conformal, isometric, or rectifying latitude to geodetic latitude

Examples

```
Create a Conformal Latitude Converter Object and Set Property
grs80 = referenceEllipsoid('GRS 80');
conv1 = map.geodesy.ConformalLatitudeConverter;
conv1.Eccentricity = grs80.Eccentricity
conv1 =
ConformalLatitudeConverter with properties:
Eccentricity: 0.0818
```


Create a Conformal Latitude Converter Object Specifying a Spheroid

```
grs80 = referenceEllipsoid('GRS 80');
conv2 = map.geodesy.ConformalLatitudeConverter(grs80)
conv2 =
    ConformalLatitudeConverter with properties:
        Eccentricity: 0.0818
```


See Also

Functions

geocentricLatitude| parametricLatitude

```
Objects
AuthalicLatitudeConverter| IsometricLatitudeConverter|
RectifyingLatitudeConverter
```

Introduced in R2013a

contains

Package: map.rasterref
Determine if geographic or map raster contains points

Syntax

```
tf = contains(R,lat,lon)
tf = contains(R,xWorld,yWorld)
```


Description

tf = contains(R,lat,lon) determines whether the points (lat, lon) in geographic coordinates fall within the bounds of geographic raster R.
$\mathrm{tf}=\mathrm{contains}(\mathrm{R}, \mathrm{xWorld}, \mathrm{yWorld})$ determines whether the points (xWorld, yWorld) in the world coordinate system fall within the bounds of map raster R contains .

Examples

Check If Single Point Exists Within Bounds of Planar Raster

Create a MapPostingsReference raster reference object.

```
xWorldLimits = [207000 208000];
```

yWorldLimits = [912500 913000];
rasterSize = [11 21];
$R=$ maprefpostings(xWorldLimits,yWorldLimits, rasterSize, 'ColumnsStartFrom','north')
$\mathrm{R}=$
MapPostingsReference with properties:
XWorldLimits: [207000 208000]
YWorldLimits: [912500 913000]
RasterSize: [11 21]
RasterInterpretation: 'postings'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
SampleSpacingInWorldX: 50
SampleSpacingInWorldY: 50
RasterExtentInWorldX: 1000
RasterExtentInWorldY: 500
XIntrinsicLimits: [1 21]
YIntrinsicLimits: [1 11]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

Check if the raster contains the point (207549,912753). The expected result is 1 (true) since the x coordinate is within R. XWorldLimits and the y-coordinate is within R. YWorldLimits.

```
tf = contains(R,207549,912753)
tf = logical
    1
```


Check If Multiples Points Exist Within Bounds of Geographic Raster

Create a GeographicCellsReference raster reference object.

```
latlim = [0 89];
lonlim = [-180 179];
rasterSize = [90 360];
R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
R =
    GeographicCellsReference with properties:
            LatitudeLimits: [0 89]
            LongitudeLimits: [-180 179]
                RasterSize: [90 360]
            RasterInterpretation: 'cells'
                    ColumnsStartFrom: 'north'
                        RowsStartFrom: 'west'
            CellExtentInLatitude: 0.988888888888889
            CellExtentInLongitude: 0.997222222222222
            RasterExtentInLatitude: 89
        RasterExtentInLongitude: 359
            XIntrinsicLimits: [0.5 360.5]
            YIntrinsicLimits: [0.5 90.5]
            CoordinateSystemType: 'geographic'
                        GeographicCRS: []
                            AngleUnit: 'degree'
```

Check if points exist within the northern hemisphere.

```
pts_lat = [[32 0 -10 32 212];
pts-lon = [-80 0 80 360-80];
tf = contains(R,pts_lat,pts_lon)
tf = 1x5 logical array
    1 1 0 0 1 0
```

The first point is in the northern hemisphere. The second point is the origin, and $\mathrm{tf}(2)$ indicates the origin exists within the bounds of the northern hemisphere. The third point is in the southern hemisphere. The fourth point is identical to the first point after longitude wrapping. The element $\mathrm{tf}(4)$ demonstrates that the geographic raster supports wrapping of longitude coordinates. The last element $\operatorname{tf}(5)$ indicates that the geographic raster does not support wrapping of latitude coordinates.

Input Arguments

R - Geographic or map raster

GeographicCellsReference, GeographicPostingsReference, MapCellsReference, or MapPostingsReference object

Geographic or map raster, specified as a GeographicCellsReference, GeographicPostingsReference, MapCellsReference, or MapPostingsReference object.
lat - Latitude coordinates
numeric scalar or vector
Latitude coordinates, specified as a numeric scalar or vector.
Data Types: single | double
Lon - Longitude coordinates
numeric scalar or vector
Longitude coordinates, specified as a numeric scalar or vector. Elements of lon can be wrapped arbitrarily without affecting the result.
Data Types: single | double
xWorld - x-coordinates in the world coordinate system
numeric scalar or vector
x-coordinates in the world coordinate system, specified as a numeric scalar or vector.
Data Types: single | double
yWorld - y-coordinates in the world coordinate system
numeric scalar or vector
y-coordinates in the world coordinate system, specified as a numeric scalar or vector.
Data Types: single | double

Output Arguments

tf - Flag indicating geographic or map raster vector contains points in the world coordinate system

logical scalar or vector
Flag indicating geographic or map raster vector contains points in the world coordinate system, returned as a logical scalar or vector. The k th element of $t f$ is True when R contains the point (x World (k), $y W o r l d(k))$ in the world coordinate system.
Data Types: logical

See Also

Introduced in R2013b

contour3m

Project 3-D contour plot of map data

Description

The contour 3 m function is the same as the contourm function except that the lines for each contour level are drawn in their own horizontal plane, at the z-coordinate equal to the value of that level.

Examples

Contour Geoid Heights as 3-D Surface

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then, create a 3-D contour plot with 40 contour levels using a Miller projection. Eliminate extra white space using tightmap.

```
[N,R] = egm96geoid;
axesm miller
contour3m(N,R,40,'LineColor','k')
tightmap
```


Add the geoid as a surface, exaggerate the aspect ratio of the axes using daspect, and view the map in 3-D.
hold on
geoshow(N,R,'DisplayType','surface')
daspect([1 1 50])
view(3)

Contour Topography and Bathymetry of South Asia

This example shows how to contour in a map axes the topography and bathymetry of South Asia and the northern Indian Ocean with a contour interval of 500 meters.

Load elevation raster data and a geographic cells reference object. Crop the data to an area around South Asia.

```
load topo60c
latlim = [0 50];
lonlim = [35 115];
[Z,R] = geocrop(topo60c,topo60cR,latlim,lonlim);
```

Display the data as a contour plot using a standard Lambert conformal conic projection.

figure

axesm('lambertstd','MapLatLimit',latlim, 'MapLonLimit',lonlim)
tightmap
axis off
contour3m(Z,R,'k','LevelStep',500)

Display the topography as a surface. Apply a colormap appropriate for elevation data using the demcmap function. Then, add a title.

```
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)
title({'South Asia Topography and Bathymetry', ...
    'with 500 m Contours'});
```


View the display in 3-D.
set(gca,'DataAspectRatio',[1 1 40000])
view(3)

South Asia Topography and Bathymetry with 500 m Contours

Tips

- If you use contour3m with the globe map display, the contour3m function warns. Be careful to scale the input data relative to the radius of your reference sphere.

See Also

clabel|clabelm|clegendm|contour|contour3|contourm|contourfm|geoshow|plot Introduced before R2006a

contourcbar

Color bar for filled contour map display

Syntax

H = contourcbar(...)

Description

H = contourcbar(. .) creates a color bar associated with a filled contour display created with contourfm, contourm, contour3m, or geoshow. It supports the same syntax and usage options as the function colorbar.

Examples

Add Colorbar with Elevation Data

Load elevation raster data and a geographic cells reference object.
load topo60c
Create a map axes object with limits appropriate for North America. Display the elevation data on the map axes using a filled contour plot. Then, set the colormap limits and add a colorbar.

```
worldmap('north america')
contourfm(topo60c,topo60cR, -7000:1000:3000)
caxis([-8000 4000])
contourcbar
```


Add Colorbar to Contour Plot with Non-Uniform Levels

Create a world map. Move the meridian labels to the bottom of the map and reduce the number of meridian labels.
figure
ax = worldmap('world');
setm(ax,'MLabelParallel',-90)
setm(ax,'MLabelLocation',90)
Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Specify non-uniform levels in meters at which to contour the geoid. Then, display the geoid as a filled contour plot.

```
[N,R] = egm96geoid;
levels = [-70 -40 -20 -10 0 10 20 40 70];
geoshow(N,R,'DisplayType','contour',...
    'LevelList',levels,'Fill','on','LineColor','black')
```


Add a colorbar to the bottom of the figure. Add a label.

```
cb = contourcbar('peer',ax,'Location','southoutside');
```

cb.XLabel.String = 'Geoid Undulation in Meters';

Set the colormap limits using the caxis function. Then, apply a different colormap.
colormap(hsv)

Tips

- If a peer axes is specified when calling contourcbar, it should be a map axes containing an object created using one of the Mapping Toolbox functions listed previously. Otherwise the current axes should contain such an object.
- If a Mapping Toolbox contour object is present, then the color bar is filled with solid blocks of color which bound each other at the contour levels used in the plot. Thus, the contour levels bounding a fill polygon of a given color can be inferred graphically by inspecting the upper and lower limits of the corresponding block in the color bar. In the absence of a Mapping Toolbox contour object an ordinary color bar is created.
- If multiple Mapping Toolbox contour objects are present in the same axes, then the levels used to divide the color bar into blocks will correspond to the first contour object that is found. This situation could occur when a larger data set is broken up into multiple grid tiles, for example, but as long the tiles all use the same contour level list, the color bar will correctly represent them all.

See Also

clegendm | colorbar| contourfm

Introduced in R2011b

contourcmap

Contour colormap and colorbar for current axes

Syntax

contourcmap (cmapstr)
contourcmap(cmapstr,cdelta)
contourcmap (. . ., Name, Value)
h = contourcmap(...)

Description

contourcmap (cmapstr) updates the figure's colormap for the current axes with the colormap specified by cmapstr. If the axes contains Mapping Toolbox contour objects, the resultant colormap contains the same number of colors as the original colormap. Otherwise, the resultant colormap contains ten colors.
contourcmap (cmapstr,cdelta) updates the figure's colormap with colors varying according to cdelta. If the axes contains Mapping Toolbox contour objects, the value of cdelta is ignored.
contourcmap (. . . ,Name, Value) allows you to add a colorbar and control the properties of the colorbar. Parameter names can be abbreviated and are case-insensitive.
$\mathrm{h}=$ contourcmap(...) returns a handle to the colorbar axes.

Input Arguments

cmapstr
A character vector that specifies a colormap. Valid entries for cmapstr include 'pink', 'hsv', ' jet ' , or the name of any similar MATLAB colormap function.

cdelta

A scalar or vector. If cdelta is a scalar, it represents a step size, and colors are generated at multiples of cdelta. If cdelta is a vector of evenly spaced values, colors are generated at those values; otherwise an error is issued.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Colorbar

Character vector with values 'on' or 'off' specifying whether a colorbar is present, ' on' , or absent from the axes, 'off'.

Default: 'off'

Location

Character vector specifying the location of the colorbar. Permissible values are 'vertical', 'horizontal', or 'none'.

Default: 'vertical'

ColorAlignment

Character vector specifying the alignment of the labels in the colorbar. Permissible values are ' center', where the labels are centered on the color bands, or 'ends', where the labels are centered on the color breaks. If the axes contains Mapping Toolbox contour objects, the ColorAlignment will be set automatically to 'center' for contour lines and 'ends' for filled contours, and cannot be modified.

SourceObject

Handle of the graphics object which is used to determine the color limits for the colormap. The SourceObject value is the handle of a currently displayed object.

Default: gca

TitleString

Title of the colorbar axes, specified as a character vector.

XLabelString

X label of the colorbar axes, specified as a character vector.

YLabelString

Y label of the colorbar axes, specified as a character vector.

ZLabelString

Z label of the colorbar axes, specified as a character vector. In addition, properties and values that can be applied to the title and labels of the colorbar axes are valid.

Output Arguments

h

A handle to the colorbar axes.

Examples

Display World Map with Colormap

Display a world map with a colormap representing contour intervals in meters.
First, load elevation raster data and a geographic cells reference object.

```
load topo60c
```

Create a map axes object with limits appropriate for the data. Display the elevation data using a filled contour plot. Then, update the colormap and add a labeled colorbar.

```
worldmap(topo60c,topo60cR)
contourfm(topo60c,topo60cR)
contourcmap('jet','Colorbar','on', ...
    'Location','horizontal', ...
    'TitleString','Contour Intervals in Meters');
```


Display Custom Contour Intervals

Display a world map with a colormap in which the colors vary at a step size of 2000.
First, load elevation raster data and a geographic cells reference object. Then, load coastline coordinates.

```
load topo60c
load coastlines
```

Create a map axes object with limits appropriate for the data. Display the elevation and coastline data.
worldmap(topo60c,topo60cR)
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
geoshow(coastlat, coastlon, 'Color', 'k')

Update the colormap and add a labeled colorbar. Specify the step size as the second argument.
contourcmap('summer',2000,'Colorbar','on', ...
'Location','horizontal', ...
'TitleString','Contour Intervals in Meters')

Restrict Range of Color Values

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Display a colorbar using the jet colormap. Specify the contour interval as 10 meters.
[N, R] = egm96geoid;
worldmap(N,R)
geoshow(N,R,'DisplayType', 'surface')
contourcmap('jet', 10,'Colorbar','on','Location','horizontal')

Restrict the range of color values by specifying a vector of evenly spaced values.
range = 0:5:50;
contourcmap('jet',range,'Colorbar','on','Location','horizontal')

See Also

clabelm | clegendm | colormap | contour3m | contourcbar | contourfm | contourm
Introduced before R2006a

contourfm

Project filled 2-D contour plot of map data

Description

The contourfm function is the same as the contourm function except that the areas between contours are filled with colors. For each contour interval, contourfm selects a distinct color from the figure's colormap. You can obtain the same result by setting 'Fill', ' on' and 'LineColor','black' when calling contourm.

Examples

Display Filled Contours for EGM96 Geoid Heights

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Load coastline latitude and longitude data.

```
[N,R] = egm96geoid;
load coastlines
```

Create a filled contour plot of the geoid data on a world map. Plot the coastline data using geoshow and display a colorbar for the contour plot using contourcbar.

```
worldmap('world')
levels = -120:20:100;
contourfm(N,R,levels,'LineStyle','none')
geoshow(coastlat,coastlon,'Color','k')
contourcbar
```


See Also
contourcbar | contourm | contour3m | clabelm | meshm | surfm
Introduced before R2006a

contourm

Project 2-D contour plot of map data

Syntax

contourm (Z, R)
contourm(lat,lon, Z)
contourm (__, n
contourm (, V)
contourm(,
contourm (__ , Name, Value)
$\mathrm{C}=$ contourm (__)
[C,h] = contourm(__)

Description

contourm (Z, R) creates a contour plot of the regular data grid Z with geographic reference R.
contourm(lat,lon, Z) displays a contour plot of the geolocated data grid, Z with geolocation defined by lat and lon.
contourm (__ n) draws n contour levels.
contourm (__, V) draws contours at the levels specified by V .
contourm (_ _ , linetype) specifies the line style and color for the contours.
contourm (__ ,Name, Value) allows you to set optional parameters. Parameter names can be abbreviated, and case does not matter. In addition, any of the following hggroup properties can be specified: 'HandleVisibility', 'Parent', 'Tag','UserData', and 'Visible'.

C = contourm (__) returns a standard contour matrix C , with the first row representing longitude data and the second row representing latitude data.
[C, h] = contourm(\qquad) returns the contour matrix and the handle to the contour patches drawn onto the current axes. The handle is of type hggroup.

Examples

Display Contours for EGM96 Geoid Heights

Get geoid heights and a geographic postings reference object from the EGM96 geoid model.
$[N, R]=$ egm96geoid;
Create a contour plot of the geoid data. Add axis labels and a legend.
[c,h] = contourm(N,R,'LevelStep',20,'ShowText','on');
xlabel('Longitude')
ylabel('Latitude')
clegendm (c, h, -1)

Display Contour Geoid Heights for Area Including Korea

Contour geoid heights for an area including Korea with a backdrop of terrain elevations and bathymetry.

Get elevation and geoid height data for an area around the Korean peninsula.
load korea5c
$N=$ egm96geoid(korea5cR);
Create a map axes object with appropriate limits. Then, display the elevation data. Apply a colormap.
figure
worldmap(korea5cR.LatitudeLimits, korea5cR.LongitudeLimits)
geoshow(korea5c, korea5cR,'DisplayType','texturemap') demcmap(korea5c)

Display contours of the geoid values from -100 to 100 in increments of 5 .
[c,h] = contourm(N,korea5cR,-100:5:100,'k');

Add red labels with white backgrounds to the contours.

```
t = clabelm(c,h);
set(t,'Color','r')
set(t,'BackgroundColor','white')
set(t,'FontWeight','bold')
```


Input Arguments

Z - Regular or geolocated data grid

M-by-N matrix
Regular or geolocated data grid, specified as an M-by- N matrix.
If the grid contains regions with missing data, set the corresponding elements of Z to NaN . Contour lines terminate when entering such areas. Similarly, if you use 'Fill', ' on' or call contourfm, such null-data areas will not be filled. If you use the syntax contourm(lat, lon , Z, ...), however, lat and lon must have finite, non-NaN values everywhere. In this case, set Z to NaN in null data areas, but make sure the corresponding elements of lat and lon have finite values that specify actual locations on the Earth.

R - Geographic reference
geographic raster reference object | vector | matrix
Geographic reference, specified as one of the following. For more information about referencing vectors and matrices, see "Georeferenced Raster Data".

Type	Description
Geographic raster reference object	GeographicCellsReference or GeographicPostingsReference geographic raster reference object. The RasterSize property must be consistent with the size of the data grid, size (Z).
Vector	1-by-3 numeric vector with elements: [cells/degree northern_latitude_limit western_longitude_limit]
Matrix	3-by-2 numeric matrix that transforms raster row and column indices to or from geographic coordinates according to:
[lon lat] = [row col 1] * R	
R defines a (non-rotational, non-skewed) relationship in which	
each column of the data grid falls along a meridian and each row	
falls along a parallel. For more information about referencing	
vectors and matrices, see "Georeferenced Raster Data".	
If the current axis is a map axis, the coordinates of Z are	
projected using the projection structure from the axis. The	
contours are drawn at their corresponding Z level.	

lat, lon - Geolocation array
 M-by- N matrix | M-element vector

Geolocation array with latitude or longitude coordinates, specified as a matrix of the same size as Z, or a vector with length matching the number of rows in Z.

n - Number of contour levels

numeric scalar
Number of contour levels, specified as a numeric scalar.

V - Value of contour levels

numeric vector
Value of contour levels, specified as a numeric vector with length greater than or equal to two. Use V $=[\mathrm{v} \mathrm{v}$] to compute a single contour at level v .

linetype - Line style and color

character vector | string
Line style and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify both characteristics (line style and color).
Example: ' - - r' is a red dashed line

Line Style	Description	Resulting Line
' - '	Solid line	-
' - '	Dashed line	-----

Line Style	Description	Resulting Line
':'	Dotted line
'-	Dash-dotted line	-------

Color Name	Short Name	Appearance
'red'	'r'	
'green'	' g^{\prime}	
'blue'	'b'	
'cyan'	' c^{\prime}	
'magenta'	'm'	
'yellow'	' y '	
'black'	' k^{\prime}	
'white'	' w^{\prime}	

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LabelSpacing' ,72

Fill - Color areas between contour lines

'off' (default)|'on'
Color areas between contour lines, specified as the comma-separated pair consisting of 'Fill' and 'off' or 'on '. By default contourm draws a line (which may have multiple parts) for each contour level. If you set Fill to ' on' , then contourm colors the polygonal regions between the lines, selecting a distinct color for each contour interval from the colormap of the figure in which the contours are drawn. Setting Fill to 'on' is almost the same as calling contourfm; the only difference is that contourfm also sets LineColor to black by default.

LabelSpacing - Spacing between labels

numeric scalar
Spacing between labels on each contour line, specified as the comma-separated pair consisting of 'LabelSpacing' and a numeric scalar. When you display contour line labels either by calling clabelm or by specifying 'ShowText', ' on ', the labels by default are spaced 144 points (2 inches) apart on each line. You can specify the spacing by setting LabelSpacing to a value in points. If the length of an individual contour line is less than the specified value, only one contour label is displayed on that line.

LevelList - Values at which contour lines are drawn

numeric vector

Values at which contour lines are drawn, specified as the comma-separated pair consisting of 'LevelList' and a numeric vector. This property uses a row vector of increasing values to specify the levels at which contour lines are drawn.

LevelStep - Spacing of contour lines

positive real scalar
Spacing of contour lines, specified as the comma-separated pair consisting of 'LevelStep ' and a numeric scalar. The contourm function draws contour lines at regular intervals determined by the value of LevelStep, unless the optional third argument, n (number of contour levels) or V (vector specifying contour levels) is provided. If n or V is used in combination with the LevelStep parameter, then the LevelStep parameter is ignored. If n, V, and the LevelStep parameter are all omitted, contourm selects a uniform step automatically.

LineColor - Contour line colors

'flat' (default) | RGB triplet|'r'| 'g' | 'b'|'none' | ...
Contour line colors, specified as the comma-separated pair consisting of 'LineColor' and 'flat', a color name, a short name, an RGB triplet, or 'none'. The default value of ' f lat ' selects a distinct color for lines at each contour level from the colormap of the figure in which the contours are drawn. The value ' none ' applies no color to the lines.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range $[0,1]$; for example, [0.4 0.6 0.7].

Alternatively, you can specify some common colors by name. This table lists the named color options and equivalent RGB triplets.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

LineStyle - Line style for contour lines

```
'-' (default)|'--'|':' | '-.' | 'none'
```

Line style for contour lines, specified as the comma-separated pair consisting of 'LineStyle' and ' - ' (solid), ' - - ' (dashed), ': ' (dotted), ' - .' (dash-dot), or 'none '. The specifiers work the same as for line objects in MATLAB graphics.

LineWidth - Width of contour lines in points

0.5 (default)| numeric scalar

Width of contour lines in points, specified as the comma-separated pair consisting of 'LineWidth ' and a numeric scalar. 1 point $=1 / 72$ inch.

ShowText - Flag to display labels on contour lines

'off' (default)|'on'

Flag to display labels on contour lines, specified as the comma-separated pair consisting of 'ShowText' and 'off' or 'on'. If you set ShowText to 'on', contourm displays text labels on each contour line indicating the value of the corresponding contour level. Another way to add labels to your contour lines is to call clabelm after calling contourm.

Output Arguments

C - Contour matrix
numeric matrix
Standard contour matrix, returned as a matrix with two rows. The first row represents longitude data and the second row represents latitude data.

h - Handle of contour patches
 hggroup

Handle to the contour patches drawn onto the current axes, returned as an hggroup.

Tips

- You have three ways to control the number of contour levels that display in your map:

1 Set the number of contour levels by specifying the scalar n in the syntax contourm (Z, R, n) or contourm(lat, lon, Z, n).
2 Use the vector V to specify the levels at which contours are drawn with the syntax contourm ($\mathrm{Z}, \mathrm{R}, \mathrm{V}$) or contourm(lat,lon, Z, V).
3 Choose regular intervals at which the contours are drawn by setting the LevelStep parameter.

If you do not use any of the above methods to set your contour levels, the contourm function displays around five contour levels.

See Also

clabelm|clegendm|contour | contourc| contour3|contour3m | contourfm | geoshow | plot

Introduced before R2006a

convertlat

Convert between geodetic and auxiliary latitudes

Syntax

latout $=$ convertlat(ellipsoid,latin,from,to,units)

Description

latout = convertlat(ellipsoid, latin, from, to, units) converts latitude values in latin from type from to type to. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity].
latin is an array of input latitude values. from and to are each one of the latitude types listed below:

Latitude Type	Description
geodetic	The geodetic latitude is the angle that a line perpendicular to the surface of the ellipsoid at the given point makes with the equatorial plane.
authalic	The authalic latitude maps an ellipsoid to a sphere while preserving surface area. Authalic latitudes are used in place of the geodetic latitudes when projecting the ellipsoid using an equal area projection.
conformal	The conformal latitude maps an ellipsoid conformally onto a sphere. Conformal latitudes are used in place of the geodetic latitudes when projecting the ellipsoid with a conformal projection.
geocentric	The geocentric latitude is the angle that a line connecting a point on the surface of the ellipsoid to its center makes with the equatorial plane.
isometric	The isometric latitude is a nonlinear function of the geodetic latitude.
parametric	The parametric latitude of a point on the ellipsoid is the latitude on a sphere of radius a, where a is the semimajor axis of the ellipsoid, for which the parallel has the same radius as the parallel of geodetic latitude.
rectifying	The rectifying latitude is used to map an ellipsoid to a sphere in such a way that distance is preserved along meridians.

latin has the angle units specified by units: either 'degrees' or 'radians '. The output array, latout, has the same size and units as latin.

To properly project rectified latitudes, the radius must also be scaled to ensure the equal meridional distance property. This is accomplished by rsphere.

Examples

\% Plot the difference between the auxiliary latitudes
$\%$ and geocentric latitude, from equator to pole,
\% using the GRS 80 ellipsoid. Avoid the polar region with

```
% the isometric latitude, and scale down the difference
% by a factor of 200.
grs80 = referenceEllipsoid('grs80');
geodetic = 0:2:90;
authalic = ...
convertlat(grs80,geodetic,'geodetic','authalic', 'deg');
conformal = ...
convertlat(grs80,geodetic,'geodetic','conformal', 'deg');
geocentric = ...
convertlat(grs80,geodetic,'geodetic','geocentric','deg');
parametric = ...
convertlat(grs80,geodetic,'geodetic','parametric','deg');
rectifying = ...
convertlat(grs80,geodetic,'geodetic','rectifying','deg');
isometric = ...
convertlat(grs80,geodetic(1:end-5), ...
'geodetic','isometric','deg');
plot(geodetic, (authalic - geodetic),...
geodetic, (conformal - geodetic),...
geodetic, (geocentric - geodetic),...
geodetic, (parametric - geodetic),...
geodetic, (rectifying - geodetic),...
geodetic(1:end-5), (isometric - geodetic(1:end-5))/200);
title('Auxiliary Latitudes vs. Geodetic')
xlabel('geodetic latitude, degrees')
ylabel('departure from geodetic, degrees');
legend('authalic','conformal','geocentric', ...
'parametric','rectifying', 'isometric/200',...
'Location','NorthWest');
```


See Also

referenceEllipsoid|referenceSphere|oblateSpheroid|rsphere

Introduced before R2006a

crossfix

Cross-fix positions from bearings and ranges

Syntax

```
[newlat,newlon] = crossfix(lat,lon,az)
[newlat,newlon] = crossfix(lat,lon,az_range,case)
[newlat,newlon] = crossfix(lat,lon,az_range,case,drlat,drlon)
[newlat,newlon] = crossfix(lat,lon,az,units)
[newlat,newlon] = crossfix(lat,lon,az_range,case,units)
[newlat,newlon] = crossfix(lat,lon,az_range,drlat,drlon,units)
[newlat,newlon] = crossfix(lat,lon,az_range,case,drlat,drlon,units)
mat = crossfix(...)
```


Description

[newlat, newlon] = crossfix(lat,lon,az) returns the intersection points of all pairs of great circles passing through the points given by the column vectors lat and lon that have azimuths az at those points. The outputs are two-column matrices newlat and newlon in which each row represents the two intersections of a possible pairing of the input great circles. If there are n input objects, there will be n choose 2 pairings.
[newlat, newlon] = crossfix(lat,lon,az_range, case) allows the input az_range to specify either azimuths or ranges. Where the vector case equals 1 , the corresponding element of az_range is an azimuth; where case is 0 , az_range is a range. The default value of case is a vector of ones (azimuths).
[newlat, newlon] = crossfix(lat,lon,az_range, case,drlat,drlon) resolves the ambiguities when there is more than one intersection between two objects. The scalar-valued drlat and drlon provide the location of an estimated (dead reckoned) position. The outputs newlat and newlon are column vectors in this case, returning only the intersection closest to the estimated point. When this option is employed, if any pair of objects fails to intersect, no output is returned and the warning No Fix is displayed.
[newlat, newlon] = crossfix(lat,lon,az,units), [newlat, newlon] =
crossfix(lat,lon,az_range,case,units), [newlat, newlon] =
crossfix(lat,lon,az_range,drlat,drlon, units), and [newlat, newlon] =
crossfix(lat,lon, az_range, case, drlat,drlon, units) allow the specification of the angle units to be used for all angles and ranges, where units is any valid angle units value. The default value of units is 'degrees'.
mat $=$ crossfix(..) returns the output in a two- or four-column matrix mat.
This function calculates the points of intersection between a set of objects taken in pairs. Given great circle azimuths and/or ranges from input points, the locations of the possible intersections are returned. This is different from the navigational function navfix in that crossfix uses great circle measurement, while navfix uses rhumb line azimuths and nautical mile distances.

Examples

Find intersections of points on circles

This example shows how to find the intersection of points on circles.
Create map axes.
figure('color','w');
ha = axesm('mapproj','mercator', ...
'maplatlim',[-10 15],'maplonlim',[-10 20],...
'MLineLocation',5,'PLineLocation',5);
axis off
gridm on
framem on
mlabel on
plabel on

Define latitudes and longitudes of three arbitrary points, and then define three radii, all 8 degrees.

```
latpts = [0;5;0];
lonpts = [0;5;10];
radii = [8;8;8];
```

Obtain the intersections of imagined small circles around these points.

```
[newlat,newlon] = crossfix(latpts,lonpts,radii,[0;0;0])
```

```
newlat = 3\times2
    7.5594 -2.5744
    6.2529 -6.2529
    7.5594 -2.5744
newlon = 3\times2
    -2.6260 7.5770
    5.0000 5.0000
    12.6260 2.4230
```

Draw red circle markers at the given points.
geoshow(latpts,lonpts,'DisplayType','point', ..
'markeredgecolor','r','markerfacecolor','r','marker', 'o')

Draw magenta diamond markers at the points of intersection.
geoshow(reshape(newlat, 6,1), reshape(newlon, 6,1),'DisplayType','point',...
'markeredgecolor','m','markerfacecolor','m','marker','d')

Generate a small circle 8 deg radius for each original point.

```
[latc1,lonc1] = scircle1(latpts(1),lonpts(1),radii(1));
[latc2,lonc2] = scircle1(latpts(2),lonpts(2),radii(2));
[latc3,lonc3] = scircle1(latpts(3),lonpts(3),radii(3));
```

Plot the small circles to show the intersections are as determined.

```
geoshow(latc1,lonc1,'DisplayType','line',...
    'color','b','linestyle','-')
geoshow(latc2,lonc2,'DisplayType','line',...
    'color','b','linestyle','-')
geoshow(latc3,lonc3,'DisplayType','line',...
    'color','b','linestyle','-')
```


Find Intersection when provided with dead reckoning position

Find intersection when a dead reckoning position is provided, $\left(0^{\circ}, 50 \mathrm{E}\right)$. crossfix returns one from each pair (the closest one).

```
[newlat,newlon] = crossfix([0 5 0]',[0 5 10]',...
                                    [8 8 8]',[0 0 0]',0,5)
```

newlat $=$
-2.5744
6.2529
-2.5744
newlon =
7.5770
5.0000
2.4230

See Also

gcxgc|gcxsc|scxsc|rhxrh|polyxpoly|navfix

Introduced before R2006a

daspectm

Control vertical exaggeration in map display

Syntax

```
daspectm(zunits)
daspectm(zunits,vfac)
daspectm(zunits,vfac,lat,long)
daspectm(zunits,vfac,lat,long,az)
daspectm(zunits,vfac,lat,long,az,radius)
```


Description

daspectm(zunits) sets the 'DataAspectRatio' property of the map axes so that the z-axis is in proportion to the x-and y-projected coordinates. This permits elevation data to be displayed without vertical distortion. The zunits parameter specifies the units of the elevation data, and can be any length units recognized by unitsratio.
daspectm(zunits,vfac) sets the 'DataAspectRatio' property so that the z-axis is vertically exaggerated by the factor vfac. If omitted, the default is no vertical exaggeration.
daspectm(zunits,vfac,lat,long) sets the aspect ratio based on the local map scale at the specified geographic location. If omitted, the default is the center of the map limits.
daspectm(zunits, vfac, lat, long, az) also specifies the direction along which the scale is computed. If omitted, 90 degrees (west) is assumed.
daspectm(zunits,vfac,lat,long,az, radius) specifies the radius of the sphere. radius can be one of the values supported by km2deg, or it can be the (numerical) radius of the desired sphere in zunits. If omitted, the default radius of the Earth is used.

Examples

Display Elevation Map with Vertical Exaggeration

Load elevation data and a geographic cells reference object for the Korean peninsula. Create a world map with appropriate latitude and longitude limits, then display the data using meshm. Apply a colormap appropriate for elevation data using demcmap. Then, view the map in 3-D.

```
load korea5c
latlim = korea5cR.LatitudeLimits;
lonlim = korea5cR.LongitudeLimits;
worldmap(latlim,lonlim)
meshm(korea5c,korea5cR,korea5cR.RasterSize,korea5c)
demcmap(korea5c)
view(3)
```


Set the vertical exaggeration factor to 30 using daspectm. Add light using camlight.
daspectm('m',30)
camlight

Limitations

The relationship between the vertical and horizontal coordinates holds only as long as the geoid or scale factor properties of the map axes remain unchanged. If you change the scaling between geographic coordinates and projected axes coordinates, execute daspectm again.

See Also
 daspect | paperscale

Introduced before R2006a

dcwdata

(Removed) Read selected DCW worldwide basemap data

Note The dcwdata function has been removed. Use the VMAP0 data set and the vmap0data function instead.

Syntax

struct = dcwdata(library,latlim,lonlim,theme,topolevel)
struct = dcwdata(devicename,library,...)
[struct1, struct2,...] = dcwdata(...,\{topolevel1,topolevel2,...\})

Description

struct = dcwdata(library,latlim,lonlim,theme,topolevel) reads data for the specified theme and topology level directly from the DCW CD-ROM. There are four CDs, one for each of the libraries: 'NOAMER' (North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR' (South America and Africa). The desired theme is specified by a two-letter code. A list of valid codes is displayed when an invalid code, such as ' ? ' , is entered. The region of interest can be given as a point latitude and longitude or as a region with two-element vectors of latitude and longitude limits. The units of latitude and longitude are degrees. The data covering the requested region is returned, but will include data extending to the edges of the 5-by- 5 degree tiles. The result is returned as a Version 1 Mapping Toolbox display structure.
struct $=$ dcwdata(devicename, library, ...) specifies the logical device name of the CD-ROM for computers that do not automatically name the mounted disk.
[struct1, struct2,...] = dcwdata(...,\{topolevel1,topolevel2,...\}) reads several topology levels. The levels must be specified as a cell array with the entries 'patch', 'line', 'point', or 'text'. Entering \{'all'\} for the topology level argument is equivalent to \{ 'patch', 'line', 'point', 'text'\}. Upon output, the data structures are returned in the output arguments by topology level in the same order as they were requested.

Background

The Digital Chart of the World (DCW) is a detailed and comprehensive source of publicly available global vector data. It was digitized from the Operational Navigation Charts (scale 1:1,000,000) and Jet Navigation Charts $(1: 2,000,000)$, compiled by the U.S. Defense Mapping Agency (DMA) along with mapping agencies in Australia, Canada, and the United Kingdom. The digitized data was published on four CD-ROMS by the DMA and is distributed by the U.S. Geological Survey (USGS).

The DCW is out of print and has been succeeded by the Vector Map Level 0 (VMAP0).
The DCW organizes data into 17 different themes, such as political/oceans (PO), drainage (DN), roads (RD), or populated places (PP). The data is further tiled into 5 -by- 5 degree tiles and separated by topology level (patches, lines, points, and text).

Examples

On a Macintosh computer,

```
s = dcwdata('NOAMER',41,-69,'?','patch');
??? Error using ==> dcwdata
Theme not present in library NOAMER
Valid two-letter theme identifiers are:
PO: Political/Oceans
PP: Populated Places
LC: Land Cover
VG: Vegetation
RD: Roads
RR: Railroads
UT: Utilities
AE: Aeronautical
DQ: Data Quality
DN: Drainage
DS: Supplemental Drainage
HY: Hypsography
HS: Supplemental Hypsography
CL: Cultural Landmarks
OF: Ocean Features
PH: Physiography
TS: Transportation Structure
POpatch = dcwdata('NOAMER',[41 44],[-72 -69],'PO','patch')
POpatch =
1x234 struct array with fields:
    type
    otherproperty
    tag
    altitude
    lat
    long
    tag2
    tag3
```

On an MS-DOS based operating system with the CD-ROM as the ' d : ' drive,

```
[RDtext,RDline] = dcwdata('d:','SASAUS',[-48 -34],[164 180],...
    'RD',{'text','line'});
```

On a UNIX ${ }^{\circledR}$ operating system with the CD-ROM mounted as ' $\backslash c d r o m$ ',

```
[POpatch,POline,POpoint,POtext] = dcwdata('\cdrom',...
```

 'EURNASIA', 48 , 164,'PO',\{'all'\});

Tips

Latitudes and longitudes use WGS84 as a horizontal datum. Elevations are in feet above mean sea level. The data set does not contain bathymetric data.

Some DCW themes do not contain all topology levels. In those cases, empty matrices are returned.
The data is tagged with object descriptions. Some data is provided with alternate tags in tag2 and tag3 fields. These alternate tags contain information that supplements the standard tag, such as the
names of political entities or values of elevation. The tag2 field generally has the actual values or codes associated with the data. If the information in the tag2 field expands to more verbose descriptions, these are provided in the tag3 field.

Point data for which there are descriptions of both the type and the individual names of objects is returned twice within the structure. The first set is a collection of points of the same type with appropriate tag. The second is a set of individual points with the tag 'Individual Points ' and the name of the object in the tag2 field.

Patches are broken at the tile boundaries. Setting the EdgeColor to 'none' and plotting the lines gives the map a normal appearance.

The DCW was published in 1992 based on data compiled some years earlier. The political boundaries do not reflect recent changes such as the dissolution of the Soviet Union, Czechoslovakia, and Yugoslavia. In some cases, the boundaries of the successor nations are present as lower level political units. A new version, called VMAPO.

For information about the format of display structures, see "Version 1 Display Structures" on page 1294 in the reference page for displaym.

References

[1] U.S. National Geospatial Intelligence Agency. Military Specification: Digital Chart of the World (DCW). MIL-D-89009. April 13, 1992.

```
See Also
vmap0data | vmap0read | vmap0ui | vmap0rhead | displaym | updategeostruct
```


Introduced before R2006a

dcwgaz

(Removed) Search DCW worldwide basemap gazette file

Note The dcwgaz function has been removed. Use the VMAP0 data set and the vmap0ui function instead.

Syntax

dcwgaz(library,object)
dcwgaz(devicename,library,object)
mtextstruc $=$ dcwgaz(...)
[mtextstruc,mpointstruc] = dcwgaz(...)

Description

dcwgaz(library, object) searches the DCW library for items beginning with the character vector object. There are four CDs, one for each of the libraries: 'NOAMER' (North America), 'SASAUS ' (Southern Asia and Australia), 'EURNASIA ' (Europe and Northern Asia), and 'SOAMAFR' (South America and Africa). Items that exactly match or begin with the object are displayed on screen.
dcwgaz (devicename, library, object) specifies the logical device name of the CD-ROM for computers that do not automatically name the mounted disk.
mtextstruc $=\operatorname{dcwgaz}(\ldots$) displays the matched items on screen and returns a Mapping Toolbox display structure with the matches as text entries.
[mtextstruc,mpointstruc] = dcwgaz(...) returns the matches in structures formatted both as text and as points.

Background

In addition to the geographic data, the Digital Chart of the World (DCW) also includes an extensive gazette feature. The gazette is a collection of the names of geographic items mentioned in the various themes of a DCW disk. One DCW disk can contain about 10,000 to 15,000 names. This function allows you to search the gazette for names beginning with a particular character vector.

Examples

On a Macintosh computer,

```
s = dcwgaz('EURNASIA','apatin')
APATIN
s =
    type: 'text'
    otherproperty: {1x2 cell}
            tag: 'Built up area'
            string: 'APATIN'
```

```
altitude: []
        lat: 45.6660
    long: 18.9830
```

On a UNIX operating system with the CD-ROM mounted as '\cdrom',

```
[mtextstruc,mpointstruc] = ...
    dcwgaz('\cdrom','SOAMAFR', 'cape good')
Cape Goodenough
Cape Goodenough
Cape Goodenough
mtextstruc =
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long
mpointstruc =
1x3 struct array with fields:
    type
    otherproperty
    tag
    string
    altitude
    lat
    long
```


Tips

The search is not case sensitive. Items that match are those that begin with the object character vector. Spaces are significant.

See Also

vmap0ui | vmap0read | vmap0rhead | vmap0data | updategeostruct
Introduced before R2006a

dcwread

(Removed) Read DCW worldwide basemap file

Note The dcwread function has been removed. Use the VMAP0 data set and the vmap0read function instead.

Syntax

dcwread(filepath,filename)
dcwread(filepath, filename, recordIDs)
dcwread(filepath,filename, recordIDs,field,varlen)
struc = dcwread(...)
[struc,field] = dcwread(...)
[struc,field,varlen] = dcwread(...)
[struc,field,varlen,description] = dcwread(...)
[struc,field,varlen,description,narrativefield] = dcwread(...)

Description

dcwread reads a DCW file. The user selects the file interactively.
dcwread(filepath,filename) reads the specified file. The combination [filepath filename] must form a valid complete file name.
dcwread(filepath, filename, recordIDs) reads selected records or fields from the file. If recordIDs is a scalar or a vector of integers, the function returns the selected records. If recordIDs is a cell array of integers, all records of the associated fields are returned.
dcwread(filepath,filename, recordIDs,field, varlen) uses previously read field and variable-length record information to skip parsing the file header (see below).
struc $=$ dcwread (...) returns the file contents in a structure.
[struc,field] = dcwread(...) returns the file contents and a structure describing the format of the file.
[struc,field,varlen] = dcwread(...) also returns a vector describing the fields that have variable-length records.
[struc,field, varlen, description] = dcwread(...) also returns, description, a character vector that describes the contents of the file.
[struc,field,varlen,description, narrativefield] = dcwread(...) also returns the name of the narrative file for the current file.

Background

The Digital Chart of the World (DCW) uses binary files in a variety of formats. This function determines the format of the file and returns the contents in a structure. The field names of this structure are the same as the field names in the DCW file.

Examples

The following examples use the Macintosh directory system and file separators for the path name:

```
s = dcwread('NOAMER:DCW:NOAMER:','GRT')
S =
                    ID: 1
                    DATA_TYPE: 'GEO'
                        UNITS: '014'
                ELLIPSOID: 'WGS 84'
    ELLIPSOID_DETAIL: 'A=6378137,B=6356752 Meters'
        VERT_DATUM_REF: 'MEAN SEA LEVEL'
        VERT_DATUM_\overline{CODE: '015'}
            SOUND D
    SOUND_DATUM_CODE: '015'
        GEO_DATUM_NAME: 'WGS 84'
        GEO_DATUM_CODE: 'WGE'
        PROJĒCTION_NAME: 'DECIMAL DEGREES'
s = dcwread('NOAMER:DCW:NOAMER:AE:','INT.VDT')
S =
5x1 struct array with fields:
    ID
    TABLE
    ATTRIBUTE
    VALUE
    DESCRIPTION
for i = 1:length(s); disp(s(i)); end
            ID: 1
                TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 1
    DESCRIPTION: 'Active civil'
            ID: 2
                TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 2
    DESCRIPTION: 'Active civil and military'
                ID: 3
                TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 3
    DESCRIPTION: 'Active military'
            ID: 4
                TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 4
    DESCRIPTION: 'Other'
```

```
                ID: 5
            TABLE: 'AEPOINT.PFT'
        ATTRIBUTE: 'AEPTTYPE'
            VALUE: 5
    DESCRIPTION: 'Added from ONC when not available from DAFIF'
s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',1)
s =
    ID: 1
    AEPTTYPE: 4
    AEPTNAME: 'THULE AIR BASE'
        AEPTVAL: 251
    AEPTDATE: '19900502000000000000'
    AEPTICAO: '1261'
    AEPTDKEY: 'BR17652'
    TILE ID: 94
        END ID: 1
s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',{1,2})
S =
4678x1 struct array with fields:
    ID
    AEPTTYPE
```


Tips

This function reads all DCW files except index files (files with names ending in ' X '), thematic index files (files with names ending in ' TI '), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

See Also

vmap0read | vmap0ui | vmap0rhead | vmap0data

Introduced before R2006a

dcwrhead

(Removed) Read DCW worldwide basemap file headers

Note The dcwrhead function has been removed. Use the VMAP0 data set and the vmap0rhead function instead.

Syntax

dcwrhead
dcwrhead(filepath,filename)
dcwrhead(filepath,filename,fid)
dcwrhead(...)
hdr = dcwrhead(...)

Description

dcwrhead allows the user to select the header file interactively.
dcwrhead(filepath,filename) reads from the specified file. The combination [filepath filename] must form a valid complete file name.
dcwrhead(filepath, filename,fid) reads from the already open file associated with fid.
dcwrhead (. . .) with no output arguments displays the formatted header information on the screen.
hdr $=$ dcwrhead (...) returns the DCW header as a character vector.

Background

The Digital Chart of the World (DCW) uses headers in most files to document the contents and format of that file. This function reads the header, displays a formatted version in the command window, or returns it as a character vector.

Examples

The following example uses the Macintosh file separators and path name:

```
dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
Aeronautical Points
AEPOINT.DOC
ID=I,
AEPTTYPE=I,
AEPTNAME=T,
AEPTVAL=I,
AEPTDATE=D, 1,N,Aeronautical Information Date, -, -,
AEPTICA0=T, 4,N,International Civil Organization Number,-,- ,
AEPTDKEY=T, 7,N,DAFIF Reference Number,-,-,
TILE_ID=S, 1,F,Tile Reference Identifier,-,AEPOINT.PTI,
END_\overline{ID}=I 1,F,Entity Node Primitive Foreign Key,-,-,
```

```
s = dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
s =
;Aeronautical Points;AEPOINT.DOC;ID=I, 1,P,Row
Identifier,-,-,:AEPTTYPE=I, 1,N,Airport
Type,INT.VDT,-,:AEPTNAME=T, 50,N,Airport Name,-,-,:AEPTVAL=I,
1,N,Airport Elevation Value,-,-,:AEPTDATE=D, 1,N,Aeronautical
Information Date,-,-,:AEPTICAO=T, 4,N,International Civil
Organization Number,-,-,:AEPTDKEY=T, 7,N,DAFIF Reference
Number,-,-,:TILE ID=S, 1,F,Tile Reference
Identifier,-,AEPŌINT.PTI,:END_ID=I 1,F,Entity Node Primitive
Foreign Key,-,-,:;
```


Tips

This function reads all DCW files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI'), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

See Also

vmap0rhead | vmap0read | vmap0ui | vmap0data

Introduced before R2006a

defaultm

Initialize or reset map projection structure

Syntax

mstruct $=$ defaultm(projid)
mstruct $=$ defaultm(mstruct)

Description

mstruct = defaultm(projid) initializes a map projection structure, where projid is a string scalar or character vector that matches one of the entries in the last column of the table displayed by the maps function. The output mstruct is a map projection structure. It is a scalar structure whose fields correspond to Map Axes Properties.
mstruct = defaultm(mstruct) checks an existing map projection structure, sets empty properties, and adjusts dependent properties. The Origin, FLatLimit, FLonLimit, MapLatLimit, and MapLonLimit properties may be adjusted for compatibility with each other and with the MapProjection property and (in the case of UTM or UPS) the Zone property.

With defaultm, you can construct a map projection structure (mstruct) that contains all the information needed to project and unproject geographic coordinates using , projinv, proj fwd, vfwdtran, or vinvtran without creating a map axes or making any use at all of MATLAB graphics. Relevant parameters in the mstruct include the projection name, angle units, zone (for UTM or UPS), origin, aspect, false easting, false northing, and (for conic projections) the standard parallel or parallels. In very rare cases you might also need to adjust the frame limit (FLatLimit and FLonLimit) or map limit (MapLatLimit and MapLonLimit) properties.

You should make exactly two calls to defaultm to set up your mstruct, using the following sequence:

1 Construct a provisional version containing default values for the projection you've selected: mstruct = defaultm(projection);
2 Assign appropriate values to mstruct.angleunits, mstruct.zone, mstruct.origin, etc.
3 Set empty properties and adjust interdependent properties as needed to finalize your map projection structure: mstruct = defaultm(mstruct);

If you've set field prop1 of mstruct to value1, field prop2 to value2, and so forth, then the following sequence

```
mstruct = defaultm(projection);
mstruct.prop1 = value1;
mstruct.prop2 = value2;
mstruct = defaultm(mstruct);
```

produces exactly the same result as the following:

```
f = figure;
ax = axesm(projection, prop1, value1, prop2, value2, ...);
```

```
mstruct = getm(ax);
close(f)
but it avoids the use of graphics and is more efficient.
```

Note Angle-valued properties are in degrees by default. If you want to work in radians instead, you can make the following assignment in between your two calls to defaultm:
mstruct.angleunits = 'radians';
You must also use values in radians when assigning any angle-valued properties (such as mstruct.origin, mstruct.parallels, mstruct.maplatlimit, mstruct.maplonlimit, etc.).

See the Mapping Toolbox User's Guide section on "Work in UTM Without a Displayed Map" for information and an example showing the use of defaultm in combination with UTM.

Examples

Create Map Projection Structure

Create an empty map projection structure for a Mercator projection:

```
mstruct = defaultm('mercator')
mstruct =
    mapprojection: 'mercator'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
        falseeasting: []
        falsenorthing: []
            fixedorient: []
            geoid: [1 0]
            maplatlimit: []
            maplonlimit: []
        mapparallels: 0
            nparallels: 1
            origin: []
        scalefactor: []
            trimlat: [-86 86]
            trimlon: [-180 180]
                    frame: []
                    ffill: 100
            fedgecolor: [0 0 0]
            ffacecolor: 'none'
                flatlimit: []
            flinewidth: 2
            flonlimit: []
                    grid: []
            galtitude: Inf
                    gcolor: [0 0 0]
            glinestyle: ':'
            glinewidth: 0.5000
    mlineexception: []
```

```
            mlinefill: 100
            mlinelimit: []
    mlinelocation: []
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
            plinelimit: []
    plinelocation: []
    plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0 0 0]
                fontname: 'helvetica'
            fontsize: 9
            fontunits: 'points'
            fontweight: 'normal'
            labelformat: 'compass'
    labelrotation: 'off'
            labelunits: []
    meridianlabel: []
mlabellocation: []
mlabelparallel: []
            mlabelround: 0
    parallellabel: []
plabellocation: []
plabelmeridian: []
    plabelround: 0
```

Now change the map origin to [0 90 0], and fill in default projection parameters accordingly:

```
mstruct.origin = [0 90 0];
mstruct = defaultm(mstruct)
mstruct =
    mapprojection: 'mercator'
            zone: []
        angleunits: 'degrees'
            aspect: 'normal'
        falseeasting: 0
        falsenorthing: 0
            fixedorient: []
                geoid: [1 0]
            maplatlimit: [-86 86]
            maplonlimit: [-90 270]
            mapparallels: 0
            nparallels: 1
                origin: [0 90 0]
            scalefactor: 1
                trimlat: [-86 86]
                    trimlon: [-180 180]
                frame: 'off'
                ffill: 100
            fedgecolor: [0 0 0]
            ffacecolor: 'none'
            flatlimit: [-86 86]
            flinewidth: 2
            flonlimit: [-180 180]
                grid: 'off'
            galtitude: Inf
```

```
            gcolor: [0 0 0]
        glinestyle: ':'
        glinewidth: 0.5
mlineexception: []
            mlinefill: 100
            mlinelimit: []
    mlinelocation: 30
    mlinevisible: 'on'
plineexception: []
            plinefill: 100
        plinelimit: []
    plinelocation: 15
    plinevisible: 'on'
            fontangle: 'normal'
            fontcolor: [0 0 0]
                fontname: 'Helvetica'
            fontsize: 10
            fontunits: 'points'
            fontweight: 'normal'
        labelformat: 'compass'
    labelrotation: 'off'
            labelunits: 'degrees'
    meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 86
        mlabelround: 0
    parallellabel: 'off'
plabellocation: 15
plabelmeridian: -90
    plabelround: 0
```


Project Coordinates Using Map Projection Structure

This example shows how to perform the same projection computations that are done within Mapping Toolbox display commands by calling the defaultm and proj fwd functions.

Create an empty map projection structure for a Sinusoidal projection, using the defaultm function. The function returns an mstruct .

```
mstruct = defaultm('sinusoid');
```

Set the map limits for the mstruct. To populate the fields of the map projection structure and ensure the effects of property settings are properly implemented, call defaultm a second time.

```
mstruct.maplonlimit = [-150 -30];
mstruct.geoid = referenceEllipsoid('grs80','kilometers');
mstruct = defaultm(mstruct);
```

Load coastline data and trim it to the map limits.

```
load coastlines
[latt,lont] = maptriml(coastlat,coastlon, ...
    mstruct.maplatlimit,mstruct.maplonlimit);
```

Project the latitude and longitude vectors into plane coordinates with the Sinusoidal projection and display the result. The plot shows that the data are projected in the specified aspect.
[x,y] = projfwd(mstruct,latt,lont); figure
plot (x, y)
axis equal

See Also

axesm|gcm|projinv|projfwd|setm

Introduced before R2006a

deg2km

Convert spherical distance from degrees to kilometers

Syntax

```
km = deg2km(deg)
km = deg2km(deg,radius)
km = deg2km(deg,sphere)
```


Description

$\mathrm{km}=$ deg 2 km (deg) converts distances from degrees to kilometers, as measured along a great circle on a sphere with a radius of 6371 km , the mean radius of the Earth.
$\mathrm{km}=$ deg2km(deg, radius) converts distances from degrees to kilometers, as measured along a great circle on a sphere having the specified radius.
$\mathrm{km}=\operatorname{deg} 2 \mathrm{~km}(\mathrm{deg}, \mathrm{sphere})$ converts distances from degrees to kilometers, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Degrees to Kilometers on Earth

Find the circumference of the Earth in kilometers. By default, the deg 2 km function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 6371 kilometers.

```
km = deg2km(360)
km = 4.0030e+04
```


Convert Degrees to Kilometers on Mars

Find the circumference of Mars in kilometers.

```
km = deg2km(360,'mars')
km = 2.1300e+04
```


Input Arguments

deg - Distance in degrees

numeric array
Distance in degrees, specified as a numeric array.

Data Types: single|double

radius - Radius

6371 (default) | numeric scalar
Radius of sphere in units of kilometers, specified as a numeric scalar.
sphere - Sphere
'sun'|'moon'|'mercury'|'venus'|'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ' , 'moon','mercury','venus','earth','mars','jupiter','saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

km - Distance in kilometers
numeric array
Distance in kilometers, returned as a numeric array.
Data Types: single | double

See Also

deg2nm|deg2sm | deg2rad | rad2deg | rad2km | km2deg
Introduced in R2007a

deg2nm

Convert spherical distance from degrees to nautical miles

Syntax

```
nm = deg2nm(deg)
nm = deg2nm(deg,radius)
nm = deg2nm(deg,sphere)
```


Description

$\mathrm{nm}=\operatorname{deg} 2 \mathrm{~nm}(\mathrm{deg})$ converts distances from degrees to nautical miles, as measured along a great circle on a sphere with a radius of 3440.065 nautical miles, the mean radius of the Earth.
$\mathrm{nm}=$ deg2nm(deg, radius) converts distances from degrees to nautical miles, as measured along a great circle on a sphere having the specified radius.
$\mathrm{nm}=$ deg2nm(deg,sphere) converts distances from degrees to nautical miles, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Arc Length to Nautical Miles

One degree of arc length is about 60 nautical miles, using a spherical model of the Earth.

```
deg2nm(1)
ans =
    60.0405
```

This is not true on Mercury, of course.

```
deg2nm(1,'mercury')
ans =
    22.9852
```


Input Arguments

deg - Distance in degrees

numeric array
Distance in degrees, specified as a numeric array.
Data Types: single | double

radius - Radius

3440.065 (default) | numeric scalar

Radius of sphere in units of nautical miles, specified as a numeric scalar.

sphere - Sphere

'sun'|'moon'|'mercury'|'venus'| 'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ', 'moon','mercury','venus','earth','mars','jupiter','saturn','uranus','neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

nm - Distance in nautical miles

numeric array
Distance in nautical miles, returned as a numeric array.
Data Types: single | double

See Also
deg2km | deg2sm | deg2rad | rad2deg | rad2nm | nm2deg
Introduced in R2007a

deg2sm

Convert spherical distance from degrees to statute miles

Syntax

```
sm = deg2sm(deg)
sm = deg2sm(deg,radius)
sm = deg2sm(deg,sphere)
```


Description

$\mathrm{sm}=\operatorname{deg} 2 \mathrm{sm}(\mathrm{deg})$ converts distances from degrees to statute miles as measured along a great circle on a sphere with a radius of 3958.748 sm , the mean radius of the Earth.
$\mathrm{sm}=$ deg2sm(deg, radius) converts distances from degrees to statute miles as measured along a great circle on a sphere having the specified radius.
sm = deg2sm(deg,sphere) converts distances from degrees to statute miles, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Degrees to Statute Miles on Earth

Find the circumference of the Earth in statute miles. By default, the deg2sm function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3958.748 statute miles.

```
sm = deg2sm(360)
sm = 2.4874e+04
```


Convert Degrees to Statute Miles on Mars

Find the circumference of Mars in statute miles.

```
sm = deg2sm(360,'mars')
sm = 1.3235e+04
```


Input Arguments

deg - Distance in degrees

numeric array
Distance in degrees, specified as a numeric array.

Data Types: single|double

radius - Radius

3958.748 (default) | numeric scalar

Radius of sphere in units of statute miles, specified as a numeric scalar.
sphere - Sphere
'sun'|'moon'|'mercury' |'venus'|'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: 'sun ', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

sm - Distance in statute miles
numeric array
Distance in statute miles, returned as a numeric array.
Data Types: single|double

See Also

deg2rad | rad2deg | deg2km | deg2nm | sm2deg | rad2sm
Introduced in R2007a

degrees2dm

Convert degrees to degrees-minutes

Syntax

DM $=$ degrees $2 \mathrm{dm}($ angleInDegrees $)$

Description

DM = degrees2dm(angleInDegrees) converts angles from values in degrees which may include a fractional part (sometimes called "decimal degrees") to degrees-minutes representation.

Examples

Convert Angle in Degrees to Degree-Minutes

```
angleInDegrees = [ 30.8457722555556; ...
                -82.0444189583333; ...
            -0.504756513888889;...
                0.004116666666667];
dm = degrees2dm(angleInDegrees)
dm = 4 2 2
    30.0000 50.7463
    -82.0000 2.6651
        0-30.2854
        0 0.2470
```


Input Arguments

angleInDegrees - Angle in degrees
n-element real-valued column vector
Angle in degrees, specified as an n-element real-valued column vector.

Output Arguments

DM - Angle in degrees-minutes representation

n-by-2 real-valued matrix
Angle in degrees-minutes representation, returned as an n-by-2 real-valued matrix. Each row specifies one angle, with the format [D M]:

- D contains the "degrees" element and is integer-valued.
- M contains the "minutes" element and may have a fractional part.

In any given row of DM , the sign of the first nonzero element indicates the sign of the overall angle. A positive number indicates north latitude or east longitude; a negative number indicates south latitude or west longitude. Any remaining element in that row has nonnegative values.

See Also

dm2degrees | deg2rad | degrees2dms | rad2deg

Topics

"Angle Representations and Angular Units"
Introduced in R2007a

degrees2dms

Convert degrees to degrees-minutes-seconds

Syntax

DMS = degrees2dms(angleInDegrees)

Description

DMS = degrees2dms(angleInDegrees) converts angles from values in degrees which may include a fractional part (sometimes called "decimal degrees") to degrees-minutes-seconds representation.

Examples

Convert Angle in Degrees to Degree-Minute-Seconds

Convert an angle specified as a real-valued column vector to degrees-minutes-seconds representation. The output value is an n-by- 3 real-valued matrix. Each row in the output specifies one angle, with the format [Degrees Minutes Seconds].

```
angleInDegrees = [ 30.8457722555556; ...
        -82.0444189583333; ...
        -0.504756513888889; ...
        0.004116666666667];
dms = degrees2dms(angleInDegrees)
dms = 4×3
\begin{tabular}{rrr}
30.0000 & 50.0000 & 44.7801 \\
-82.0000 & 2.0000 & 39.9082 \\
0 & -30.0000 & 17.1235 \\
0 & 0 & 14.8200
\end{tabular}
```


Customize Degree-Minute-Seconds Display Format

Convert angles in degrees to degree-minute-second representation. Display the result using the default display provided by angl2str.

```
angleInDegrees = [ 30.8457722555556; ...
        -82.0444189583333; ...
                        -0.504756513888889; ...
                        0.004116666666667];
angl2str(angleInDegrees,'ns','degrees2dms')
ans = 4x25 char array
    30^{\circ} 50' 44.78" N
    ' 82^{\circ} 02' 39.91" S '
    '0^{\circ} 30' 17.12" S '
```

```
0^{\circ} 00' 14.82" N '
```

Alternatively, specify a custom display format by converting the angles to degree-minute-second representation and using sprintf. The result is a single string.

```
dms = degrees2dms(angleInDegrees)
dms = 4×3
    30.0000 50.0000 44.7801
    -82.0000 2.0000 39.9082
    0 -30.0000 17.1235
    0 0 14.8200
nonnegative = all((dms >= 0),2);
hemisphere = repmat('N', size(nonnegative));
hemisphere(~nonnegative) = 'S';
absvalues = num2cell(abs(dms'));
values = [absvalues; num2cell(hemisphere')];
sprintf('%2.0fd:%2.0fm:%7.5fs:%s\n',values{:})
ans =
    '30d:50m:44.78012s:N
    82d: 2m:39.90825s:S
    0d:30m:17.12345s:S
    0d: 0m:14.82000s:N
```


Input Arguments

angleInDegrees - Angle in degrees

n-element real-valued column vector
Angle in degrees, specified as an n-element real-valued column vector.

Output Arguments

DMS - Angle in degrees-minutes-seconds representation

n-by-3 real-valued matrix
Angle in degrees-minutes-seconds representation, returned as an n-by- 3 real-valued matrix. Each row specifies one angle, with the format [D M S]:

- D contains the "degrees" element and is integer-valued.
- M contains the "minutes" element and is integer-valued.
- S contains the "seconds" element and may have a fractional part.

In any given row of DMS, the sign of the first nonzero element indicates the sign of the overall angle. A positive number indicates north latitude or east longitude; a negative number indicates south latitude or west longitude. Any remaining elements in that row will have nonnegative values.

See Also
dms2degrees | deg2rad | degrees2dm | rad2deg
Topics
"Angle Representations and Angular Units"
Introduced in R2007a

degtorad

(Not recommended) Convert angles from degrees to radians

Note degtorad is not recommended. Use the deg2rad function instead. For more information, see "Compatibility Considerations".

Syntax

angleInRadians = degtorad(angleInDegrees)

Description

angleInRadians = degtorad(angleInDegrees) converts angle units from degrees to radians.

Examples

Convert Degrees to Radians

Convert 90 degrees to radians.
angleInRadians = degtorad(90)
angleInRadians =
1.5708

Input Arguments

angleInDegrees - Angle in degrees
scalar | vector | matrix | N-D array
Angle in degrees, specified as a scalar, vector, matrix, or N-D array.

Compatibility Considerations

degtorad is not recommended

Not recommended starting in R2015b
The degtorad function is not recommended. Use the deg2rad function instead.
To update your code, replace instances of the degtorad function with the deg2rad function.
While the degtorad function accepts input arguments of integer types such as uint8, the deg2rad function accepts only single- and double-precision types. You can convert integer types to single- or double-precision types by using the single or double function.

See Also

deg2rad

Introduced in R2009b

demcmap

Colormaps appropriate to terrain elevation data

Syntax

```
demcmap(Z)
demcmap(Z,ncolors)
demcmap(Z,ncolors,cmapsea,cmapland)
demcmap('inc',Z,deltaz)
demcmap('inc',Z,deltaz,cmapsea,cmapland)
[cmap,climits] = demcmap(
```

\qquad

Description

demcmap (Z) sets the colormap and color axis limits based on the elevation data limits derived from input argument Z.

- The default colormap assigns shades of green and brown for positive elevations, and various shades of blue for negative elevation values below sea level.
- The number of colors assigned to land and to sea are in proportion to the ranges in terrain elevation and bathymetric depth and total 64 by default. The color axis limits are computed such that the interface between land and sea maps to the zero elevation contour.
- The colormap is applied to the current figure and the color axis limits are applied to the current axes.
demcmap (Z, ncolors) creates a colormap of length ncolors.
demcmap (Z,ncolors,cmapsea, cmapland) assigns cmapsea and cmapland to elevations below and above sea level respectively.
demcmap('inc', Z, deltaz) chooses number of colors and color axis limits such that each color approximately represents the increment of elevation deltaz.
- The literal 'inc' signals demcmap that the first argument after Z will be deltaz.
demcmap('inc',Z,deltaz,cmapsea, cmapland)assigns cmapsea and cmapland to elevations below and above sea level respectively.
[cmap, climits] = demcmap (__) returns colormap cmap and color axis limit climits, using any of the above syntaxes, but does not apply them to figure or axes properties.
- Even if only one output argument is specified, no change occurs to figure or axes properties.

Examples

Displaying Elevation Data with Default Colormap

Load elevation raster data and a geographic cells reference object. Then, apply a colormap by specifying the maximum and minimum values of the data.

```
load topo60c
axesm hatano
meshm(topo60c,topo60cR)
zlimits = [min(topo60c(:)) max(topo60c(:))];
demcmap(zlimits)
colorbar
```


Defining Custom Land and Sea Colormaps

Custom RGB colormaps, for example cmapssea and cmapland, are used to populate figure colormaps by interpolation. The colors in each colormap map to the land and sea regions of the map. Fewer colors have been specified in total than the default number of 64. demcmap determines maximum and minimum elevation data limits internally as shown in the below example when the first argument is the elevation data grid.

```
load topo60c
axesm hatano
meshm(topo60c,topo60cR)
cmapsea = [0.8 0 0.8; 0 0 0.8];
```

```
cmapland = [0.7 0 0; 0.8 0.8 0; 1 1 0.8 ];
demcmap(topo60c,32,cmapsea,cmapland)
colorbar
```


Colormap in Which Each Color Approximates a User Defined Increment

The following demcmap example controls the color quantization by choosing an optimal number of colors such that each color represents an elevation increment of approximately 2000 .

```
load topo60c
worldmap('world')
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap('inc',[max(topo60c(:)) min(topo60c(:))],2000);
colorbar
```


Input Arguments

Z - Terrain elevation limits

vector | matrix
Terrain elevation limits specified as a vector or matrix. If Z is a 2 element vector, then it specifies the minimum and maximum limits of terrain elevation data; ordering is not important. If Z is a matrix, then it specifies an elevation grid in which positive and negative values represent points above and below sea level respectively. The above two syntaxes for demcmap are identical in their effect on the figure colormap and axes properties.
Data Types: single | double | int8 | int32 | uint8 | uint16|uint32

ncolors - Number of colors in colormap

64 (default) | scalar
Number of colors in the colormap specified as a scalar. It defines the number of rows m in the $m x 3$ RGB matrix of the figure colormap.

Data Types: double
cmapsea, cmapland - RGB colormap matrices
matrix

- RGB colormaps specified as mx3 arrays containing any number of rows. The two colormaps need not be equal in length. They serve as the basis set for populating the figure colormap by interpolation.
- cmapsea and cmapland replace the default colormap. The default colormap for land or sea can be retained by providing an empty matrix in place of either colormap matrix.

That part of the figure colormap assigned to negative elevations is derived from cmapssea; cmapland plays a similar role for positive elevations.
Data Types: double

deltaz - Increment of elevation

scalar
The increment of elevation specified as a scalar. The color quantization of the default or user supplied colormap is adjusted such that each discrete color approximately represents a deltaz increment in elevation.

Data Types: double

Output Arguments

cmap - RGB colormap

matrix
RGB colormap returned as a matrix constructed for the figure colormap. Supply output arguments when you want to obtain the colormap and color axis limits without applying them automatically to the figure or axes properties. These properties remain unchanged even if only one output (cmap) is specified.

Data Types: double

climits - Color axis limits

vector
Color axis limits returned as a vector. climits may differ somewhat from those derived from input argument Z due to the quantization which results from fitting a limited number of colors over the range limit of the elevation data.

Supply output arguments when you want to obtain the colormap and color axis limits without applying them automatically to the figure or axes.

Data Types: double

Algorithms

If the elevation grid data contains both positive and negative values, then the computed colormap, cmap, has a "sea" partition of length nsea and "land" partition of length nland. The sum of nsea and
 nl and depend upon the number of entries and the relative range of the negative and positive limits of the elevation data. The sea partition consists of rows 1 through nsea, and the land partition consists of rows nsea +1 through ncolors. The sea and land partitions of the figure colormap are populated with colors interpolated from the basis RGB colormaps, cmapsea and cmapland. In the figure below, the sea and land 3×3 RGB colormaps shown are the default colors used by demcmap to populate the figure colormap when no user specified colormaps are provided.

If the elevation grid data contains only positive or negative values, then the figure colormap is derived solely from the corresponding sea or land colormap.

See Also

colormap | meshlsrm|meshm | surflsrm| surfm
Introduced before R2006a

departure

Departure of longitudes at specified latitudes

Syntax

```
dist = departure(long1,long2,lat)
dist = departure(long1,long2,lat,ellipsoid)
dist = departure(long1,long2,lat,units)
dist = departure(long1,long2,lat,geoid,units)
```


Description

dist $=$ departure(long1,long2, lat) computes the departure distance from long1 to long2 at the input latitude lat. Departure is the distance along a specific parallel between two meridians. The output dist is returned in degrees of arc length on a sphere.
dist = departure(long1,long2,lat,ellipsoid) computes the departure assuming that the input points lie on the ellipsoid defined by the input ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity].
dist = departure(long1,long2,lat, units) where units defines the angle units of the input and output data. In this form, the departure is returned as an arc length in the units specified by units. If units is omitted, 'degrees ' is assumed.
dist $=$ departure(long1, long2,lat, geoid, units) is a valid calling form. In this case, the departure is computed in the same units as the semimajor axes of the ellipsoid.

Examples

Calculate Departure Distance on Sphere and Ellipsoid

On a spherical Earth, the departure distance is proportional to the cosine of the latitude. For example, calculate the departure distance for 0°.

```
distance = departure(0, 10, 0)
distance = 10
```

Now calculate the distance for 60°.

```
distance = departure(0, 10, 60)
distance = 5.0000
```

When you calculate the same departure distances on an ellipsoid, the result is more complicated. Again, calculate the departure distance for 0°.

```
distance = departure(0, 10, 0, referenceEllipsoid('earth', 'nm'))
distance = 601.0772
```

Now calculate the distance at 60°. You can see that the value is not exactly half the 0° value.
distance $=$ departure(0, 10, 60, referenceEllipsoid('earth', 'nm'))
distance = 301.2959

More About

Departure

Departure is the distance along a parallel between two points. Whereas a degree of latitude is always the same distance, a degree of longitude is different in length at different latitudes. In practice, this distance is usually given in nautical miles.

See Also

distance|stdm
Introduced before R2006a

disp

Display geographic or planar vector

Syntax

disp(v)

Description

disp(v) prints the size of the geographic or planar vector v, and its properties and dynamic properties, if they exist.

If the command window is large enough, the values of the properties are also shown, otherwise only their size is shown. You can control the display of the numerical values using the format command.

Examples

Display a Geoshape Vector

Create a geoshape vector.
gs = geoshape(shaperead('worldcities.shp', 'UseGeoCoords', true));
Display the entire geoshape vector.
disp(gs)

```
    318x1 geoshape vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Vertex properties:
        (318 features concatenated with 317 delimiters)
            Latitude: [5.2985 NaN 24.6525 NaN 5.6106 NaN 37.0613 NaN 9.0235 NaN ... ]
            Longitude: [-3.9509 NaN 54.7589 NaN -0.2121 NaN 35.3894 NaN 38.7575 ... ]
    Feature properties:
            Name: {1x318 cell}
```

Display only the first two feature of the geoshape vector. Notice that the property values are shown because they are short enough to fit on the command window.

```
disp(gs(1:2));
    2x1 geoshape vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Vertex properties:
        (2 features concatenated with 1 delimiter)
```

```
    Latitude: [5.2985 NaN 24.6525]
    Longitude: [-3.9509 NaN 54.7589]
Feature properties:
    Name: {'Abidjan' 'Abu Dhabi'}
```


Input Arguments

v - Geographic or planar vector to be displayed
geopoint, geoshape, mappoint, or mapshape objects
Geographic or planar vector to be displayed, specified as a geopoint, geoshape, mappoint, or mapshape object.

See Also

format|fieldnames | length | properties

Introduced in R2012a

disp

Display properties of WMS layers or capabilities

Syntax

```
disp(layers,Name,Value,...)
disp(capabilities)
```


Description

disp(layers,Name,Value, ...) displays the index number followed by the property names and property values of the Web map service layers, layers. You can specify additional options using one or more Name, Value pair arguments.
disp(capabilities) displays the properties of the Web map service capabilities document, capabilities. The function removes hyperlinks and expands character vector and cell array properties.

Examples

Display Specific Properties of WMS Layers

Search the WMS Database for layers that contain srtm30. Display the LayerTitle and LayerName properties without an Index.

```
layers = wmsfind('srtm30');
disp(layers(1:5),'Index', 'off', ...
    'Properties',{'layertitle','layername'})
    5x1 WMSLayer
    Properties:
        LayerTitle: 'Estimated Seafloor Depth Gradients: srtm30plus (US West Coast) - magnitude_gr
        LayerName: 'erdSrtm30plusSeafloorGradient:magnitude_gradient'
        LayerTitle: 'Estimated Seafloor Depth Gradients: srtm30plus (US West Coast) - sea_floor_de
            LayerName: 'erdSrtm30plusSeafloorGradient:sea_floor_depth'
        LayerTitle: 'Estimated Seafloor Depth Gradients: srtm30plus (US West Coast) - x_gradient'
        LayerName: 'erdSrtm30plusSeafloorGradient:x_gradient'
        LayerTitle: 'Estimated Seafloor Depth Gradients: srtm30plus (US West Coast) - y_gradient'
            LayerName: 'erdSrtm30plusSeafloorGradient:y_gradient'
        LayerTitle: 'SRTM30_PLUS Estimated Topography, 30 seconds, Global, v11 - z'
            LayerName: 'srtm30plus:z'
```

Your results might be different because the WMS Database changes each release.

Sort and Display Properties of WMS Layers

Sort and display the LayerName property with an index.
Search the WMS Database for layers that contain information about elevation.
layers = wmsfind('elevation');
Sort the layers.
[layerNames,index] = sort(\{layers.LayerName\});
Display the first five results.

```
layers = layers(index);
disp(layers(1:5),'Label','off','Properties','layername')
    5x1 WMSLayer
    Properties:
            Index: 1
'0'
    Index: 2
'0'
    Index: 3
'133'
    Index: 4
'134'
    Index: 5
'141'
```

Your results might be different because the WMS Database changes each release.

Display WMS Capabilities

Create a WMSCapabilities object from the contents of a downloaded capabilities file from the NASA SVS Image Server.

```
nasa = wmsfind('NASA SVS Image', 'SearchField', 'servertitle');
serverURL = nasa(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = server.getCapabilities;
```

Display the properties of the capabilities document.

```
disp(capabilities)
    WMSCapabilities
    Properties:
            ServerTitle: 'NASA SVS Image Server'
                ServerURL: 'https://svs.gsfc.nasa.gov/cgi-bin/wms?'
```

```
    ServiceName: 'WMS'
            Version: '1.3.0'
            Abstract: 'Web Map Server maintained by the Scientific Visualization Studio at NASA'S
        OnlineResource: 'http://svs.gsfc.nasa.gov/'
ContactInformation: [1x1 struct]
    AccessConstraints: 'none'
                        Fees: 'none'
        KeywordList: {}
    ImageFormats: {'image/png'}
        LayerNames: {326x1 cell}
            Layer: [326x1 WMSLayer]
        AccessDate: '01-Apr-2021'
Methods
```

Your results might be different because the WMS Database changes each release.

Input Arguments

layers - Layers to display

array of WMSLayer objects
Layers to display, specified as an array of WMSLayer objects.

capabilities - WMS capabilities document to display

WMSCapabilities object
WMS capabilities document to display, specified as a WMSCapabilities object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
You can abbreviate parameter names, and case does not matter.

```
Example: 'Properties',{'layertitle','layername'}
```


Properties - Properties to display

'all' (default) | character vector or cell array of character vectors

Properties to display, specified as a character vector or cell array of character vectors. The properties are displayed in the same order as they are provided to Properties. Permissible values are: 'servertitle','servername','layertitle','layername','latlim','lonlim', 'abstract', 'coordrefsyscodes', 'details', or 'all'. To list all the properties, set 'Properties' to 'all'.

Example: \{'coordrefsyscodes','latlim','lonlim'\}

Label - Flag to display property values

'on' (default)|'off'

Flag to display property values, specified as the character vector 'on' or 'off'. The value is caseinsensitive. If you set 'Label' to ' on ', then the property name appears followed by its value. If you set 'Label' to 'off', then only the property value appears in the output.
Example: 'off'
Index - Flag to display property indices
'on' (default)| 'off'
Flag to display property indices, specified as the character vector 'on ' or 'off'. The value is caseinsensitive. If you set 'Index' to ' on ', then disp lists the element's index in the output. If you set 'Index' to 'off', then disp does not list the index value in the output.
Example: 'off'

See Also

getCapabilities|wmsfind
Introduced in R2009b

displaym

Display geographic data from display structure

Syntax

```
displaym(displaystruct)
displaym(displaystruct,str)
displaym(displaystruct,strings)
displaym(displaystruct,strings,searchmethod)
h = displaym(displaystruct)
```


Description

displaym(displaystruct) projects the data contained in the input displaystruct, a Version 1 Mapping Toolbox display structure, in the current axes. The current axes must be a map axes with a valid map definition. See the remarks about "Version 1 Display Structures" on page 1-294 below for details on the contents of display structures.
displaym(displaystruct, str) displays the vector data elements of displaystruct whose 'tag' fields contains character vectors beginning with 'str'. Vector data elements are those whose 'type' field is either 'line' or 'patch'. The match is case-insensitive.
displaym(displaystruct, strings) displays the vector data elements of displaystruct whose 'tag' field matches with one of the elements (or rows) of strings. strings is a cell array of character vectors (or a 2-D character array). In the case of character array, trailing blanks are stripped from each row before matching.
displaym(displaystruct, strings, searchmethod) controls the method used to match the values of the tag field in displaystruct, as follows:

- 'strmatch ' - Search for matches at the beginning of the tag
- 'findstr' - Search within the tag
- 'exact' - Search for exact matches

Note that when searchmethod is specified the search is case-sensitive.
h = displaym(displaystruct) returns handles to the graphic objects created by displaym.

Note The type of display structure accepted by displaym is not the same as a geographic data structure (geostructs and mapstructs). introduced in Mapping Toolbox Version 2. Use geoshow or mapshow instead of displaym to display geostructs or mapstructs-created using shaperead and gshhs, for example. For more information, see "Geographic Data Structures".

Tips

The following section documents the contents of display structures.

Version 1 Display Structures

A display structure is a MATLAB structure array with the following fields:

- A tag field names an individual feature or object
- A type field specifies a MATLAB graphics object type ('line', 'patch', 'surface', 'text', or ' light') or has the value 'regular', specifying a regular data grid
- lat and long fields contain coordinate vectors of latitudes and longitudes, respectively
- An altitude field contains a vector of vertical coordinate values
- A string property contains text to be displayed if type is 'text'
- MATLAB graphics properties are specified explicitly, on a per-feature basis, in an otherproperty field

The choice of options for the type field reveals that a display structure can contain

- Vector geodata (type is 'line' or 'patch')
- Raster geodata (type is 'surface' or 'regular')
- Graphic objects (type is 'text' or ' light')

The following table indicates which fields are used in the six types of display structures:

Field Name	Type 'light'	Type 'line'	Type 'patch'	Type 'regular'	Type 'surface'	Type 'text'
type	-	-	-	-	-	-
tag	-	-	-	-	-	-
lat	-	-	-		-	-
long	-	-	-		-	-
map				-	-	
maplegend				-		
meshgrat				-		
string						-
altitude	-	-	-	-	-	-
otherproperty	-	-	-	-	-	-

Some fields can contain empty entries, but each indicated field must exist for the objects in the structure array to be displayed correctly. For instance, the altitude field can be an empty matrix and the otherproperty field can be an empty cell array.

The type field must be one of the specified map object types: 'line', ' patch', 'regular', 'surface','text', or 'light'.

The tag field must be different from the type field usually containing the name or kind of map object. Its contents must not be equal to the name of the object type (i.e., line, surface, text, etc.).

The lat, long, and altitude fields can be scalar values, vectors, or matrices, as appropriate for the map object type.

The map field is a data grid. If map is a regular data grid, maplegend is its corresponding referencing vector, and meshgrat is a two-element vector specifying the graticule mesh size. If map is a geolocated data grid, lat and long are the matrices of latitude and longitude coordinates.

The otherproperty field is a cell array containing any additional display properties appropriate for the map object. Cell array entries can be a line specification, such as ' $r+$ ', or property name/ property value pairs, such as 'color', 'red'. If the otherproperty field is left as an empty cell array, default colors are used in the display of lines and patches based on the tag field.

Note In some cases you can use the geoshow function as a direct alternative to displaym. It accepts display structures of type line and patch.

See Also

geoshow|mapshow|updategeostruct
Introduced before R2006a

dist2str

Convert numeric distances to character array

Syntax

```
str = dist2str(dist)
str = dist2str(dist,format)
str = dist2str(dist,format,unit)
str = dist2str(dist,format,n)
str = dist2str(dist,format,unit,n)
```


Description

str $=$ dist2str(dist) converts numeric distances in kilometers to a character array that represents the distances. This function is useful for displaying distances as text on maps.
str $=$ dist2str(dist, format) specifies whether to add a plus sign (+) as a prefix to positive distances. To add a plus sign (+) as a prefix, specify format as " pm ". The default for format is "none", which does not add a plus sign (+).
str $=$ dist2str(dist,format, unit) includes the unit text of the specified unit in the character array.
str $=$ dist2str(dist, format, n) specifies the number of decimal places to use in the character array. This syntax assumes the distances are in kilometers.
str $=$ dist2str(dist,format, unit, n) specifies the unit and the number of decimal places to use in the character array.

Examples

Convert Distances in Kilometers to Character Array

Convert numeric distances to a character array. By default, the dist2str function assumes the distances are in kilometers.

```
dist = [-9.7 12.95 24];
str = dist2str(dist)
str = 3x8 char array
    '-9.70 km'
    '12.95 km'
    '24.00 km'
```

Convert the same distances to a character array and prefix a + sign to the positive distances.

```
strPlus = dist2str(dist,"pm")
strPlus = 3x9 char array
    -9.70 km'
```

```
'+12.95 km'
'+24.00 km'
```


Convert Distances in Specified Units to Character Array

Convert distances in nautical miles to a character array.

```
dist = [18.5 -9.48 16];
str = dist2str(dist,"none","nm")
str = 3x8 char array
    '18.50 nm'
    '-9.48 nm'
    '16.00 nm'
```


Convert Distances to Character Array with Specified Number of Digits

Convert distances in meters to a character array. Round the distances to the nearest tenth.

```
dist = [8.523 -348.79 -418];
str = dist2str(dist,"none","m",-1)
str = 3x8 char array
    8.5 m'
    '-348.8 m'
    '-418.0 m'
```


Input Arguments

dist - Distances

numeric array
Distances, specified as a numeric array.

format - Plus sign for positive distances

"none" (default) | "pm"
Plus sign for positive distances, specified as one of these options:

- "pm" - Add a plus sign (+) as a prefix to positive distances.
- "none" - Do not add a plus sign (+) as a prefix to positive distances.

Data Types: char|string
unit - Unit text to include in character array
"kilometers" (default) | "feet" | "meters" | "nauticalmiles" | "statutemiles" |
"degrees" | "radians" | ...

Unit text to include in the character array, specified as one of these options.

Option	Unit Text
"kilometers" or "km"	km
"feet" or "ft"	ft
"meters" or "m"	m
"nauticalmiles" or "nm"	nm
"statutemiles", "miles", or "mi"	mi
	Note that other Mapping Toolbox functions use mi to indicate international miles rather than statute miles.
"degrees" or "deg"	$\wedge\{\backslash c i r c\}$, which is the LaTeX representation of \circ
"radians" or "rad"	R

Data Types: char | string

n - Number of digits to include in character array

-2 (default) | scalar integer
Number of digits to include in the character array, specified as an integer. When you specify n, the dist2str function rounds dist to the nearest multiple of 10^{n}.

The sign convention for this argument is opposite to the one used by the round function.
Example: dist2str(3132.467,"none", -2) returns '3132.47 km', which is 3132.467 rounded to the nearest hundredth.

Example: dist2str(3132.467,"none", 0) returns '3132 km', which is 3132.467 rounded to the nearest integer.

Output Arguments

str - Text representation of input distances

character array
Text representation of input distances, returned as a character array.
Data Types: char

See Also

Functions

str2angle|angl2str|num2str
Introduced before R2006a

distance

Distance between points on sphere or ellipsoid

Syntax

```
[arclen,az] = distance(lat1,lon1,lat2,lon2)
[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid)
[arclen,az] = distance(pt1,pt2)
[arclen,az] = distance(pt1,pt2,ellipsoid)
[arclen,az] = distance(___,units)
[arclen,az] = distance(track,___)
```


Description

[arclen,az] = distance(lat1,lon1,lat2,lon2) computes the lengths, arclen, of the great circle arcs connecting pairs of points on the surface of a sphere. In each case, the shorter (minor) arc is assumed. The function can also compute the azimuths, az, of the second point in each pair with respect to the first (that is, the angle at which the arc crosses the meridian containing the first point).
[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid) computes geodesic arc length and azimuth assuming that the points lie on the reference ellipsoid defined by the input ellipsoid.
[arclen,az] = distance(pt1,pt2) accepts N-by-2 coordinate arrays of pairs of points, pt1 and $\mathrm{pt2}$, that store latitude coordinates in the first column and longitude coordinates in the second column.

This syntax is equivalent to arclen $=$ distance(pt1(:,1),pt1(:,2),pt2(:,1),pt2(:,2)).
[arclen,az] = distance(pt1,pt2,ellipsoid) computes geodesic arc length and azimuth assuming that the points lie on the reference ellipsoid defined by the input ellipsoid.
[arclen,az] = distance(__ , units) also specifies the angle units of the latitude and longitude coordinates for any of the preceding syntaxes.
[arclen,az] = distance(track \qquad) also specifies whether the track is a great circle/ geodesic or a rhumb line arc, for any of the preceding syntaxes.

Examples

Find Difference in Distance Along Two Tracks

Using pt1, pt2 notation, find the distance from Norfolk, Virginia ($37^{\circ} \mathrm{N}, 76^{\circ} \mathrm{W}$), to Cape St. Vincent, Portugal ($37^{\circ} \mathrm{N}, 9^{\circ} \mathrm{W}$), just outside the Straits of Gibraltar. The distance between these two points depends upon the track value selected.

```
arclen = distance('gc',[37,-76],[37,-9])
arclen =
```

```
arclen = distance('rh',[37,-76],[37,-9])
arclen =
    53.5086
```

The difference between these two tracks is 1.1992 degrees, or about 72 nautical miles. This represents about 2% of the total trip distance. The tradeoff is that at the cost of those 72 miles, the entire trip can be made on a rhumb line with a fixed course of 90%, due east, while in order to follow the shorter great circle path, the course must be changed continuously.

On a meridian and on the Equator, great circles and rhumb lines coincide, so the distances are the same. For example,

```
% Great circle distance
arclen = distance(37,-76,67,-76)
arclen =
    30.0000
% Rhumb line distance
arclen = distance('rh',37,-76,67,-76)
arclen =
```

 30.0000

Input Arguments

lat1, lon1 - First set of latitude or longitude coordinates

numeric scalar | numeric array
First set of latitude or longitude coordinates, specified as a numeric scalar or numeric array. The coordinates are expressed in degrees unless units is specified as 'radians '.
Data Types: single | double

lat2, lon2 - Second set of latitude or longitude coordinates

numeric scalar | numeric array
Second set of latitude or longitude coordinates, specified as a numeric scalar or numeric array. The coordinates are expressed in degrees unless units is specified as 'radians'.
Data Types: single|double
pt1 - First set of point coordinates
N-by-2 numeric matrix
First set of point coordinates, specified as an N-by-2 numeric matrix. pt1 is equivalent to [lat1 lon1] when lat1 and lon1 are column vectors.

Data Types: single|double
pt2 - Second set of point coordinates
N-by-2 numeric matrix

Second set of point coordinates, specified as an N -by-2 numeric matrix. pt2 is equivalent to [lat2 lon2] when lat2 and lon2 are column vectors.

Data Types: single|double

ellipsoid - Reference ellipsoid

referenceSphere object | referenceEllipsoid object | oblateSpheroid object | two-element vector

Reference ellipsoid, specified as an referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a two-element vector of the form [semimajor_axis eccentricity].
Example: referenceEllipsoid('GRS80')
Example: [6378.137 0.0818191910428158]

units - Angle units

'degrees' (default)|'radians'
Angle units of the latitude and longitude coordinates, specified as 'degrees ' or 'radians'.
Data Types: char

track - Track

'gc' (default) | 'rh'
Track, specified as one of the following character vectors.

- 'gc' - Great circle distances are computed on a sphere and geodesic distances are computed on an ellipsoid.
- 'rh' - Rhumb line distances are computed on either a sphere or ellipsoid.

Data Types: char

Output Arguments

arclen - Arc length

numeric scalar | numeric vector | numeric array
Arc length, returned as a numeric scalar or array of the same size as the input latitude and longitude arrays, lat1, lon1, lat2 and lon2. When coordinates are specified using coordinate arrays pt1 and pt2, then arclen is a numeric vector of length N.

- When ellipsoid is not specified, arclen is expressed in degrees or radians of arc, consistent with the value of units.
- When ellipsoid is specified, arclen, is expressed in the same length units as the semimajor axis of the ellipsoid.

Data Types: double
az - Azimuth
numeric scalar | numeric vector | numeric array
Azimuth of the second point in each pair with respect to the first, returned as a numeric scalar or array of the same size as the input latitude and longitude arrays, lat1, lon1, lat2 and lon2. When
coordinates are specified using coordinate arrays pt1 and pt2, then arclen is a numeric vector of length N. az is measured clockwise from north.

Data Types: single | double

Tips

- The size of nonscalar latitude and longitude coordinates, lat1, lon1, lat2, and lon2, must be consistent. When given a combination of scalar and array inputs, the distance function automatically expands scalar inputs to match the size of the arrays.
- To express the output arclen as an arc length in either degrees or radians, omit the ellipsoid argument. This is possible only on a sphere. If ellipsoid is supplied, arclen is a distance expressed in the same units as the semimajor axis of the ellipsoid. Specify ellipsoid as [R 0] to compute arclen as a distance on a sphere of radius R , with arclen having the same units as R.

Algorithms

Distance calculations for geodesics degrade slowly with increasing distance and may break down for points that are nearly antipodal, as well as when both points are very close to the Equator. In addition, for calculations on an ellipsoid, there is a small but finite input space, consisting of pairs of locations in which both the points are nearly antipodal and both points fall close to (but not precisely on) the Equator. In this case, a warning is issued and both arclen and az are set to NaN for the "problem pairs."

Alternatives

Distance between two points can be calculated in two ways. For great circles (on the sphere) and geodesics (on the ellipsoid), the distance is the shortest surface distance between two points. For rhumb lines, the distance is measured along the rhumb line passing through the two points, which is not, in general, the shortest surface distance between them.

When you need to compute both distance and azimuth for the same point pair(s), it is more efficient to do so with a single call to distance. That is, use

```
[arclen az] = distance(...);
```

rather than the slower
arclen $=$ distance(...)
az = azimuth(...)

See Also

Functions

azimuth | ecef2aer \| reckon|track|track1|track2|trackg

Objects

referenceEllipsoid| referenceSphere|oblateSpheroid

Topics

"Great Circles"
"Rhumb Lines"
Introduced before R2006a

distortcalc

Distortion parameters for map projections

Syntax

```
areascale = distortcalc(lat,long)
areascale = distortcalc(mstruct,lat,long)
[areascale,angdef,maxscale,minscale,merscale,parscale] = distortcalc(...)
```


Description

areascale $=$ distortcalc(lat,long) computes the area distortion for the current map projection at the specified geographic location. An area scale of 1 indicates no scale distortion. Latitude and longitude can be scalars, vectors, or matrices in the angle units of the defined map projection.
areascale $=$ distortcalc(mstruct,lat,long) uses the projection defined in the map structure mstruct.
[areascale,angdef,maxscale,minscale,merscale, parscale] = distortcalc(...) computes the area scale, maximum angular deformation of right angles (in the angle units of the defined projection), the particular maximum and minimum scale distortions in any direction, and the particular scale along the meridian and parallel. You can also call distortcalc with fewer output arguments, in the order shown.

Background

Map projections inevitably introduce distortions in the shapes and sizes of objects as they are transformed from three-dimensional spherical coordinates to two-dimensional Cartesian coordinates. The amount and type of distortion vary between projections, over the projection, and with the selection of projection parameters such as standard parallels. This function allows a quantitative evaluation of distortion parameters.

Examples

At the equator, the Mercator projection is free of both area and angular distortion:

```
axesm mercator
[areascale,angdef] = distortcalc(0,0)
areascale =
    1.0000
angdef =
    8.5377e-007
```

At 60 degrees north, objects are shown at 400% of their true area. The projection is conformal, so angular distortion is still zero.

```
[areascale,angdef] = distortcalc(60,0)
```

```
areascale =
    4.0000
angdef =
    4.9720e-004
```


Tips

This function uses a finite difference technique. The geographic coordinates are perturbed slightly in different directions and projected. A small amount of error is introduced by numerical computation of derivatives and the variation of map distortion parameters.

See Also

mdistort|tissot

Introduced before R2006a

distdim

Convert length units

Syntax

```
distOut = distdim(distIn,from,to)
distOut = distdim(distIn,from,to,radius)
distOut = distdim(distIn,from,to,sphere)
```


Compatibility

Note distdim has been replaced by units ratio, but will be maintained for backward compatibility. See "Replacing distdim" on page 1-308 for details.

Description

distOut = distdim(distIn,from,to) converts distIn from the units specified by from to the units specified by to. from and to are case-insensitive, and may equal any of the following:

```
'meters' or 'm'
'feet' or 'ft' U.S. survey feet
'kilometers' or 'km'
'nauticalmiles' or 'nm'
'miles','statutemiles','mi',or 'sm' Statute miles
'degrees' or 'deg'
'radians' or 'rad'
```

If either from or to indicates angular units (' degrees ' or 'radians '), the conversion to or from linear distance is made along a great circle arc on a sphere with a radius of 6371 km , the mean radius of the Earth.
distOut $=$ distdim(distIn, from,to, radius) specifies the radius when one of the units, either from or to, indicates angular units. distdim uses a great circle arc on a sphere of the given radius. The specified length units must apply to radius as well as to the input distance (when from indicates length) or output distance (when to indicates length). If neither from nor to indicates angular units, or if both do, then the value of radius is ignored.
distOut = distdim(distIn, from,to, sphere), where either from or to indicates angular units, uses a great circle arc on a sphere approximating a body in the Solar System. sphere may be one of the following: 'sun', 'moon', 'mercury', 'venus', 'earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive. If neither to nor from is angular, sphere is ignored.

Examples

Convert 100 kilometers to nautical miles:

```
distkm = 100
distkm =
    100
distnm = distdim(distkm,'kilometers','nauticalmiles')
distnm =
    53.9957
```

A degree of arc length is about 60 nautical miles:

```
distnm = distdim(1,'deg','nm')
distnm =
    60.0405
```

This is not accidental. It is the original definition of the nautical mile. Naturally, this assumption does not hold on other planets:

```
distnm = distdim(1,'deg','nm','mars')
distnm =
    31.9474
```


Tips

Arc Lengths of Angles Not Constant

Distance is expressed in one of two general forms: as a linear measure in some unit (kilometers, miles, etc.) or as angular arc length (degrees or radians). While the use of linear units is generally understood, angular arc length is not always as clear. The conversion from angular units to linear units for the arc along any circle is the angle in radians multiplied by the radius of the circle. On the sphere, this means that radians of latitude are directly translatable to kilometers, say, by multiplying by the radius of the Earth in kilometers (about 6,371 km). However, the linear distance associated with radians of longitude changes with latitude; the radius in question is then not the radius of the Earth, but the (chord) radius of the small circle defining that parallel. The angle in radians or degrees associated with any distance is the arc length of a great circle passing through the points of interest. Therefore, the radius in question always refers to the radius of the relevant sphere, consistent with the distance function.

Exercise Caution with 'feet' and 'miles'

Exercise caution with 'feet' and 'miles'. distdim interprets ' feet ' and 'ft' as U.S. survey feet, and does not support international feet at all. In contrast, unitsratio follows the opposite, and more standard approach, interpreting both 'feet ' and 'ft' as international feet. unitsratio provides separate options, including 'surveyfeet ' and 'sf', to indicate survey feet. By definition, one international foot is exactly 0.3048 meters and one U.S. survey foot is exactly 1200/3937 meters. For many applications, the difference is significant. Most projected coordinate systems use either the meter or the survey foot as a standard unit. International feet are less likely to be used, but do occur sometimes. Likewise, distdim interprets 'miles' and 'mi' as statute miles (also known as U.S.
survey miles), and does not support international miles at all. By definition, one international mile is 5,280 international feet and one statute mile is 5,280 survey feet. You can evaluate:

```
unitsratio('millimeter','statute mile') - ...
    unitsratio('millimeter','mile')
```

to see that the difference between a statute mile and an international mile is just over three millimeters. This may seem like a very small amount over the length of a single mile, but mixing up these units could result in a significant error over a sufficiently long baseline. As with feet, units ratio takes a more standard approach. unitsratio interprets 'miles' and 'mi' as international miles, and 'statute miles' and 'sm' as statute miles. (units ratio accepts several other character vectors for each of these units; see the units ratio help for further information.)

Replacing distdim

If both from and to are known at the time of coding, then you may be able to replace distdim with a direct conversion utility, as in the following examples:

distdim(dist, 'nm', km')	\Rightarrow nm2km(dist)
distdim(dist,'sm','deg')	\Rightarrow sm2deg(dist)
distdim(dist, 'rad', 'km', 'moon')	\Rightarrow rad2km(dist,'moon')

If there is no appropriate direct conversion utility, or you won't know the values of from and/or to until run time, you can generally replace

```
distdim(dist, FROM, TO)
with
unitsratio(TO, FROM) * dist
```

If you are using units of feet or miles, see the cautionary note above about how they are interpreted. For example, with distIn in meters and distOut in survey feet, dist0ut = distdim(distIn, 'meters', 'feet') should be replaced with distOut = unitsratio('survey feet','meters') * distIn. Saving a multiplicative factor computed with units ratio and using it to convert in a separate step can make code cleaner and more efficient than using distdim. For example, replace

```
dist1 meters = distdim(dist1 nm, 'nm', 'meters');
dist2_meters = distdim(dist2_nm, 'nm', 'meters');
with
metersPerNM = unitsratio('meters','nm');
distl_meters = metersPerNM * distl_nm;
dist2_meters = metersPerNM * dist2_nm;
```

units ratio does not perform great-circle conversion between units of length and angle, but it can be easily combined with other functions to do so. For example, to convert degrees to meters along a great-circle arc on a sphere approximating the planet Mars, you could replace

```
distdim(dist, 'degrees', 'meters', 'mars')
```

with

```
unitsratio('meters','km') * deg2km(dist, 'mars')
```


See Also

deg2km | deg2nm | deg2sm | km2deg | km2nm | km2rad | km2sm|nm2deg|nm2km|nm2rad|nm2sm| rad2km | rad2nm | rad2sm|sm2deg | sm2km | sm2nm|sm2rad|unitsratio

Introduced before R2006a

dm2degrees

Convert degrees-minutes to degrees

Syntax

angleInDegrees $=$ dm2degrees(DM)

Description

angleInDegrees $=$ dm2degrees (DM) converts angles from degrees-minutes representation to values in degrees which may include a fractional part (sometimes called "decimal degrees").

Examples

Convert Angle in Degree-Minutes to Degrees

```
dm = [ ...
    30 44.78012; ...
    -82 39.90825; ...
        0-17.12345; ...
        0 14.82000];
```

format long g
angleInDegrees $=$ dm2degrees (dm)
angleInDegrees $=4 \times 1$
30.7463353333333
-82.6651375
-0.285390833333333
0.247

Input Arguments

DM - Angle in degrees-minutes representation

n-by-2 real-valued matrix
Angle in degrees-minutes representation, specified as an n-by-2 real-valued matrix. Each row specifies one angle, with the format [D M]:

- D contains the "degrees" element and must be integer-valued.
- M contains the "minutes" element and may have a fractional part. The absolute value of M must be less than 60.

For an angle that is positive (north latitude or east longitude) or equal to zero, all elements in the row must be nonnegative. For a negative angle (south latitude or west longitude), the first nonzero element in the row must be negative and the remaining value, if any, is nonnegative.

Output Arguments

angleInDegrees - Angle in degrees

n -element column vector
Angle in degrees, returned as an n-element column vector. The $k^{\text {th }}$ element corresponds to the $k^{\text {th }}$ row of DM.

Algorithms

For an input row with value [D M], with integer-valued D and real M, the output value will be SGN * (abs(D) + abs(M)/60)
where $S G N$ is 1 if D and M are both nonnegative and -1 if the first nonzero element of [D M] is negative. An error results if a nonzero D is followed by a negative M.

See Also

degrees2dm | deg2rad | dms2degrees | str2angle
Topics
"Angle Representations and Angular Units"
Introduced in R2007a

dms2degrees

Convert degrees-minutes-seconds to degrees

Syntax

```
angleInDegrees = dms2degrees(DMS)
```


Description

angleInDegrees $=$ dms2degrees(DMS) converts angles from degrees-minutes-seconds representation to values in degrees which may include a fractional part (sometimes called "decimal degrees").

Examples

Convert Angle in Degree-Minute-Seconds to Degrees

```
dms = [ ...
    30 50 44.78012; ...
    -82 2 39.90825; ...
        0 -30 17.12345; ...
        0 0 14.82000];
format long g
angleInDegrees = dms2degrees(dms)
angleInDegrees = 4×1
            30.8457722555556
            -82.0444189583333
        -0.504756513888889
        0.00411666666666667
```


Input Arguments

DMS - Angle in degrees-minutes-seconds representation

n-by-3 real-valued matrix
Angle in degrees-minutes-seconds representation, specified as an n-by- 3 real-valued matrix. Each row specifies one angle, with the format [D M S]:

- D contains the "degrees" element and must be integer-valued.
- M contains the "minutes" element and must be integer-valued. The absolute value of M must be less than 60.
- S contains the "seconds" element and may have a fractional part. The absolute value of S must be less than 60.

For an angle that is positive (north latitude or east longitude) or equal to zero, all elements in the row must be nonnegative. For a negative angle (south latitude or west longitude), the first nonzero element in the row must be negative and the remaining values are nonnegative.

Output Arguments

angleInDegrees - Angle in degrees

n-element column vector
Angle in degrees, returned as an n-element column vector. The $k^{\text {th }}$ element corresponds to the $k^{\text {th }}$ row of DMS.

Algorithms

For an input row with value [D M S], the output value will be
SGN * (abs(D) $+\mathrm{abs}(\mathrm{M}) / 60+\mathrm{abs}(\mathrm{S}) / 3600)$
where $S G N$ is 1 if D, M, and S are all nonnegative and -1 if the first nonzero element of [D M S] is negative. An error results if a nonzero element is followed by a negative element.

See Also

degrees2dm|deg2rad|dm2degrees | str2angle
Topics
"Angle Representations and Angular Units"
Introduced in R2007a

double

Package: map.geotiff
Convert TIFF tag property values to row vector of doubles

Syntax

tiffTagValue $=$ double(rpctag)

Description

tiffTagValue $=$ double(rpctag) returns a 92 -element row vector of class double, representing the values of the TIFF tag. This is the format required to write the property values to a TIFF file.

Examples

Convert RPCCoefficientTag Properties to 92-Element Vector

Create an RPCCoefficientTag object and view the object summary display.

```
rpctag = map.geotiff.RPCCoefficientTag
rpctag =
    RPCCoefficientTag with properties:
            BiasErrorInMeters: -1
            RandomErrorInMeters: -1
                        LineOffset: 0
                        SampleOffset: 0
                GeodeticLatitudeOffset: 0
            GeodeticLongitudeOffset: 0
                    GeodeticHeightOffset: 0
                        LineScale: 1
                            SampleScale: 1
                GeodeticLatitudeScale: 1
                GeodeticLongitudeScale: 1
                    GeodeticHeightScale: 1
            LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
            LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
            SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
            SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```

Call the RPCCoefficientTag class method double to convert the object into a vector of doubles. View the result.

```
tifftagvalues = double(rpctag)
tifftagvalues = 1×92
```

-1	-1	0	0	0	0	0	1

Input Arguments

rpctag - Rational Polynomial Coefficients (RPC) TIFF tag property values
RPCCoefficientTag object
Rational Polynomial Coefficients (RPC) TIFF tag property values, specified as an RPCCoefficientTag object.

Example: tifftagvalues = double(rpctag);

Output Arguments

tiffTagValue - Rational Polynomial Coefficients (RPC) TIFF tag property values
 92-element vector

Rational Polynomial Coefficients (RPC) TIFF tag property values, returned as 92 -element vector of class double.

See Also
 RPCCoefficientTag|geotiffinfo|geotiffwrite

Introduced in R2015b

dreckon

Dead reckoning positions for track

Syntax

[drlat,drlong,drtime] = dreckon(waypoints,time,speed)
[drlat,drlong,drtime] = dreckon (waypoints,time,speed,spdtimes)

Description

[drlat,drlong,drtime] = dreckon(waypoints,time,speed) returns the positions and times of required dead reckoning (DR) points for the input track that starts at the input time. The track should be in navigational track format (two columns, latitude then longitude, in order of traversal). These waypoints are the starting and ending points of each leg of the track. There is one fewer track leg than waypoints, as the last point included is the end of the track. In navigation, the first waypoint would be a navigational fix, taken at time. The speed input can be a scalar, in which case a constant speed is used throughout, or it can be a vector in which one speed is given for each track leg (that is, speed changes coincide with course changes).
[drlat,drlong,drtime] = dreckon (waypoints,time,speed,spdtimes) allows speed changes to occur independent of course changes. The elements of the speed vector must have a one-to-one correspondence with the elements of the spdtimes vector. This latter variable consists of the time interval after time at which each speed order ends. For example, if time is 6.75 , and the first element of spdtimes is 1.35 , then the first speed element is in effect from 6.75 to 8.1 hours. When this syntax is used, the last output DR is the earlier of the final spdtimes time or the final waypoints point.

Background

This is a navigational function. It assumes that all latitudes and longitudes are in degrees, all distances are in nautical miles, all times are in hours, and all speeds are in knots, that is, nautical miles per hour.

Dead reckoning is an estimation of position at various times based on courses, speeds, and times elapsed from the last certain position, or fix. In navigational practice, a dead reckoning position, or DR, must be plotted at every course change, every speed change, and at every hour, on the hour. Navigators also DR at other times that are not relevant to this function.

Often in practice, when two events occur that require DRs within a very short time, only one DR is generated. This function mimics that practice by setting a tolerance of 3 minutes (0.05 hours). No two DRs will fall closer than that.

Refer to "Navigation" in the Mapping Toolbox Guide for further information.

Examples

Assume that a navigator gets a fix at noon, 1200 Z , which is ($10.3^{\circ} \mathrm{N}, 34.67^{\circ} \mathrm{W}$). He's in a hurry to make a 1330 Z rendezvous with another ship at ($9.9^{\circ} \mathrm{N}, 3^{-1} 5^{\circ} \mathrm{W}$), so he plans on a speed of 25 knots. After the rendezvous, both ships head for ($0 \stackrel{\circ}{\circ}, 37^{\circ} \mathrm{W}$). The engineer wants to take an engine off line
for maintenance at 1430Z, so at that time, speed must be reduced to 15 knots. At 1530Z, the maintenance will be done. Determine the DR points up to the end of the maintenance.

```
waypoints =[10.1 -34.6; 9.9 -34.5; 0 -37]
waypoints =
    10.1000 
    % Fix at noon
    % Rendezvous point
    % Ultimate destination
speed = [25; 15];
spdtimes = [2.5; 3.5]; % Elapsed times after fix
noon = 12;
[drlat,drlong,drtime] = dreckon(waypoints,noon,speed,spdtimes);
[drlat,drlong,drtime]
ans =
\begin{tabular}{llll}
9.8999 & -34.4999 & 12.5354 & \% Course change at waypoint \\
9.7121 & -34.5478 & 13.0000 & \% On the hour \\
9.3080 & -34.6508 & 14.0000 & \% On the hour \\
9.1060 & -34.7022 & 14.5000 & \% Speed change to 15 kts \\
8.9847 & -34.7330 & 15.0000 & \% On the hour \\
8.8635 & -34.7639 & 15.5000 & \% Stop at final spdtime, last
\end{tabular}
```


See Also

legs|navfix|track

Introduced before R2006a

driftcorr

Heading to correct for wind or current drift

Syntax

heading = driftcorr(course,airspeed,windfrom,windspeed) [heading,groundspeed,windcorrangle] = driftcorr(...)

Description

heading = driftcorr(course,airspeed,windfrom,windspeed) computes the heading that corrects for drift due to wind (for aircraft) or current (for watercraft). course is the desired direction of movement (in degrees), airspeed is the speed of the vehicle relative to the moving air or water mass, windfrom is the direction facing into the wind or current (in degrees), and windspeed is the speed of the wind or current (in the same units as airspeed).
[heading, groundspeed,windcorrangle] = driftcorr(...) also returns the ground speed and wind correction angle. The wind correction angle is positive to the right, and negative to the left.

Examples

An aircraft cruising at a speed of 160 knots plans to fly to an airport due north of its current position. If the wind is blowing from 310 degrees at 45 knots, what heading should the aircraft fly to remain on course?

```
course=0; airspeed=160;windfrom=310; windspeed = 45;
[heading,groundspeed,windcorrangle] =
driftcorr(course,airspeed,windfrom,windspeed)
heading =
    347.56
groundspeed =
    127.32
windcorrangle =
    -12.442
```

The required heading is 348 degrees, which amounts to a wind correction angle of 12 degrees to the left of course. The headwind component reduces the aircraft's ground speed to 127 knots.

See Also

driftvel

Introduced before R2006a

driftvel

Wind or current from heading, course, and speeds

Syntax

[windfrom, windspeed] = driftvel (course,groundspeed, heading, airspeed)

Description

[windfrom,windspeed] = driftvel (course,groundspeed,heading,airspeed) computes the wind (for aircraft) or current (for watercraft) from course, heading, and speeds. course and groundspeed are the direction and speed of movement relative to the ground (in degrees), heading is the direction in which the vehicle is steered, and airspeed is the speed of the vehicle relative to the air mass or water. The output windfrom is the direction facing into the wind or current (in degrees), and windspeed is the speed of the wind or current (in the same units as airspeed and groundspeed).

Examples

An aircraft is cruising at a true air speed of 160 knots and a heading of 10 degrees. From the Global Positioning System (GPS) receiver, the pilot determines that the aircraft is progressing over the ground at 155 knots in a northerly direction. What is the wind aloft?

```
course = 0; groundspeed = 155; heading = 10; airspeed = 160;
[windfrom,windspeed] =
driftvel(course,groundspeed,heading,airspeed)
windfrom =
    84.717
windspeed =
    27.902
```

The wind is blowing from the right, 085 degrees at 28 knots.

See Also

driftcorr

Introduced before R2006a

dted

(To be removed) Read U.S. Department of Defense Digital Terrain Elevation Data (DTED)

Note dted will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

Syntax

[Z, refvec] = dted
[Z, refvec] = dted(filename)
[Z, refvec] = dted(filename, samplefactor)
[Z, refvec] = dted(filename, samplefactor, latlim, lonlim)
[Z, refvec] = dted(foldername, samplefactor, latlim, lonlim)
[Z, refvec, UHL, DSI, ACC] = dted(...)

Description

$[Z$, refvec $]=$ dted returns all of the elevation data in a DTED file as a regular data grid, Z, with elevations in meters. The file is selected interactively. This function reads the DTED elevation files, which generally have file names ending in . dtN , where N is $0,1,2,3, \ldots$ refvec is the associated threeelement referencing vector that geolocates Z.
[Z, refvec] = dted(filename) returns all of the elevation data in the specified DTED file. The file must be found on the MATLAB path. If not found, the file may be selected interactively.
[Z, refvec] = dted(filename, samplefactor) subsamples data from the specified DTED file. samplefactor is a scalar integer. When samplefactor is 1 (the default), DTED reads the data at its full resolution. When samplefactor is an integer n greater than one, every nth point is read.
[Z, refvec] = dted(filename, samplefactor, latlim, lonlim) reads the data for the part of the DTED file within the latitude and longitude limits. The limits must be two-element vectors in units of degrees.
[Z, refvec] = dted(foldername, samplefactor, latlim, lonlim) reads and concatenates data from multiple files within a DTED CD-ROM or folder structure. The foldername input is a string scalar or character vector with the name of a folder containing the DTED folder.
Within the DTED folder are subfolders for each degree of longitude, each of which contain files for each degree of latitude. For DTED CD-ROMs, foldername is the device name of the CD-ROM drive.
[Z, refvec, UHL, DSI, ACC] = dted (...) returns structures containing the DTED User Header Label (UHL), Data Set Identification (DSI) and Accuracy metadata records.

Background

The U. S. Department of Defense, through the National Geospatial Intelligence Agency, produces several kinds of digital cartographic data. One is digital elevation data, in a series called DTED, for Defense Digital Terrain Elevation Data. The data is available as 1-by-1 degree quadrangles at horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution data is
available to the public. Certain higher resolution data is restricted to the U.S. Department of Defense and its contractors.

DTED Level 0 files have 121-by-121 points. DTED Level 1 files have 1201-by-1201. The edges of adjacent tiles have redundant records. Maps extend a half a cell outside the requested map limits. The 1 kilometer data and some higher-resolution data is available online, as are product specifications and documentation. DTED files are binary. No line ending conversion or byte-swapping is required when downloading a DTED file.

Examples

Read and Display DTED Data

Read and display DTED data for an area around South Boulder Peak in Colorado.
First, import the elevation data. Replace unused output arguments with a tilde character () .
Associate the elevation data with geographic locations by creating a geographic postings reference object. To create a reference object, specify the latitude limits, longitude limits, and size of the elevation data grid.

```
[Z,~] = dted('n39_w106_3arc_v2.dt1');
latlim = [39 40];
lonlim = [-106 -105];
R = georefpostings(latlim,lonlim,size(Z));
```

Create a set of map axes, then plot the data using geoshow. Display a colormap appropriate for elevation data using demcmap.

```
usamap(latlim,lonlim);
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)
```


The DTED file used in this example is courtesy of the US Geological Survey.

Tips

Latitude-Dependent Sampling

In DTED files north of 50° North and south of 50° South, where the meridians have converged significantly relative to the equator, the longitude sampling interval is reduced to half of the latitude sampling interval. In order to retain square output cells, this function reduces the latitude sampling to match the longitude sampling. For example, it will return a 121-by-121 elevation grid for a DTED file covering from 49 to 50 degrees north, but a 61 -by- 61 grid for a file covering from 50 to 51 degrees north. When you supply a folder name instead of a file name, and lat lim spans either 50° North or 50° South, an error results.

Snapping Latitude and Longitude Limits

If you call dted specifying arbitrary latitude-longitude limits for a region of interest, the grid and referencing vector returned will not exactly honor the limits you specified unless they fall precisely on grid cell boundaries. Because grid cells are discrete and cannot be arbitrarily divided, the data grid returned will include all areas between your latitude-longitude limits and the next row or column of cells, potentially in all four directions.

Data Sources and Information

DTED files contain digital elevation maps covering 1-by-1-degree quadrangles at horizontal resolutions ranging from about 1 kilometer to 1 meter. For details on locating DTED for download over the Internet, see "Find Geospatial Data Online".

Null Data Values

Some DTED Level 1 and higher data tiles contain null data cells, coded with value -32767. When encountered, these null data values are converted to NaN .

Nonconforming Data Encoding

DTED files from some sources may depart from the specification by using two's complement encoding for binary elevation files instead of "sign-bit" encoding. This difference affects the decoding of negative values, and incorrect decoding usually leads to nonsensical elevations.

Thus, if the DTED function determines that all the (nonnull) negative values in a file would otherwise be less than -12,000 meters, it issues a warning and assumes two's complement encoding.

Compatibility Considerations

dted will be removed

Not recommended starting in R2020a
Raster reading functions that return referencing vectors will be removed, including dted. Instead, use readgeoraster, which returns a geographic postings reference object. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicPostingsReference.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as input also accept reference objects.

Get metadata about DTED files by accessing properties of the reference object or by using the georasterinfo function.

This table shows some typical usages of dted and how to update your code to use readgeoraster and georasterinfo. The readgeoraster function requires you to specify a file extension. For example, use $[Z, R]=$ readgeoraster('n39_w106_3arc_v2.dt1').

Will Be Removed	Recommended
$[Z$, refvec $]=$ dted(filename);	$[Z, R]=$ readgeoraster(filename);
$[Z$, refvec $]=$ dted(filename, samplefactor);	$[Z, R]=$ readgeoraster(filename); $[Z, R]=$ georesize(Z,R,1/samplefactor) ;

Will Be Removed	Recommended
[Z,refvec] = dted(filename,samplefactor,lat	```【Z \(\mathrm{n} R \mathrm{R}\) Пo円lineдdgeoraster(filename) ; \([Z, R]=\) geocrop(Z,R,latlim,lonlim); \([Z, R]=\) georesize(Z,R,1/samplefactor);```
[Z, refvec, UHL, DSI, ACC] = dted(filename);	$\begin{aligned} & {[\mathrm{Z}, \mathrm{R}]=\text { readgeoraster(filename); }} \\ & \text { info = georasterinfo(filename); } \\ & \text { meta }=\text { info.Metadata; } \end{aligned}$

The readgeo raster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use [Z,R] = readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```

Reading and concatenating multiple DTED files from a folder using the readgeoraster function is not supported. Find the standard names of the DTED files required to cover a region by using the dteds function. Then read the individual files by using the readgeoraster function. For information about concatenating raster tiles, see "Mosaic Spatially Referenced Raster Tiles".

See Also

readgeoraster|georasterinfo|dteds
Introduced before R2006a

dteds

DTED file names for latitude-longitude quadrangle

Syntax

```
fname = dteds(latlim,lonlim)
fname = dteds(latlim,lonlim,level)
```


Description

fname = dteds(latlim,lonlim) returns Level 0 DTED file names (folder and name) required to cover the geographic region specified by latlim and lonlim. This function constructs the file names for a given geographic region based on the file-naming convention established by the Defense Digital Terrain Elevation Data (DTED) database.
fname $=$ dteds(latlim,lonlim,level) controls the level for which the file names are generated. Valid inputs for the level of the DTED files include 0,1 , or 2 .

Background

The U. S. Department of Defense produces several kinds of digital cartographic data. One is digital elevation data, in a series called DTED, for Defense Digital Terrain Elevation Data. The data is available as 1 -by-1 degree quadrangles at horizontal resolutions ranging from about 1 kilometer to 1 meter. The lowest resolution data is available to the public. Higher resolution data is restricted to the U.S. Department of Defense and its contractors.

Determining the files needed to cover a particular region requires knowledge of the DTED database naming conventions. This function constructs the file names for a given geographic region based on these conventions.

Examples

Which files are needed for Cape Cod?

```
latlim = [ 41.15 42.22];
lonlim = [-70.94 -69.68];
dteds(latlim,lonlim,1)
ans =
    4×1 cell array
    {'dted\w071\n41.dt1'}
    {'dted\w070\n41.dt1'}
    {'dted\w071\n42.dt1'}
    {'dted\w070\n42.dt1'}
```


See Also

readgeoraster

Introduced before R2006a

earthRadius

Mean radius of planet Earth

Syntax

R = earthRadius
R = earthRadius(lengthUnit)

Description

$R=$ earthRadius returns the scalar value 6,371,000, the mean radius of the Earth in meters.
$\mathrm{R}=$ earthRadius(lengthUnit) returns the mean radius of the Earth using the length unit specified by lengthUnit.

Examples

Earth Radius in Meters

View the mean radius of the Earth using the default units, meters.

```
earthRadius
```

ans $=6371000$

Earth Radius in Specified Units

View the mean radius of the Earth, specifying the units as kilometers.

```
earthRadius("km")
ans = 6371
```


Input Arguments

lengthUnit - Length unit of measure

'meter' (default) | string scalar | character vector
Length unit of measure, specified as a string scalar or character vector. You can specify any length unit accepted by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre", "metres"	Meters

Value	Unit Name
"cm", "centimeter", "centimeters", "centimetre", "centimetres"	Centimeters
"mm", "millimeter", "millimeters", "millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers", "kilometre", "kilometers"	Kilometers
"nm", "naut mi", "nautical mile", "nautical miles"	Nautical miles
"ft", "international ft", "foot", "international foot", "feet", "international feet"	Feet
"in", "inch", "inches"	Inches
"yd", "yds", "yard", "yards"	Yards
```"mi", "mile", "miles", "international mile","international miles"```	Miles
"sf", "survey ft", "US survey ft", "U.S. survey ft", "survey foot", "US survey foot", "U.S. survey foot", "survey feet", "US survey feet","U.S. survey feet"	U.S. survey feet
"sm", "survey mile", "survey miles", "statute mile", "statute miles", "US survey mile", "US survey miles", "U.S. survey mile(s)", "U.S. survey miles"	U.S. survey miles (statute miles)
"Clarke's foot", "Clarkes foot"	Clarke's feet
"German legal metre", "German legal meter"	German legal metres
"Indian foot"	Indian feet

Data Types: char | string

## See Also

unitsratio|validateLengthUnit

## Introduced in R2010b

## eastof

(Removed) Wrap longitudes to values east of specified meridian

Note The eastof function has been removed. Use the mod function instead. For more information, see "Compatibility Considerations".

## Syntax

lonWrapped = eastof(lon,meridian)
lonWrapped = eastof(lon,meridian,angleunits)

## Description

lonWrapped $=$ eastof(lon,meridian) wraps angles in lon to values in the interval [meridian meridian+360). lon is a scalar longitude or vector of longitude values. All inputs and outputs are in degrees.
lonWrapped = eastof(lon,meridian, angleunits) where the character vector angleunits specifies the input and output units. angleunits can be either 'degrees' or 'radians'. It may be abbreviated and is case-insensitive. If angleunits is 'radians', the input is wrapped to the interval [meridian meridian+2*pi).

## Compatibility Considerations

## eastof has been removed

Errors starting in R2022a
The eastof function has been removed. Use the mod function instead. You can update your code using these replacement patterns.

Has Been Removed	Recommended
eastof(lon,meridian, 'degrees' )	meridian+mod(lon-meridian,360)
eastof(lon,meridian, 'radians')	meridian+mod(lon-meridian,2*pi)

## See Also

mod
Introduced before R2006a

## ecc2flat

Flattening of ellipse from eccentricity

## Syntax

$\mathrm{f}=\mathrm{ecc} 2 \mathrm{flat}(\mathrm{ecc})$

## Description

$f=e c c 2 f l a t(e c c)$ computes the flattening $f$ of an ellipse or an ellipsoid of revolution given its eccentricity ecc.

## Examples

Flattening of Ellipse from Eccentricity
Find the flattening of an ellipse from the eccentricity.
$\mathrm{f}=\mathrm{ecc} 2 \mathrm{flat}(0.0818)$
$f=0.0034$

## Input Arguments

ecc - Eccentricity of ellipse
numeric scalar
Eccentricity of the ellipse, specified as a numeric scalar. The value of ecc must be in the range $[0,1]$.
Data Types: single | double

## Output Arguments

f - Flattening
numeric scalar
Flattening, returned as a numeric scalar.

## Compatibility Considerations

Only numeric scalars will be accepted as input
Not recommended starting in R2013b
The ecc2flat function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

## See Also

ecc2n|flat2ecc|majaxis|minaxis

Introduced before R2006a

## ecc2n

Third flattening of ellipse from eccentricity

## Syntax

$\mathrm{n}=\mathrm{ecc} 2 \mathrm{n}(\mathrm{ecc})$

## Description

$n=\operatorname{ecc} 2 n(e c c)$ computes the third flattening $n$ of an ellipse or an ellipsoid of revolution given its eccentricity ecc.

## Examples

## Third Flattening of Ellipse from Eccentricity

Find the third flattening of an ellipse from the eccentricity.
$\mathrm{n}=\mathrm{ecc} 2 \mathrm{n}(0.0818)$
$n=0.0017$

## Input Arguments

## ecc - Eccentricity of ellipse

numeric scalar
Eccentricity of the ellipse, specified as a numeric scalar. The value of ecc must be in the range [0, 1].
Data Types: single | double

## Output Arguments

## n - Third flattening of ellipse

numeric scalar
Third flattening of the ellipse, returned as a numeric scalar. The output n is defined as $(a-b) /(a+b)$, where $a$ is the semimajor axis and $b$ is the semiminor axis.

## Compatibility Considerations

Only numeric scalars will be accepted as input
Not recommended starting in R2013b
The ecc2n function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

## See Also

ecc2flat|majaxis|minaxis|n2ecc
Introduced before R2006a

## ecef2aer

Transform geocentric Earth-centered Earth-fixed coordinates to local spherical

## Syntax

```
[az,elev,slantRange] = ecef2aer(X,Y,Z,lat0,lon0,h0,spheroid)
```

$\qquad$

``` ] = ecef2aer(
``` \(\qquad\)
``` , angleUnit)
```


## Description

[az,elev,slantRange] = ecef2aer(X,Y,Z,lat0,lon0,h0,spheroid) transforms the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z to the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange. Specify the origin of the local AER system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = ecef2aer(__ , , angleUnit) specifies the units for latitude, longitude, azimuth, and elevation. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate AER Coordinates from ECEF Coordinates

Find the AER coordinates of a satellite with respect to a satellite dish, using the ECEF coordinates of the satellite and the geodetic coordinates of the satellite dish.

First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height, slant range, and ECEF coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometers');
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the satellite dish. Specify h0 as ellipsoidal height in kilometers.

```
lat0 = 42.3221;
lon0 = -71.3576;
h0 = 0.0847;
```

Specify the ECEF coordinates of the point of interest. In this example, the point of interest is the satellite.
$x=10766.0803 ;$
$y=14143.6070 ;$
z = 33992.3880;
Then, calculate the AER coordinates of the satellite with respect to the satellite dish. In this example, slantRange displays in scientific notation.

```
[az,elev,slantRange] = ecef2aer(x,y,z,lat0,lon0,h0,wgs84)
az = 24.8012
elev = 14.6185
slantRange = 3.6272e+04
```

Reverse the transformation using the aer2ecef function. In this example, the results display in scientific notation.

```
[x,y,z] = aer2ecef(az,elev,slantRange,lat0,lon0,h0,wgs84)
x = 1.0766e+04
y = 1.4144e+04
z = 3.3992e+04
```


## Input Arguments

## X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single|double

## Y - ECEF y-coordinates

scalar | vector | matrix | N-D array
ECEF y-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single|double

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single |double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double
spheroid - Reference spheroid
referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N -D array. Azimuths are measured clockwise from north. Values are specified in degrees within the half-open interval [0360). To use values in radians, specify the angleUnit argument as 'radians '.

## elev - Elevation angles

scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N -D array. Elevations are measured with respect to a plane that is perpendicular to the normal of the spheroid surface. If the local origin is on the surface of the spheroid ( $\mathrm{h} 0=0$ ), then the plane is tangent to the spheroid.

Values are specified in degrees within the closed interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

## slantRange - Distances from local origin

scalar | vector | matrix | N-D array
Distances from the local origin, returned as a scalar, vector, matrix, or N-D array. Each distance is calculated along a straight, 3-D, Cartesian line. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

ecef2enu | ecef2ned | aer2ecef | geodetic2aer

## Topics

"Choose a 3-D Coordinate System"

Introduced in R2012b

## ecef2enu

Transform geocentric Earth-centered Earth-fixed coordinates to local east-north-up

## Syntax

```
[xEast,yNorth,zUp] = ecef2enu(X,Y,Z,lat0,lon0,h0,spheroid)
```

[ $\qquad$ ] = ecef2enu( $\qquad$ , angleUnit)

## Description

[xEast,yNorth,zUp] = ecef2enu(X,Y,Z,lat0,lon0,h0,spheroid) transforms the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z to the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zUp. Specify the origin of the local ENU system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = ecef2enu( ___ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate ENU Coordinates from ECEF Coordinates

Find the ENU coordinates of orbital debris with respect to a satellite, using the ECEF coordinates of the debris and the geodetic coordinates of the satellite.

First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height, ECEF coordinates, and ENU coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometer');
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the satellite. Specify h0 as ellipsoidal height in kilometers.

```
lat0 = 45.9132;
lon0 = 36.7484;
h0 = 1877.7532;
```

Specify the ECEF coordinates of the point of interest. In this example, the point of interest is the orbital debris.

```
x = 5507.5289;
y = 4556.2241;
z = 6012.8208;
```

Then, calculate the ENU coordinates of the debris with respect to the satellite. In this example, zUp displays in scientific notation.

```
[xEast,yNorth,zUp] = ecef2enu(x,y,z,lat0,lon0,h0,wgs84)
xEast = 355.6013
yNorth = -923.0832
zUp = 1.0410e+03
```

Reverse the transformation using the enu2ecef function. In this example, the results display in scientific notation.

```
[x,y,z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0,wgs84)
x = 5.5075e+03
y = 4.5562e+03
z = 6.0128e+03
```


## Input Arguments

## X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single|double

## Y - ECEF y-coordinates

scalar | vector | matrix | N-D array
ECEF y-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single|double

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Data Types: single|double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

Data Types: single | double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid <br> referenceEllipsoid object | oblateSpheroid object | referenceSphere object

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians '
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU $x$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU $y$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument.

For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## zUp - ENU z-coordinates

scalar | vector | matrix | N-D array
ENU $z$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Tips

To transform vectors instead of coordinate locations, use the ecef2enuv function.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

## See Also

ecef2ned | ecef2aer \| enu2ecef | geodetic2enu

## Topics

"Choose a 3-D Coordinate System"
Introduced in R2012b

## ecef2enuv

Rotate geocentric Earth-centered Earth-fixed vector to local east-north-up

## Syntax

[uEast, vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0)
$\qquad$ ] = ecef2enuv( $\qquad$ , angleUnit)

## Description

[uEast, vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0) returns vector components uEast, vNorth, and wUp in a local east-north-up (ENU) system corresponding to vector components $\mathrm{U}, \mathrm{V}$, and $W$ in a geocentric Earth-centered Earth-fixed (ECEF) system. Specify the origin of the system with the geodetic coordinates lat0 and lon0. Each coordinate input argument must match the others in size or be scalar.
[___] = ecef2enuv (__ , , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate ENU Vector Components from ECEF Components

Find the ENU velocity components of a ground vehicle using its ECEF velocity components.
Specify the geodetic coordinates of the vehicle in degrees and the ECEF velocity components in kilometers per hour.

```
lat0 = 17.4114;
lon0 = 78.2700;
U = 27.9799;
V = -1.0990;
W = - 15.7723;
```

Calculate the ENU components of the vehicle. The units for the ENU components match the units for the ECEF components. Thus, the ENU components are returned in kilometers per hour. The rotation performed by ecef2enuv does not affect the speed of the vehicle.

```
[uEast,vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0)
uEast = - 27.6190
vNorth = -16.4298
wUp = -0.3186
```

Reverse the rotation using the enu2ecefv function.

```
[U,V,W] = enu2ecefv(uEast,vNorth,wUp,lat0,lon0)
```

$U=27.9799$
$\mathrm{V}=-1.0990$
$W=-15.7723$

## Input Arguments

U - ECEF x-components
scalar value | vector | matrix | N-D array
ECEF $x$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double
V - ECEF y-components
scalar value | vector | matrix | N-D array
ECEF $y$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

## W - ECEF z-components

scalar value | vector | matrix | N-D array
ECEF $z$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

```
Data Types: single | double
```

angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees' (the default) or 'radians '.

## Output Arguments

## uEast - ENU x-components

scalar value | vector | matrix | N-D array

ENU $x$-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $\mathrm{U}, \mathrm{V}$, and W .

## vNorth - ENU y-components

scalar value | vector | matrix | N-D array
ENU $y$-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $\mathrm{U}, \mathrm{V}$, and W .

## wUp - ENU z-components

scalar value | vector | matrix | N-D array
ENU $z$-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $\mathrm{U}, \mathrm{V}$, and W .

## Tips

To transform coordinate locations instead of vectors, use the ecef2enu function.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

## Functions

enu2ecefv | ecef2nedv | ned2ecefv

## Topics

"Vectors in 3-D Coordinate Systems"

## Introduced in R2012b

## ecef2geodetic

Transform geocentric Earth-centered Earth-fixed coordinates to geodetic

## Syntax

[lat,lon,h] = ecef2geodetic(spheroid, X,Y,Z)
[lat,lon,h] = ecef2geodetic( ___, angleUnit)
[lat,lon,h] = ecef2geodetic(X,Y,Z,spheroid)

## Description

[lat,lon,h] = ecef2geodetic(spheroid, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) transforms the geocentric Earth-Centered Earth-Fixed (ECEF) Cartesian coordinates specified by $X, Y$, and $Z$ to the geodetic coordinates specified by lat, lon, and h. Specify spheroid as the reference spheroid for the geodetic coordinates.
[lat,lon,h] = ecef2geodetic(__ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.
[lat,lon,h] = ecef2geodetic(X,Y,Z,spheroid) is supported but not recommended. Unlike the previous syntaxes, this syntax returns lat and lon in radians. Specify spheroid as either a reference spheroid or an ellipsoid vector of the form [semimajor_axis, eccentricity]. Specify $\mathrm{X}, \mathrm{Y}$, and Z in the same units as the length unit of the spheroid argument. Additionally, the output h returns in the same units as the length unit of the spheroid argument.

## Examples

## Calculate Geodetic Coordinates from ECEF Coordinates

Find the geodetic coordinates of Paris, France, using its ECEF coordinates.
First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ECEF coordinates and ellipsoidal height must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometer');
```

Specify the ECEF coordinates of Paris in kilometers.

$$
\begin{aligned}
& x=4201 ; \\
& y=172.46 ; \\
& z=4780.1
\end{aligned}
$$

Then, calculate the geodetic coordinates of Paris. The result h is ellipsoidal height in kilometers.

```
[lat,lon,h] = ecef2geodetic(wgs84,x,y,z)
lat = 48.8562
```

lon $=2.3508$
$h=0.0674$
Reverse the transformation using the geodetic2ecef function. In this example, $x$ and $z$ display in scientific notation.

```
[x,y,z] = geodetic2ecef(wgs84,lat,lon,h)
x = 4.2010e+03
y = 172.4600
z = 4.7801e+03
```


## Input Arguments

## spheroid - Reference spheroid

referenceEllipsoid object|oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## Y - ECEF $\boldsymbol{y}$-coordinates

scalar | vector | matrix | N-D array
ECEF $y$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## angleUnit - Angle units

'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

## Lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-180 180]. To use values in radians, specify the angleUnit argument as 'radians'.
h - Ellipsoidal height
scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

## Tips

- The geocentric Cartesian (ECEF) coordinate system is fixed with respect to the Earth, with its origin at the center of the spheroid and its positive X -, $\mathrm{Y}-$, and Z axes intersecting the surface at the following points:

	Latitude	Longitude	Notes
X-axis	0	0	Equator at the Prime Meridian
Y-axis	0	90	Equator at 90-degrees East
Z-axis	90	0	North Pole

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

geodetic2ecef|ecef0ffset|ecef2aer|ecef2ned|ecef2enu

## Topics

"Choose a 3-D Coordinate System"

Introduced in R2012b

## ecef2lv

(To be removed) Convert geocentric (ECEF) to local vertical coordinates

Note The ecef2lv function will be removed in a future release. Use the ecef2enu function instead. By default, the ecef2enu function assumes that the latitude and longitude of the local origin are in degrees. When you update your code, you can specify the angleUnit input argument as 'radians '.

## Syntax

$[x l, y l, z l]=\operatorname{ecef2lv(x,y,z,phi0,lambda0,h0,ellipsoid)}$

## Description

[xl,yl,zl] = ecef2lv(x,y,z,phi0,lambda0,h0,ellipsoid) converts geocentric point locations specified by the coordinate arrays $x, y$, and $z$ to the local vertical coordinate system, with its origin at geodetic latitude phi0, longitude lambda0, and ellipsoidal height h0. The arrays $\mathrm{x}, \mathrm{y}$, and $z$ may be of any shape, as long as they all match in size. phi0, lambda0, and h0 must be scalars. ellipsoid is a referenceEllipsoid (oblateSpheroid) object, a referenceSphere object, or a vector of the form [semimajor axis, eccentricity]). $x, y, z$, and h0 must have the same length units as the semimajor axis. phi0 and lambda0 must be in radians. The output coordinate arrays, $x l, y l$, and $z l$ are the local vertical coordinates of the input points. They have the same size as $x, y$, and $z$ and have the same length units as the semimajor axis.

In the local vertical Cartesian system defined by phi0, lambda0, h0, and ellipsoid, the xl axis is parallel to the plane tangent to the ellipsoid at (phi0,lambda0) and points due east. The yl axis is parallel to the same plane and points due north. The $z l$ axis is normal to the ellipsoid at (phi0,lambda0) and points outward into space. The local vertical system is sometimes referred to as east-north-up or ENU.

## More About

## Local Vertical System

In the local vertical Cartesian system defined by phi0, lambda0, h0, and ellipsoid, the xl axis is parallel to the plane tangent to the ellipsoid at (phi0,lambda0) and points due east. The $y l$ axis is parallel to the same plane and points due north. The $z l$ axis is normal to the ellipsoid at (phi0,lambda0) and points outward into space. The local vertical system is sometimes referred to as East-North-Up or ENU.

## Geocentric System

The geocentric Cartesian coordinate system, also known as Earth-Centered, Earth-Fixed (ECEF), is fixed with respect to the Earth, with its origin at the center of the spheroid and its positive X -, Y -, and Z axes intersecting the surface at the following points:

	Latitude	Longitude	Notes
X-axis	0	0	Equator at the Prime Meridian


	Latitude	Longitude	Notes
Y-axis	0	90	Equator at 90-degrees East
Z-axis	90	0	North Pole

## See Also

ecef2enu | enu2ecef
Introduced before R2006a

## ecef2ned

Transform geocentric Earth-centered Earth-fixed coordinates to local north-east-down

## Syntax

[xNorth,yEast,zDown] = ecef2ned (X,Y,Z,lat0,lon0,h0,spheroid)
[___] = ecef2ned(__, angleUnit)

## Description

[xNorth,yEast,zDown] = ecef2ned (X,Y,Z, lat0,lon0, h0, spheroid) transforms the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z to the local north-east-down (NED) Cartesian coordinates specified by xNorth, yEast, and zDown. Specify the origin of the local NED system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
$\qquad$ ] = ecef2ned (___ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate NED Coordinates from ECEF Coordinates

Find the NED coordinates of Mount Mansfield with respect to a nearby aircraft, using the ECEF coordinates of Mount Mansfield and the geodetic coordinates of the aircraft.

First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height, ECEF coordinates, and NED coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometer');
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the aircraft. Specify h0 as ellipsoidal height in kilometers.

```
lat0 = 44.532;
lon0 = -72.782;
h0 = 1.699;
```

Specify the ECEF coordinates of the point of interest. In this example, the point of interest is Mount Mansfield.

```
x = 1345.660;
y = -4350.891;
z = 4452.314;
```

Then, calculate the NED coordinates of Mount Mansfield with respect to the aircraft. Since the ellipsoidal height of the aircraft is greater than the height of Mount Mansfield, a passenger needs to
look down to see the mountaintop. The $z$-axis of an NED coordinate system points down. Thus, the value of $z$ Down is positive.

```
[xNorth,yEast,zDown] = ecef2ned(x,y,z,lat0,lon0,h0,wgs84)
xNorth = 1.3343
yEast = -2.5444
zDown = 0.3600
```

Reverse the transformation using the ned2ecef function. In this example, the results display in scientific notation.

```
[x,y,z] = ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,wgs84)
x = 1.3457e+03
y = -4.3509e+03
z = 4.4523e+03
```


## Input Arguments

## X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## Y - ECEF $\boldsymbol{y}$-coordinates

scalar | vector | matrix | N-D array
ECEF $y$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array

Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

## Data Types: single | double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid <br> referenceEllipsoid object | oblateSpheroid object | referenceSphere object

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## angleUnit - Angle units

'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## xNorth - NED x-coordinates

scalar | vector | matrix | N-D array
NED $x$-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## yEast - NED y-coordinates

scalar | vector | matrix | N-D array

NED y-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## zDown - NED z-coordinates

scalar | vector | matrix | N-D array
NED $z$-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Tips

To transform vectors instead of coordinate locations, use the ecef2nedv function.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

ecef2enu | ecef2aer | ned2ecef | geodetic2ned

## Topics

"Choose a 3-D Coordinate System"
Introduced in R2012b

## ecef2nedv

Rotate geocentric Earth-centered Earth-fixed vector to local north-east-down

## Syntax

[uNorth,vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0)
$\qquad$ ] = ecef2nedv( $\qquad$ , angleUnit)

## Description

[uNorth, vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0) returns vector components uNorth, vEast, and wDown in a local north-east-down (NED) system corresponding to vector components $\mathrm{U}, \mathrm{V}$, and $W$ in a geocentric Earth-centered Earth-fixed (ECEF) system. Specify the origin of the system with the geodetic coordinates lat0 and lon0. Each coordinate input argument must match the others in size or be scalar.
[___] = ecef2nedv (__, angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate NED Vector Components from ECEF Components

Find the NED velocity components of an aircraft using its ECEF components.
Specify the geodetic coordinates of the aircraft in degrees and the ECEF velocity components in kilometers per hour.

```
lat0 = 61.64;
lon0 = 30.70;
U = 530.2445;
V = 492.1283;
W = 396.3459;
```

Calculate the NED components of the aircraft. The units for the NED components match the units for the ECEF components. Thus, the NED components are returned in kilometers per hour. The negative value of wDown means the aircraft is ascending.

```
[uNorth,vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0)
uNorth = -434.0403
vEast = 152.4451
wDown = -684.6964
```

Reverse the rotation using the ned2ecefv function.

```
[U,V,W] = ned2ecefv(uNorth,vEast,wDown,lat0,lon0)
```

$U=530.2445$
$V=492.1283$
$W=396.3459$

## Input Arguments

U - ECEF x-components
scalar value | vector | matrix | N-D array
ECEF $x$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single |double
V - ECEF y-components
scalar value | vector | matrix | N-D array
ECEF y-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

## W - ECEF z-components

scalar value | vector | matrix | N-D array
ECEF $z$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

```
Data Types: single | double
```

angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees' (the default) or 'radians '.

## Output Arguments

## uNorth - NED x-components

scalar value | vector | matrix | N-D array

NED $x$-components of one or more vectors in the local NED system, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $\mathrm{U}, \mathrm{V}$, and W .

## vEast - NED y-components

scalar value | vector | matrix | N-D array
NED $y$-components of one or more vectors in the local NED system, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $U, V$, and $W$.

## wDown - NED $\boldsymbol{z}$-components

scalar value | vector | matrix | N-D array
NED $z$-components of one or more vectors in the local NED system, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by $\mathrm{U}, \mathrm{V}$, and W .

## Tips

To transform coordinate locations instead of vectors, use the ecef2ned function.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

ecef2enuv | ned2ecefv \| enu2ecefv
Topics
"Vectors in 3-D Coordinate Systems"
Introduced in R2012b

## ecefOffset

Cartesian ECEF offset between geodetic coordinates

## Syntax

[deltaX,deltaY,deltaZ] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
[] = ecefOffset $\qquad$ , angleUnit)

## Description

[deltaX,deltaY,deltaZ] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2) returns the Earth-Centered Earth-Fixed (ECEF) Cartesian offset between the geodetic coordinates specified by lat1, lon1, and h1 and the coordinates specified by lat2, lon2, and h2. Specify spheroid as the reference spheroid for the geodetic coordinates.
[] = ecefOffset ( $\qquad$ , angleUnit), where angleUnit is 'radians', specifies the units for latitude and longitude as radians. If you do not specify an angle unit, then latitude and longitude are in degrees.

## Examples

## Calculate Cartesian ECEF Offset Between Geodetic Positions

Find the ECEF offset between Paris, France and Miami, Florida.
First, specify the reference spheroid as WGS 84. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height and offset vector must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.
wgs84 = wgs84Ellipsoid;
Specify the geodetic coordinates of Paris and Miami. Specify hParis and hMiami as ellipsoidal height in meters. The value of hMiami is negative because Miami is below the surface of the reference spheroid.

```
latParis = 48.8567;
lonParis = 2.3508;
hParis = 80;
latMiami = 25.7753;
lonMiami = -80.2089;
hMiami = -25;
```

Calculate the ECEF offset between the two geodetic positions. The values $d x, d y$, and $d z$ are specified in meters. For this example, the results display in scientific notation.

```
[dx,dy,dz] = ecef0ffset(wgs84,latParis,lonParis,hParis,latMiami,lonMiami,hMiami)
dx = -3.2236e+06
```

```
dy = -5.8359e+06
dz = -2.0235e+06
```

Calculate the straight-line, 3-D Cartesian distance from Paris to Miami.

```
d = norm([dx dy dz])
```

$d=6.9674 \mathrm{e}+06$

## Input Arguments

## spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## lat - Geodetic latitude

scalar | vector
Geodetic latitude of one or more points, specified as a scalar or vector. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## Lon - Geodetic longitude

scalar | vector
Geodetic longitude of one or more points, specified as a scalar or vector. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## h - Ellipsoidal height

scalar | vector
Ellipsoidal height of one or more points, specified as a scalar or vector. Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64
angleUnit - Units of the latitude and longitude coordinates
'degrees' | 'radians'
Units of the latitude and longitude coordinates, specified as 'degrees' or 'radians '.
Data Types: char

## Output Arguments

## deltaX - ECEF offset in $x$-axis direction

scalar | vector
ECEF offset in the $x$-axis direction, returned as a scalar or vector. Units are specified by the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## deltaY - ECEF offset in $\boldsymbol{y}$-axis direction

scalar | vector
ECEF offset in the $y$-axis direction, returned as a scalar or vector. Units are specified by the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## deltaZ - ECEF offset in z-axis direction

scalar | vector
ECEF offset in the $z$-axis direction, returned as a scalar or vector. Units are specified by the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

## See Also

geodetic2ecef|ecef2geodetic|oblateSpheroid|referenceEllipsoid| referenceSphere

Introduced in R2012b

## egm96geoid

Geoid height from Earth Gravitational Model 1996 (EGM96)

Note Syntaxes of the egm96geoid function that return referencing vectors will be removed in a future release. Use a syntax that returns a reference object instead (requires R2020a or later). For more information, see "Compatibility Considerations".

## Syntax

N = egm96geoid(lat,lon)
$N=$ egm96geoid(R)
[ $N, g l o b a l R]=$ egm96geoid

## Description

$N=$ egm96geoid(lat,lon) returns the height in meters of the geoid at the specified latitude and longitude from the "Earth Gravitational Model of 1996 (EGM96)" on page 1-364. Specify latitude and longitude in degrees. (since R2019b)
$N=$ egm96geoid(R) returns geoid heights at the cell center or posting locations specified by the geographic postings reference or geographic cells reference object R. (since R2020a)
[ $\mathrm{N}, \mathrm{globalR}$ ] = egm96geoid returns geoid heights for the entire globe as a 721-by-1441 matrix spaced at 15-minute intervals with latitude limits [-90 90] and longitude limits [0 360]. The function also returns a geographic postings reference object that contains spatial referencing information for the geoid heights. (since R2020a)

## Examples

## Geoid Height from Latitude and Longitude

Find geoid heights from EGM96 by specifying latitude and longitude values in degrees. The result is returned in meters.

```
lat = 27.988056;
lon = 86.925278;
N = egm96geoid(lat,lon)
N = -28.7444
```


## Geoid Heights within Limits

View geoid heights from EGM96 for an area including Europe.
First, create a GeographicPostingsReference object. Specify the latitude and longitude limits of the area in degrees. Specify the raster size as the number of rows and columns for the grid of geoid
heights. Then, return the grid of geoid heights for the area by calling egm96geoid on the reference object.

```
latlim = [35 72];
lonlim = [-12 51];
rasterSize = [100 100];
R = georefpostings(latlim,lonlim,rasterSize);
N = egm96geoid(R);
```

Note that the size of N matches the raster size of R .

```
size(N)
ans = 1\times2
```

100100

Load coastline latitude and longitude data into the workspace. Then, plot the geoid height and coastline data on a set of map axes.

```
load coastlines
```

worldmap(latlim,lonlim)
geoshow(N,R,'DisplayType','surface')
geoshow(coastlat, coastlon,'Color','k')


## Geoid Heights for Entire Globe

View geoid heights from EGM96 for the entire globe.
First, return the geoid heights and a referencing object for the globe. The geoid heights are spaced at 15 -minute intervals. Load coastline latitude and longitude data into the workspace. Then, plot the geoid heights and coastline data on a set of map axes.

```
[N,R] = egm96geoid;
load coastlines
worldmap('World')
geoshow(N,R,'DisplayType','surface')
geoshow(coastlat,coastlon,'Color','k')
```



## Input Arguments

## lat - Latitude

scalar | vector | matrix
Latitude in degrees, specified as a scalar, vector, or matrix. The dimension of lat depends on the dimension of the geoid heights you want to find.

- To find a single geoid height, specify lat and lon as scalars.
- To find several geoid heights, specify lat and lon as vectors of the same length.
- To find a $p$-by- $q$ grid of geoid heights, specify lat and lon as $p$-by- $q$ matrices.

Data Types: single \| double

## Lon - Longitude

scalar | vector | matrix
Longitude in degrees, specified as a scalar, vector, or matrix. The dimension of lon depends on the dimension of the geoid heights you want to find.

- To find a single geoid height, specify lat and lon as scalars.
- To find several geoid heights, specify lat and lon as vectors of the same length.
- To find a $p$-by- $q$ grid of geoid heights, specify lat and lon as $p$-by- $q$ matrices.

Data Types: single|double

## R - Geographic reference

GeographicPostingsReference object | GeographicCellsReference object
Geographic reference, specified as a GeographicPostingsReference object or a
GeographicCellsReference object that contains geospatial referencing information for N . The RasterSize property of the geographic reference object determines the size of the data grid, size(N).

## Output Arguments

## N - Geoid height

scalar | vector | matrix
Geoid height in meters, returned as a scalar, vector, or matrix.
The size of $N$ depends on the syntax:

Syntax	Size of $\mathbf{N}$
$N=$ egm96geoid (lat, lon $)$	Size of lat and lon
$N=$ egm96geoid (R)	R.RasterSize
$[N$, globalR] $=$ egm96geoid	721-by-1441 matrix

Data Types: double

## globalR - Geographic reference

GeographicPostingsReference object
Geographic reference, returned as a GeographicPostingsReference object of size 721-by-1441 with latitude limits [-90 90] and longitude limits [0 360].

## More About

## Earth Gravitational Model of 1996 (EGM96)

The geoid is an equipotential surface of the Earth's gravity field that approximates global mean sea level. You can visualize the geoid as the surface of the ocean without effects such as weather, waves,
and land. The Earth Gravitational Model of 1996 (EGM96) is based on the ellipsoid specified by the World Geodetic System of 1984 (WGS84), so the egm96geoid function returns heights above or below the surface of the WGS84 ellipsoid.

## Compatibility Considerations

egm96geoid syntaxes that return referencing vectors will be removed
Warns starting in R2022a
Syntaxes of the egm96geoid function that return referencing vectors will be removed. Use a syntax that returns a geographic raster reference object instead. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows the syntaxes of the egm96geoid function that return referencing vectors and how to update your code to use syntaxes that return reference objects instead.

Will Be Removed	Recommended
[ $\mathrm{N}, \mathrm{refvec]} \mathrm{=} \mathrm{egm96geoid(samplefactor)} \mathrm{;}$	```[~,globalR] = egm96geoid; latlim = globalR.LatitudeLimits; lonlim = globalR.LongitudeLimits; globalSize = globalR.RasterSize; rasterSize = 1 + ceil((globalSize - 1) / so R = georefpostings(latlim,lonlim,rasterSize) N = egm96geoid(R);```
[ $\mathrm{N}, \mathrm{refvec]} \mathrm{=} \mathrm{egm96geoid(samplefactor}$,	```[tangimbalR] = egm96geoid; spacing = samplefactor ... * globalR.SampleSpacingInLatitude; R = georefpostings(latlim,lonlim,spacing,sp N = egm96geoid(R);```

## See Also

## Functions

GeographicPostingsReference | GeographicCellsReference | geoshow| ndgrid

## Topics

"The Shape of the Earth"
"Find Ellipsoidal Height from Orthometric and Geoid Height"
"Georeferenced Raster Data"
Introduced before R2006a

## elevation

(To be removed) Local vertical elevation angle, range, and azimuth

Note The elevation function will be removed in a future release. Use the geodetic2aer function instead. For more information, see "Compatibility Considerations".

## Syntax

[elevationangle,slantrange, azimuthangle] = ... elevation(lat1,lon1,alt1,lat2,lon2,alt2)
[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,... angleunits)
[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,... angleunits,distanceunits)
[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,... angleunits,ellipsoid)

## Description

[elevationangle,slantrange, azimuthangle] = ...
elevation(lat1, lon1, alt1, lat2, lon2, alt2) computes the elevation angle, slant range, and azimuth angle of point 2 (with geodetic coordinates lat2, lon2, and alt2) as viewed from point 1 (with geodetic coordinates lat1, lon1, and alt1). The coordinates alt1 and alt2 are ellipsoidal heights. The elevation angle is the angle of the line of sight above the local horizontal at point 1 . The slant range is the three-dimensional Cartesian distance between point 1 and point 2. The azimuth is the angle from north to the projection of the line of sight on the local horizontal. Angles are in units of degrees; altitudes and distances are in meters. The figure of the earth is the default ellipsoid (GRS 80).

Inputs can be vectors of points, or arrays of any shape, but must match in size, with the following exception: Elevation, range, and azimuth from a single point to a set of points can be computed very efficiently by providing scalar coordinate inputs for point 1 and vectors or arrays for point 2.
[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits) where angleunits specifies the units of the input and output angles. If you omit angleunits, 'degrees' is assumed.
$[\ldots]=$ elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits, distanceunits) where distanceunits specifies the altitude and slant-range units. If you omit distanceunits, 'meters' is the default. Any units value recognized by unitsratio may be used.
[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits, ellipsoid) uses ellipsoid to specify the ellipsoid. ellipsoid is a
referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. If ellipsoid is supplied, the altitudes must be in the same units as the semimajor axis, and the slant range will be returned in these units. If ellipsoid is omitted, the default is a unit sphere. Distances are in meters unless otherwise specified.

Note The line-of-sight azimuth angles returned by elevation will generally differ slightly from the corresponding outputs of azimuth and distance, except for great circle azimuths on a spherical earth.

## Examples

Find the elevation angle of a point 90 degrees from an observer assuming that the observer and the target are both 1000 km above the Earth.

```
lat1 = 0; lon1 = 0; alt1 = 1000*1000;
lat2 = 0; lon2 = 90; alt2 = 1000*1000;
elevang = elevation(lat1,lon1,alt1,lat2,lon2,alt2)
elevang =
 -45
```

Visually check the result using the los2 line of sight function. Construct a data grid of zeros to represent the Earth's surface. The los2 function with no output arguments creates a figure displaying the geometry.

```
Z = zeros(180,360);
refvec = [1 90 -180];
los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt1);
```



## Compatibility Considerations

## elevation will be removed

Warns starting in R2022a
The elevation function will be removed in a future release. Use the geodetic2aer function instead.

The reference point comes second in the geodetic2aer argument list, and the outputs are ordered differently. The replacement pattern is:
[azimuthangle, elevationangle, slantrange] = geodetic2aer(lat2, lon2, alt2, lat1, lon1, alt1, spheroid, ...)

Unlike elevation, geodetic2aer requires a spheroid input, and it must be an oblateSpheroid, referenceEllipsoid, or referenceSphere object, not a 2-by-1 ellipsoid vector.

You can use the following steps to convert an ellipsoid vector, ellipsoid, to an oblateSpheroid object, spheroid:

- spheroid = oblateSpheroid;
- spheroid.SemimajorAxis = ellipsoid(1);
- spheroid.Eccentricity = ellipsoid(2);

When elevation is called with only 6 inputs, the GRS 80 reference ellipsoid, in meters, is used by default. To replace this usage, use referenceEllipsoid('GRS80', 'meters') as the spheroid input for geodetic2aer.

If an angleunits input is included, it must follow the spheroid input in the call to geodetic2aer, rather than preceding it.

You can specify the lengthunits parameter when calling elevation, but geodetic2aer has no such input. Instead, set the LengthUnit property of the input spheroid to the desired value. In this case a referenceEllipsoid or referenceSphere object must be used (not an oblateSpheroid object).

## See Also

geodetic2aer
Introduced before R2006a

## ellipse1

Geographic ellipse from center, semimajor axes, eccentricity, and azimuth

## Syntax

```
[lat,lon] = ellipsel(lat0,lon0,ellipse)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid)
[lat,lon] = ellipsel(___,angleUnit)
[lat,lon] = ellipsel(lat0,lon0,ellipse,offset,az,ellipsoid,angleUnit,npts)
[lat,lon] = ellipsel(trackStr,...)
mat = ellipsel(...)
```


## Description

[lat,lon] = ellipse1(lat0,lon0,ellipse) computes ellipse(s) with center(s) at lat0,lon0. The ellipse is defined by the third input, which is of the form [semimajor axis,eccentricity], where the eccentricity input can be a two-element row vector or a two-column matrix. The ellipse input must have the same number of rows as the input scalar or column vectors lat0 and lon0. The input semimajor axis is in degrees of arc length on a sphere. All ellipses are oriented so that their major axes run north-south.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset) computes the ellipse(s) where the major axis is rotated from due north by an azimuth offset. The offset angle is measured clockwise from due north. If offset $=[]$, then no offset is assumed.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az) uses the input az to define the ellipse arcs computed. The arc azimuths are measured clockwise from due north. If az is a column vector, then the arc length is computed from due north. If az is a two-column matrix, then the ellipse arcs are computed starting at the azimuth in the first column and ending at the azimuth in the second column. If az $=[]$, then a complete ellipse is computed.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid) computes the ellipse on the ellipsoid defined by the input ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. If omitted, the unit sphere, is assumed. When an ellipsoid is supplied, the input semimajor axis must be in the same units as the ellipsoid semimajor axes. In this calling form, the units of the ellipse semimajor axis are not assumed to be in degrees.
[lat,lon] = ellipsel( $\qquad$ , angleUnit) where angleUnit defines the units of the inputs and outputs. angleUnit can be 'degrees' or 'radians'. If you omit angleUnit, ellipsel uses 'degrees'.
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,angleUnit,npts) uses the scalar npts to determine the number of points per ellipse computed. If npts is omitted, 100 points are used.
[lat,lon] = ellipse1(trackStr,...) where trackStr specifies either great circle ('gc') or rhumb line ('rh') distances from the ellipse center.
mat $=$ ellipse1(...) returns a single output argument where mat $=$ [lat lon]. This is useful if only one ellipse is computed.

You can define multiple ellipses with a common center by providing scalar lat0 and lon0 inputs and a two-column ellipse matrix.

## Examples

Create and plot the small ellipse centered at ( $0^{\circ}, 0^{\circ}$ ), with a semimajor axis of $10^{\circ}$ and a semiminor axis of 5 .

```
axesm mercator
ecc = axes2ecc(10,5);
plotm(0,0,'r+')
[elat,elon] = ellipse1(0,0,[10 ecc],45);
plotm(elat,elon)
```

If the desired radius is known in some nonangular distance unit, use the radius returned by the earthRadius function as the ellipsoid input to set the range units. (Use an empty azimuth entry to specify a full ellipse.)

```
[elat,elon] = ellipse1(0,0,[550 ecc],45,[],earthRadius('nm'));
plotm(elat,elon,'m--')
```

For just an arc of the ellipse, enter an azimuth range:

```
[elat,elon] = ellipse1(0,0,[5 ecc],45,[-30 70]);
```

plotm(elat,elon,'c-')


## See Also

axes2ecc|scircle1|track1
Introduced before R2006a

## encodem

Fill in regular data grid from seed values and locations

## Syntax

newgrid = encodem( $Z$, seedmat)
newgrid $=$ encodem(Z,seedmat,stopvals)

## Description

newgrid = encodem( $Z$, seedmat) fills in regions of the input data grid, $Z$, with desired new values. The boundary consists of the edges of the matrix and any entries with the value 1 . The seeds, or starting points, and the values associated with them, are specified by the three-column matrix seedmat, the rows of which have the form [row column value].
newgrid $=$ encodem( $Z$, seedmat, stopvals) allows you to specify a vector, stopvals, of stopping values. Any value that is an element of stopvals will act as a boundary.

This function fills in regions of data grids with desired values. If a boundary exists, the new value replaces all entries in all four directions until the boundary is reached. The boundary is made up of selected stopping values and the edges of the matrix. The new value tries to flood the region exhaustively, stopping only when no new spaces can be reached by moving up, down, left, or right without hitting a stopping value.

## Examples

For this imaginary map, fill in the upper right region with 7 s and the lower left region with 3 s :

```
Z = eye(4)
Z =
\begin{tabular}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
newgrid = encodem(Z,[4,1,3; 1,4,7])
newgrid =
 1
 3
 3
```


## See Also

imbedm
Introduced before R2006a

## enu2aer

Transform local east-north-up coordinates to local spherical

## Syntax

[az,elev,slantRange] = enu2aer(xEast,yNorth,zUp)
[ ] = enu2aer( $\qquad$ , angleUnit)

## Description

[az,elev,slantRange] = enu2aer(xEast,yNorth,zUp) transforms the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zUp to the local azimuth-elevationrange (AER) spherical coordinates specified by az, elev, and slantRange. Both coordinate systems use the same local origin. Each input argument must match the others in size or be scalar.
[___] = enu2aer( __ , angleUnit) specifies the units for azimuth and elevation. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate AER Coordinates from ENU Coordinates

Find the AER coordinates of a ground vehicle with respect to a parking gate, using the ENU coordinates of the vehicle with respect to the same gate.

First, specify the ENU coordinates of the vehicle. For this example, specify the coordinates in meters.

```
xEast = 8.4504;
yNorth = 12.4737;
zUp = 1.1046; slant range is specified in meters.
```

```
[az,elev,slantRange] = enu2aer(xEast,yNorth,zUp)
```

[az,elev,slantRange] = enu2aer(xEast,yNorth,zUp)
az = 34.1160
az = 34.1160
elev = 4.1931
elev = 4.1931
slantRange = 15.1070

```
slantRange = 15.1070
```

Then, calculate the AER coordinates of the vehicle. The azimuth and elevation are specified in degrees. The units for the slant range match the units specified by the ENU coordinates. Thus, the

Reverse the transformation using the aer2enu function.

```
[xEast,yNorth,zUp] = aer2enu(az,elev,slantRange)
xEast = 8.4504
yNorth = 12.4737
zUp = 1.1046
```


## Input Arguments

## xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU $x$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double

## yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU $y$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double

## zUp - ENU z-coordinates

scalar value | vector | matrix | N-D array
ENU $z$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double
angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## az - Azimuth angles

scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Values are specified in degrees within the half-open interval [0360). To use values in radians, specify the angleUnit argument as 'radians '.

## elev - Elevation angles

scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N-D array. Elevations are calculated with respect to the xEast-yNorth plane that contains the local origin. If the local origin is on the surface of the spheroid, then the xEast-yNorth plane is tangent to the spheroid.

Values are specified in degrees within the closed interval [-90 90]. Positive elevations correspond to positive zUp values, and negative elevations correspond to negative zUp values. An elevation of 0 indicates that the point lies in the xEast-yNorth plane. To use values in radians, specify the angleUnit argument as 'radians'.

## slantRange - Distances from local origin

scalar | vector | matrix | N-D array
Distances from the local origin, returned as a scalar, vector, matrix, or N-D array. Each distance is calculated along a straight, 3-D, Cartesian line. Values are returned in the units specified by xEast, yNorth, and zUp.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{Tm}}$.

## See Also

aer2enu|ned2aer | enu2ecef | enu2geodetic

## Topics

"Choose a 3-D Coordinate System"
Introduced in R2012b

## enu2ecef

Transform local east-north-up coordinates to geocentric Earth-centered Earth-fixed

## Syntax

```
[X,Y,Z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0,spheroid)
[___] = enu2ecef(___,angleUnit)
```


## Description

[X,Y,Z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0, spheroid) transforms the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zUp to the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z. Specify the origin of the local ENU system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = enu2ecef( __ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate ECEF Coordinates from ENU Coordinates

Find the ECEF coordinates of orbital debris, using the ENU coordinates of the debris relative to the geodetic coordinates of a satellite.

First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height, ENU coordinates, and ECEF coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometer');
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the satellite. Specify h0 as ellipsoidal height in kilometers.

```
lat0 = 45.9132;
lon0 = 36.7484;
h0 = 1877.7532;
```

Specify the ENU coordinates of the point of interest. In this example, the point of interest is the orbital debris.

```
xEast = 355.6013;
yNorth = -923.0832;
zUp = 1041.0164;
```

Then, calculate the ECEF coordinates of the debris. In this example, the results display in scientific notation.

```
[x,y,z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0,wgs84)
x = 5.5075e+03
y = 4.5562e+03
z = 6.0128e+03
```

Reverse the transformation using the ecef2enu function. In this example, zUp displays in scientific notation.

```
[xEast,yNorth,zUp] = ecef2enu(x,y,z,lat0,lon0,h0,wgs84)
xEast = 355.6013
yNorth = -923.0832
zUp = 1.0410e+03
```


## Input Arguments

## xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU $x$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU $y$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single | double

## zUp - ENU z-coordinates

scalar | vector | matrix | N-D array
ENU $z$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

Data Types: single | double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid <br> referenceEllipsoid object | oblateSpheroid object | referenceSphere object

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

X - ECEF x-coordinates
scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Y - ECEF $\boldsymbol{y}$-coordinates

scalar | vector | matrix | N-D array
ECEF $y$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid
argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Tips

To transform vectors instead of coordinate locations, use the enu2ecefv function.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

ned2ecef | aer2ecef | ecef2enu | enu2geodetic

## Topics

"Choose a 3-D Coordinate System"
Introduced in R2012b

## enu2ecefv

Rotate local east-north-up vector to geocentric Earth-centered Earth-fixed

## Syntax

$[\mathrm{U}, \mathrm{V}, \mathrm{W}]=$ enu2ecefv(uEast,vNorth,wUp,lat0, lon0)
[___] = enu2ecefv( ___ ,angleUnit)

## Description

$[\mathrm{U}, \mathrm{V}, \mathrm{W}]=$ enu2ecefv(uEast, vNorth, wUp, lat0, lon0) returns vector components $\mathrm{U}, \mathrm{V}$, and W in a geocentric Earth-centered Earth-fixed (ECEF) system corresponding to vector components uEast, vNorth, and wUp in a local east-north-up (ENU) system. Specify the origin of the system with the geodetic coordinates lat0 and lon0. Each coordinate input argument must match the others in size or be scalar.
[___ ] = enu2ecefv( __ , and , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate ECEF Vector Components from ENU Components

Find the ECEF velocity components of a ground vehicle using its ENU velocity components.
Specify the geodetic coordinates of the vehicle in degrees and the ENU velocity components in kilometers per hour.

```
lat0 = 17.41;
lon0 = 78.27;
uEast = -27.6190;
vNorth = -16.4298;
wUp = -0.3186;
```

Calculate the ECEF components of the vehicle. The units for the ECEF components match the units for the ENU components. Thus, the ECEF components are returned in kilometers per hour. The rotation performed by enu2ecefv does not affect the speed of the vehicle.

```
[U,V,W] = enuZecefv(uEast,vNorth,wUp,lat0,lon0)
U = 27.9798
V = -1.0993
W = -15.7724
```

Reverse the rotation using the ecef2enuv function.

```
[uEast,vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0)
```

uEast $=-27.6190$
vNorth $=-16.4298$
$w U p=-0.3186$

## Input Arguments

## uEast - ENU x-components

scalar value | vector | matrix | N-D array
ENU $x$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double
vNorth - ENU $\boldsymbol{y}$-components
scalar value | vector $\mid$ matrix | N-D array
ENU $y$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double
wUp - ENU z-components
scalar value | vector | matrix | N-D array
ENU $z$-components of one or more vectors, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

```
Data Types: single | double
```

angleUnit - Angle units
'degrees' (default) | 'radians '
Angle units, specified as 'degrees' (the default) or 'radians '.

## Output Arguments

## U - ECEF x-components

scalar value | vector | matrix | N-D array

ECEF $x$-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uEast, vNorth, and wUp.

## V - ECEF y-components

scalar value | vector | matrix | N-D array
ECEF y-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uEast, vNorth, and wUp.

## W - ECEF z-components

scalar value | vector | matrix | N-D array
ECEF $z$-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uEast, vNorth, and wUp.

## Tips

To transform coordinate locations instead of vectors, use the enu2ecef function.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

```
See Also
ned2ecefv | ecef2enuv | ecef2nedv
```

Topics
"Vectors in 3-D Coordinate Systems"
Introduced in R2012b

## enu2geodetic

Transform local east-north-up coordinates to geodetic

## Syntax

[lat,lon,h] = enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,spheroid)
[___] = enu2geodetic (__, angleUnit)

## Description

[lat,lon,h] = enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,spheroid) transforms the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zUp to the geodetic coordinates specified by lat, lon, and h. Specify the origin of the local ENU system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = enu2geodetic (___ , , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate Geodetic Coordinates from ENU Coordinates

Find the geodetic coordinates of the Matterhorn, using the ENU coordinates of the Matterhorn with respect to the geodetic coordinates of Zermatt, Switzerland.

First, specify the reference spheroid as WGS84. For more information about WGS84, see "Reference Spheroids". The units for ellipsoidal height and ENU coordinates must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.

```
wgs84 = wgs84Ellipsoid;
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is Zermatt. Specify h0 as ellipsoidal height in meters.

```
lat0 = 46.017;
lon0 = 7.750;
h0 = 1673;
```

Specify the ENU coordinates of the point of interest. In this example, the point of interest is the Matterhorn.

```
xEast = -7134.8;
yNorth = -4556.3;
zUp = 2852.4;
```

Then, calculate the geodetic coordinates of the Matterhorn. The result h is the ellipsoidal height of the mountain in meters. To view the results in standard notation, specify the display format as shortG.

```
format shortG
[lat,lon,h] = enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,wgs84)
lat =
 45.976
lon =
 7.658
h =
 4 5 3 1
```

Reverse the transformation using the geodetic2enu function.

```
[xEast,yNorth,zUp] = geodetic2enu(lat,lon,h,lat0,lon0,h0,wgs84)
xEast =
 -7134.8
yNorth =
 -4556.3
zUp =
 2852.4
```


## Input Arguments

## xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU $x$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU $y$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single | double
zUp - ENU z-coordinates
scalar | vector | matrix | N-D array
ENU $z$-coordinates of one or more points in the local ENU system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid
argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

## Data Types: single | double

## Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

## Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid <br> referenceEllipsoid object |oblateSpheroid object | referenceSphere object

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## angleUnit - Angle units

'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## lat - Geodetic latitude

scalar | vector | matrix | N-D array

Geodetic latitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

## Lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-180 180]. To use values in radians, specify the angleUnit argument as 'radians'.
h - Ellipsoidal height
scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder $^{\text {rm }}$.

## See Also

aer2geodetic|enu2ecef|geodetic2enu|ned2geodetic
Topics
"Choose a 3-D Coordinate System"
Introduced in R2012b

## epsm

(To be removed) Accuracy in angle units for certain map computations

Note The epsm function will be removed in a future release. For information about updating your code, see "Compatibility Considerations".

## Syntax

epsm
epsm(units)

## Description

epsm is the limit of map angular precision. It is useful in avoiding trigonometric singularities, among other things.
epsm(units) returns the same angle in units corresponding to any valid angle units character vector. The default is 'degrees '.

## Examples

The value of epsm is $10^{-6}$ degrees. To put this in perspective, in terms of an angular arc length, the distance is

```
epsmkm = deg2km(epsm)
```

epsmkm =
1.1119e-04 \% kilometers

This is about 11 centimeters, a very small distance on a global scale.

## Compatibility Considerations

## epsm will be removed

Warns starting in R2022a
The epsm will be removed in a future release. To update your code, use these replacement patterns.

To Be Removed	Recommended
$\operatorname{epsm}$ ( )	$1.0 \mathrm{E}-6$
epsm( 'deg' )	$1.0 \mathrm{E}-6$
epsm( 'rad' )	$\operatorname{deg} 2 \operatorname{rad}(1.0 \mathrm{E}-6)$

## See Also

round

Introduced before R2006a

## eqa2grn

Convert from equal area to Greenwich coordinates

## Syntax

```
[lat,lon] = eqa2grn(x,y)
[lat,lon] = eqa2grn(x,y,origin)
[lat,lon] = eqa2grn(x,y,origin,ellipsoid)
[lat,lon] = eqa2grn(x,y,origin,units)
mat = eqa2grn(x,y,origin...)
```


## Description

[lat,lon] = eqa2grn( $x, y$ ) converts the equal-area coordinate points $x$ and $y$ to the Greenwich (standard geographic) coordinates lat and lon.
[lat,lon] = eqa2grn(x,y,origin) specifies the location in the Greenwich system of the $x-y$ origin ( 0,0 ). The two-element vector origin must be of the form [latitude longitude]. The default places the origin at the Greenwich coordinates ( $0^{\mathrm{o}}, 0^{\mathrm{o}}$ ).
[lat,lon] = eqa2grn(x,y,origin,ellipsoid) specifies the ellipsoidal model of the figure of the Earth using ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The ellipsoid is a unit sphere by default.
[lat,lon] = eqa2grn(x,y,origin,units) specifies the units for the outputs, where units is any valid angle units value. The default value is 'degrees'.
mat $=$ eqa2grn(x,y,origin...) packs the outputs into a single variable.
This function converts data from equal-area $x-y$ coordinates to geographic (latitude-longitude) coordinates. The opposite conversion can be performed with grn2eqa.

## Examples

[lat,lon] = eqa2grn(.5,.5)
lat =
30.0000
lon $=$
28.6479

## See Also

grn2eqa|hista

Introduced before R2006a

## etopo

(To be removed) Read gridded global relief data (ETOPO products)

Note etopo will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z, refvec] = etopo
[Z, refvec] = etopo(samplefactor)
[Z, refvec] = etopo(samplefactor, latlim, lonlim)
[Z, refvec] = etopo(folder, ...)
[Z, refvec] = etopo(filename, ...)
[Z, refvec] = etopo(\{'etopo5.northern.bat', 'etopo5.southern.bat'\}, ...)

## Description

[Z, refvec] = etopo reads the ETOPO data for the entire world from the ETOPO data in the current folder. The etopo function searches the current folder first for ETOPO1c binary data, then ETOPO2V2c binary data, then ETOPO2 (2001) binary data, then ETOPO5 binary data, and finally ETOPO5 ASCII data. Once the function finds a case-insensitive file name match, it reads the data. See the table Supported ETOPO Data File Names for a list of possible file names. The etopo function returns the data grid, $Z$, as an array of elevations. Data values, in whole meters, represent the elevation of the center of each cell. refvec, the associated three-element referencing vector, geolocates Z.
[Z, refvec] = etopo(samplefactor) reads the data for the entire world, downsampling the data by samplefactor. The scalar integer samplefactor when equal to 1 gives the data at its full resolution ( 10800 by 21600 values for ETOPO1 data, 5400 by 10800 values for ETOPO2 data, and 2160 by 4320 values for ETOPO5 data). When samplefactor is an integer $n$ greater than one, the etopo function returns every $n^{\text {th }}$ point. If you omit samplefactor or leave it empty, it defaults to 1 . (If the etopo function reads an older, ASCII ETOPO5 data set, then samplefactor must divide evenly into the number of rows and columns of the data file.)
[Z, refvec] = etopo(samplefactor, latlim, lonlim) reads the data for the part of the world within the specified latitude and longitude limits. Specify the limits of the desired data as twoelement vectors of latitude, latlim, and longitude, lonlim, in degrees. Specify the elements of latlim and lonlim in ascending order. Specify lonlim in the range [0 360] for ETOPO5 data and [-180 180] for ETOPO2 and ETOPO1 data. If lat lim is empty, the latitude limits are [-90 90]. If lonlim is empty, the file type determines the longitude limits.
[Z, refvec] = etopo(folder, ...) allows you to use the variable folder to specify the path for the ETOPO data file. Otherwise, the etopo function searches the current folder for the data.
[Z, refvec] = etopo(filename, ...) reads the ETOPO data from the file specified by the case-insensitive string scalar or character vector filename. The name of the ETOPO file is as referenced in the ETOPO data file names table. Include the folder name in filename or place the file in the current folder or in a folder on the MATLAB path.
[Z, refvec] = etopo(\{'etopo5.northern.bat', 'etopo5.southern.bat'\}, ...) reads the ETOPO data from the specified case-insensitive ETOPO5 ASCII data files. Place the files in the current folder or in a folder on the MATLAB path.

## Examples

Read and display ETOPO2V2c data from the file 'ETOPO2V2c_i2_LSB.bin' downsampled to halfdegree cell size and display the boundary of the land areas.

```
samplefactor = 15;
```

[Z, refvec] = etopo('ETOPO2V2c_i2_LSB.bin', samplefactor);
figure
worldmap world
geoshow(Z, refvec, 'DisplayType', 'texturemap');
demcmap(Z, 256);
geoshow('landareas.shp', 'FaceColor', 'none', ...
'EdgeColor', 'black');


## More About

## ETOPO Models

According to the National Geophysical Data Center (NGDC) Web site, ETOPO models combine regional and global land topography and ocean bathymetry data from many data sources. ETOPO1, the most recent model, has an Ice Surface version showing the top of the Antarctic and Greenland ice sheets and a Bedrock version showing the bedrock below the ice sheets. For detailed information about the data sources used to create the ETOPO1 model, see the NGDC Web site. NGDC lists the ETOPO2 and ETOPO5 models as deprecated but still available.

Model	Cell Size	Date Available
ETOPO1	1-arc-minute	March 2009
ETOPO2v2	2-minute	2006
ETOPO2	2-minute	2001
ETOPO5	5-minute	1988

## Tips

Supported ETOPO Data File Names

Format	File Names
ETOPO1c (cell)	- etopol_ice_c.flt   - etopol_bed_c.flt   - etopol_ice_c_f4.flt   - etopol_bed_c_f4.flt   - etopol_ice_c_i2.bin   - etopol_bed_c_i2.bin
ETOPO2V2c (cell)	- ETOPO2V2c_i2_MSB.bin   - ETOPO2V2c_i2_LSB.bin   - ETOPO2V2c_f4_MSB.flt   - ETOP02V2c_f4_LSB.flt   - ETOPO2V2c.hdf
ETOPO2 (2001)	- ETOP02.dos.bin   - ETOPO2.raw.bin
ETOPO5 (binary)	- ETOP05.DOS   - ETOP05.DAT
ETOPO5 (ASCII)	- etopo5.northern.bat   - etopo5.southern.bat

## Compatibility Considerations

## etopo will be removed

Warns starting in R2021b
Raster reading functions that return referencing vectors will be removed, including etopo. Instead, use readgeoraster, which returns a geographic raster reference object. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and GeographicPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors as input also accept reference objects.

This table shows some typical usages of etopo and how to update your code to use readgeoraster instead.

Will Be Removed	Recommended
[Z,refvec] = etopo(filename);	[Z,R] = readgeoraster(filename);
[Z,refvec] = etopo(filename,samplefactor);	$\begin{aligned} & {[Z, R]=\text { readgeoraster(filename); }} \\ & {[Z, R]=\text { georesize(Z,R,1/samplefactor); }} \end{aligned}$
[Z,refvec] = etopo(filename,samplefactor, la	$\begin{aligned} & \left.\mathbb{Z i}, R_{d}\right] \text { lentemぬgeoraster(filename); } \\ & {[Z, R]=\text { geocrop(Z,R,latlim,lonlim); }} \\ & {[Z, R]=\text { georesize(Z,R,1/scalefactor); }} \end{aligned}$

Unlike etopo, the readgeoraster function does not support the ETOPO2 or ETOPO5 models. Instead, read the cell-referenced ETOPO1 model stored in the GeoTIFF format, and specify a geographic coordinate system type. For example, use [Z,R] = readgeoraster(filename, 'CoordinateSystemType', 'geographic'). To obtain the resolution of the ETOPO2 or ETOPO5 models, resize the full-resolution ETOPO1 model using the georesize function with a scale of $1 / 2$ or $1 / 5$, respectively.

The readgeoraster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use $[Z, R]=$ readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, you can replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## References

[1] "2-minute Gridded Global Relief Data (ETOPO2v2)," U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 2006.
[2] Amante, C. and B. W. Eakins, "ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis," NOAA Technical Memorandum NESDIS NGDC-24, March 2009.
[3] "Digital Relief of the Surface of the Earth," Data Announcement 88-MGG-02, NOAA, National Geophysical Data Center, Boulder, Colorado, 1988.
[4] "ETOPO2v2 Global Gridded 2-minute Database," National Geophysical Data Center, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.

## See Also

readgeoraster|georasterinfo

## Topics

"Find Geospatial Raster Data"

Introduced before R2006a

## extractfield

Field values from structure array

## Syntax

a = extractfield(S, name)

## Description

a = extractfield(S, name) returns the field values specified by the field name of structure $S$.

## Examples

## Extract Fields From Structure

Load a structure that contains information about roads in Concord, MA.

```
roads = shaperead('concord_roads.shp');
r = roads(1:5)
r=5\times1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT NUMBER
 CLĀSS
 ADMIN_TYPE
 LENGTH
```

Get the $x$ - and $y$-coordinates of the roads. Display the map, and highlight the first few elements using the color magenta.
hold on
plot(extractfield(roads,'X'),extractfield(roads,'Y')); plot(extractfield(r,'X'),extractfield(r,'Y'),'m');


Extract the names of the roads, stored in the field STREETNAME. The field values are character vectors, so the result is returned in a cell array.

```
names = extractfield(r,'STREETNAME')
names = 1x5 cell
 Columns 1 through 4
 {0x0 char} {'WRIGHT FARM'} {'WRIGHT FARM'} {'WRIGHT FARM'}
 Column 5
 {'WRIGHT FARM'}
```

Extract the $X$ field from the structure and examine the format of the returned values. All values have the same numeric data type (double), so the result is returned in a vector.

```
uniformType = extractfield(r,'X')
uniformType = 1×42
105 }
\begin{tabular}{lllllllll}
2.0884 & 2.0884 & 2.0884 & 2.0883 & 2.0883 & 2.0882 & 2.0882 & 2.0882 & 2.0882
\end{tabular}
```

For illustrative purposes, change the $X$ field value in one of the elements to have a different data type. This command converts the second element to data type single.
$r(2) . X=$ single(r(2). $X)$;
Extract the X field values again. This time, the values have different data types, so the result is returned in a cell array.

```
mixedType = extractfield(r,'X')
mixedType=1\times5 cell array
 Columns 1 through 3
 {[2.0884e+05 ...]} {[2.0884e+05 ...]} {[2.0891e+05 ...]}
 Columns 4 through 5
 {[2.0898e+05 ...]} {[2.0891e+05 ...]}
```


## Input Arguments

## S - Structure

structure
Structure, specified as a structure.

## name - Field name

string scalar | character vector
Field name, specified as a case-sensitive string scalar or character vector.

## Output Arguments

## a - Extracted field values

1-by-n numeric vector | 1-by-n cell array
Extracted field values, returned as a 1-by-n numeric vector or cell array. $n$ is the total number of elements in the field name of structure $S$, that is, $n=\operatorname{numel}([S(:)$. (name)]. . a is a cell array if any field values in the field name contain a character vector or if the field values are not uniform in type; otherwise $a$ is the same type as the field values. The shape of the input field is not preserved in a.

## See Also

struct | shaperead

Introduced before R2006a

## extractm

(To be removed) Coordinate data from line or patch display structure

Note The extractm function will be removed in a future release. Use geospatial tables instead. For more information about geospatial tables, see "Create Geospatial Tables".

## Syntax

[lat,lon] = extractm(display struct,object str)
[lat,lon] = extractm(display_struct,object_strings)
[lat,lon] = extractm(display_struct,object_strings,searchmethod)
[lat,lon] = extractm(display_struct)
[lat,lon,indx] = extractm(...)
mat = extractm(...)

## Description

[lat,lon] = extractm(display_struct,object_str) extracts latitude and longitude coordinates from those elements of display_struct having 'tag' fields that begin with the string scalar or character vector specified by object_str. display_struct is a Mapping Toolbox display structure in which the 'type' field has a value of either 'line' or 'patch'. The output lat and lon vectors include NaNs to separate the individual map features. The comparison of 'tag' values is not case-sensitive.
[lat,lon] = extractm(display_struct,object_strings) selects features with 'tag' fields matching any of several different string scalar or character vectors. object_strings is a string scalar, character vector, cell array of character vectors, or character array. extractm strips trailing spaces from features listed in character arrays before matching.
[lat,lon] = extractm(display_struct,object_strings,searchmethod) specifies the method used to match the values of the 'tag' field in display_struct. searchmethod can be one of these values:

```
'strmatch' Search for matches at the beginning of the tag
'findstr' Search within the tag
'exact' Search for exact matches. Note that when searchmethod is specified the search is case-sensitive.
```

[lat,lon] = extractm(display_struct) extracts all vector data from the input map structure.
[lat,lon,indx] = extractm(...) also returns the vector indx identifying which elements of display_struct met the selection criteria.
mat $=\operatorname{extractm}(\ldots)$ returns the vector data in a single matrix, where mat $=$ [lat lon].

## Examples

Create a sample display structure from coastline coordinates. Extract the latitude and longitude coordinates from the structure, then display the data.

```
load coastlines
S = struct('lat',coastlat,'long',coastlon,'tag','coastlines', ...
 'type','line','altitude',[]);
[lat,lon] = extractm(S,'coastlines');
```


## figure

worldmap('world')
geoshow(lat,lon)


## Tips

A Version 1 display structure is a MATLAB structure that can contain line, patch, text, regular data grid, geolocated data grid, and certain other objects and fixed attributes. In Mapping Toolbox Version 2, a new data structure for vector geodata was introduced (called a mapstruct or a geostruct, depending on whether coordinates it contains are projected or unprojected). Geostructs and mapstructs have few required fields and can include any number of user-defined fields, giving them much greater flexibility to represent vector geodata. For information about the contents and format of display structures, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym. For information about converting display structures to geographic data structures, see the reference page for updategeostruct, which performs such conversions.

## See Also

```
Functions
displaym| extractfield|geoshow|mapshow| updategeostruct
Objects
geoshape
Topics
"Create Geospatial Tables"
Introduced before R2006a
```


## fieldnames

Return dynamic property names of geographic or planar vector

## Syntax

names $=$ fieldnames(v)

## Description

names = fieldnames(v) returns the names of the dynamic properties of geographic or planar vector v .

## Examples

View Dynamic Properties of a Mapshape Vector
Create a mapshape vector.
ms = mapshape(shaperead('tsunamis.shp'));
Display all dynamic properties of the mapshape vector. The displayed properties exclude the Collection properties Geometry and Metadata and the required mapshape Vertex properties X and Y.
fieldnames(ms)
ans $=18 \times 1$ cell
\{'Year' \}
\{'Month' \}
\{'Day' \}
\{'Hour' \}
\{'Minute' \}
\{'Second' \}
\{'Val_Code' \}
\{'Validity' \}
\{'Cause_Code' \}
\{'Cause' \}
\{'Eq_Mag' \}
\{'Country' \}
\{'Location' \}
\{'Max Height' \}
\{'Iida_Mag' \}
\{'Intensity' \}
\{'Num_Deaths' \}
\{'Desc_Deaths'\}

## Input Arguments

v - Geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## Output Arguments

names - Names of dynamic properties
cell array
Names of dynamic properties of vector v , returned as a cell array.

## See Also

disp|properties
Introduced in R2012a

## fill3m

Project filled 3-D patch objects on map axes

## Syntax

h = fill3m(lat,lon, $z$, cdata)
h = fill3m(lat,lon,z,PropertyName,PropertyValue,...)

## Description

$h=$ fill3m(lat,lon,z,cdata) projects and displays any patch object with vertices defined by vectors lat and lon to the current map axes. The scalar $z$ indicates the altitude plane at which the patch is displayed. The input cdata defines the patch face color. The patch handle or handles, h , can be returned.
$h=$ fill3m(lat,lon, $z$, PropertyName,PropertyValue, ...) allows any property name/ property value pair supported by patch to be assigned to the fill3m object.

## Examples

lat $=$ [30 150001530 30]';
lon $=$ [-60 -60 -60 0606060 0]';
axesm bonne; framem
view(3)
fill3m(lat,lon,2,'b')


## See Also

fillm|patchesm|patchm
Introduced before R2006a

## fillm

Project filled 2-D patch objects on map axes

## Syntax

h = fillm(lat,lon, cdata)
h = fillm(lat,lon,'PropertyName',PropertyValue,...)

## Description

$\mathrm{h}=\mathrm{fillm}(l a t, l o n, c d a t a)$ projects and displays any patch object with vertices defined by the vectors lat and lon to the current map axes. The input cdata defines the patch face color. The patch handle or handles, $h$, can be returned.
h = fillm(lat,lon,'PropertyName',PropertyValue,...) allows any property name/ property value pair supported by patch to be assigned to the fillm object.

## Examples

lat $=[3015000153030] ' ;$
lon $=\left[\begin{array}{cccccc}-60 & -60 & -60 & 60 & 60 & 60 \\ 0\end{array}\right]$ ';
axesm bonne; framem
fillm(lat,lon,'b')


## See Also

fill3m|patchesm|patchm
Introduced before R2006a

## filterm

Filter latitudes and longitudes based on underlying data grid

## Syntax

[latout,lonout] = filterm(lat,lon, Z, R,allowed)
[latout,lonout,indx] = filterm( $\qquad$ )

## Description

[latout,lonout] = filterm(lat,lon, Z, R, allowed) filters a set of latitudes and longitudes to include only those data points which have a corresponding value in $Z$ equal to allowed. $R$ can be a geographic raster reference object, a referencing vector, or a referencing matrix.
[latout,lonout,indx] = filterm( $\qquad$ ) filters a set of latitudes and longitudes, returning indices of the included points in indx.

## Examples

## Filter Elevation Data

Display points along the equator that are above sea level.
First, load elevation raster data and a geographic cells reference object. The raster contains terrain heights relative to mean sea level. Then, specify the coordinates of evenly spaced points along the equator.
load topo60c
lon $=(0: 5: 360)$ ';
lat $=$ zeros(size(lon));
Create a logical array representing the terrain above sea level. Then, filter the points along the equator to include only the elements that contain true.

```
topoASL = topo60c > 0;
[newlat,newlon] = filterm(lat,lon,topoASL,topo60cR,1);
```

Create a map axes object for the world and display the elevation data. Display the all of the points along the equator using red markers. Then, display the points that are above sea level using yellow circles.

```
worldmap world
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)
geoshow(lat,lon,'DisplayType','point','MarkerEdgeColor','r')
geoshow(newlat,newlon,'DisplayType','point','Marker','o',...
 'MarkerFaceColor','y')
```



## Input Arguments

## lat - Latitude values

numeric array
Latitude values, specified as a numeric array.
Data Types: single | double

## Lon - Longitude values

numeric array
Longitude values, specified as a numeric array.
Data Types: single | double

## Z - Filter

numeric array
Filter, specified as a numeric array.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical

## R - Spatial referencing information

geographic raster reference object | referencing vector | referencing matrix

Spatial referencing information, specified as a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] $=[$ row $\operatorname{col} 1] * R$
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.

## Data Types: double

## allowed - Allowed values

numeric array or character vector
Allowed values, specified as a numeric array or character vector.
Data Types: single | double | int8| int16| int32|int64|uint8|uint16|uint32|uint64| logical|char

## Output Arguments

## latout - Latitudes of filtered points

numeric array
Latitudes of filtered points, returned as a numeric array.

## lonout - Longitudes of filtered points

numeric array
Longitudes of filtered points, returned as a numeric array.

## indx - Indices of filtered points

numeric array
Indices of filtered points, returned as a numeric array.

## See Also

imbedm|hista|histr
Introduced before R2006a

## findm

Latitudes and longitudes of nonzero data grid elements

## Syntax

[lat,lon] = findm(Z,R)
[lat,lon] = findm(latz,lonz,Z)
[lat,lon,val] = findm(...)
mat $=$ findm(...)

## Description

[lat,lon] = findm( $Z, R$ ) computes the latitudes and longitudes of the nonzero elements of a regular data grid, Z. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If R is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be a 1-by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] = [row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.
[lat,lon] = findm(latz,lonz,Z) returns the latitudes and longitudes of the nonzero elements of a geolocated data grid Z , which is an M-by-N logical or numeric array. Typically latz and lonz are M -by-N latitude-longitude arrays, but latz may be a latitude vector of length M and lonz may be a longitude vector of length N .
[lat, lon, val] = findm(...) returns the values of the nonzero elements of $Z$, in addition to their locations.
mat $=$ findm (...) returns a single output, where mat $=$ [lat lon].
This function works in two modes: with a regular data grid and with a geolocated data grid.

## Examples

The data grid can be the result of a logical operation. For example, load elevation raster data and a geographic cells reference object. Then, find all locations with elevations greater than 5500 meters.

```
load topo60c
[lat,lon] = findm((topo60c > 5500),topo60cR);
[lat lon]
ans =
 34.5000 79.5000
 34.5000 80.5000
 30.5000 84.5000
 28.5000 86.5000
```

These points are in the Himalayas. Find the grid values at these locations using the geographicToDiscrete and sub2ind functions.

```
[row,col] = geographicToDiscrete(topo60cR,lat,lon);
```

indx = sub2ind(size(topo60c), row, col);
heights $=$ topo60c(indx)
heights =
5559
5515
5523
5731

## See Also

find | geographicToDiscrete
Introduced before R2006a

## fipsname

(Removed) Read Federal Information Processing Standard (FIPS) name file used with TIGER thinned boundary files

Note The fipsname function has been removed. Use a more recent TIGER/Line data set and the readgeotable function instead.

## Syntax

```
struc = fipsname
```

struc = fipsname(filename)

## Description

struc = fipsname opens a file selection window to pick the file, reads the FIPS codes, and returns them in a structure.
struc = fipsname(filename) reads the specified file.

## Background

The TIGER thinned boundary files provided by the U.S. Census use FIPS codes to identify geographic entities. This function reads the FIPS files as provided with the TIGER files. These files generally have names of the format_name.dat.

## Examples

```
struc = fipsname('st_name.dat')
struc =
1x57 struct array with fields:
 name
 id
s(1)
ans =
 name: 'Alabama'
 id: 1
```


## Tips

The FIPS name files, along with TIGER thinned boundary files, are available over the Internet.

## See Also

readgeotable

Introduced before R2006a

## firstCornerX

Package: map.rasterref
Return world $x$-coordinate of map raster index $(1,1)$

## Syntax

$x=$ firstCornerX(R)

## Description

$x=$ firstCornerX(R) returns the world $x$-coordinate of the outermost corner of the first element $(1,1)$ of map raster R .

## Examples

## Find $x$-Coordinate of First Corner

Import a GeoTIFF image [1] on page 1-0 of Boston as an array and a MapCellsReference object. Find the world $x$-coordinate of the outermost corner of the first cell.
$[Z, R]=$ readgeoraster('boston.tif');
x = firstCornerX(R)
$x=7.6432 e+05$
[1] The data used in this example includes material copyrighted by GeoEye, all rights reserved.

## Input Arguments

R - Map raster
MapCellsReference or MapPostingsReference object
Map raster, specified as a MapCellsReference or MapPostingsReference object.

## Output Arguments

x - World $x$-coordinate
numeric scalar
World $x$-coordinate, returned as a numeric scalar.
Data Types: double

## See Also

firstCornerY

Introduced in R2013b

## firstCornerY

Package: map.rasterref
Return world $y$-coordinate of map raster index $(1,1)$

## Syntax

y = firstCornerY(R)

## Description

$y=$ firstCornerY(R) returns the world $y$-coordinate of the outermost corner of the first element $(1,1)$ of map raster R .

## Examples

Find $y$-Coordinate of First Corner
Import a GeoTIFF image [1] on page 1-0 of Boston as an array and a MapCellsReference object. Find the world $y$-coordinate of the outermost corner of the first cell.
[Z,R] = readgeoraster('boston.tif');
y = firstCornerY(R)
$y=2.9606 e+06$
[1] The data used in this example includes material copyrighted by GeoEye, all rights reserved.

## Input Arguments

R - Map raster
MapCellsReference or MapPostingsReference object
Map raster, specified as a MapCellsReference or MapPostingsReference object.

## Output Arguments

y - World y-coordinate
numeric scalar
World $y$-coordinate, returned as a numeric scalar.
Data Types: double

## See Also

firstCornerX

Introduced in R2013b

## flat2ecc

Eccentricity of ellipse from flattening

## Syntax

ecc = flat2ecc(f)

## Description

ecc = flat2ecc(f) computes the eccentricity of an ellipse or an ellipsoid of revolution given the flattening f .

## Examples

## Eccentricity of Ellipse from Flattening

Find the eccentricity of an ellipse from the flattening.

```
ecc = flat2ecc(0.0034)
ecc = 0.0824
```


## Input Arguments

f - Flattening
numeric scalar
Flattening, specified as a numeric scalar.
Data Types: single | double

## Output Arguments

ecc - Eccentricity of ellipse
numeric scalar
Eccentricity of the ellipse, returned as a numeric scalar in the range [0, 1].

## Compatibility Considerations

Only numeric scalars will be accepted as input
Not recommended starting in R2013b
The flat2ecc function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

## See Also

Functions
axes2ecc|ecc2flat|n2ecc
Introduced before R2006a

## flatearthpoly

Clip polygon to world limits

## Syntax

[latf,lonf] = flatearthpoly(lat,lon)
[latf,lonf] = flatearthpoly(lat,lon,longitudeOrigin)

## Description

[latf,lonf] = flatearthpoly(lat,lon) trims NaN-separated polygons specified by the latitude and longitude vectors lat and lon to the limits [-180 180] in longitude and [-90 90] in latitude, inserting straight segments along the $+/-180$-degree meridians and at the poles. Inputs and outputs are in degrees.

Display functions automatically cut and trim geographic data when required by the map projection. Use the flatearthpoly function only when performing set operations on polygons.
[latf,lonf] = flatearthpoly(lat,lon,longitudeOrigin) centers the longitude limits on the longitude specified by the scalar longitude longitudeOrigin.

## Examples

## Clip Polygon to World Limits

Vector data for geographic objects that encompass a pole must encounter or cross the Antimeridian. While the toolbox properly displays such polygons, they can cause problems for functions that work with Cartesian coordinates, such as polygon intersection and Boolean operations. When these polygons are treated as Cartesian coordinates, the Antimeridian crossing results in a spurious line segment, and the polygon displayed as a patch does not have the interior filled correctly. You can reformat such polygons by using the flatearthpoly function.

Load the coordinates of global coastlines. Extract the coordinates of the first polygon, which represents Antarctica.

```
load coastlines
firstnan = find(isnan(coastlat),1,"first");
lat = coastlat(1:firstnan);
lon = coastlon(1:firstnan);
```

Plot the coordinates that make up the polygon boundary. Note that the boundary is not closed.

```
plot(lon,lat)
xlim([-200 200])
axis equal
```



Convert the coastline so that it uses planar polygon topology and plot the result. The polygon boundary meets the Antimeridian, drops down to the pole, sweeps across the longitudes at the pole, and follows the Antimeridian up to the other side of the Antimeridian crossing.
[latf,lonf] = flatearthpoly(lat,lon);
figure
mapshow(lonf,latf,"DisplayType","polygon")
ylim([-100-60])


## Cut Lines and Polygons at the Antimeridian

Longitude coordinate discontinuities at the Antimeridian can confuse set operations on polygons. To prepare geographic data for use with polybool or for patch rendering, cut the polygons at the Antimeridian with the flatearthpoly function. The flatearthpoly function returns a polygon with points inserted to follow the Antimeridian up to the pole, traverse the longitudes at the pole, and return to the Antimeridian along the other edge of the Antimeridian.

Create an orthographic view of the Earth and plot the coastlines on it.

```
axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on
load coastlines
plotm(coastlat,coastlon)
```



Generate a small circle that encompasses the North Pole and color it yellow.
[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')


Flatten the small circle using the flatearthpoly function.

```
[latf,lonf] = flatearthpoly(latc,lonc);
```

Plot the cut circle that you just generated as a magenta line.

```
plotm(latf,lonf,'m')
```



Generate a second small circle that does not include a pole.
[latc1, lonc1] = scircle1(20, 170, 30);
Flatten the circle and plot it as a red line. Note that the second small circle, which does not cover a pole, is clipped into two pieces along the Antimeridian. The polygon for the first small circle is plotted in plane coordinates to illustrate its flattened shape. The flatearthpoly function assumes that the interior of the polygon being flattened is in the hemisphere that contains most of its edge points. Thus a polygon produced by flatearthpoly does not cover more than a hemisphere.
[latf1,lonf1] = flatearthpoly(latc1,lonc1);
plotm(latf1,lonf1, 'r')


## Tips

The polygon defined by lat and lon must be well-formed:

- The boundaries must not intersect.
- The vertices of outer boundaries must be in a clockwise order and the vertices of inner boundaries must be in a counterclockwise order, such that the interior of the polygon is always to the right of the boundary.

For more information, see "Create and Display Polygons".

## See Also

mapclip|geoclip|maptrimp|ispolycw|poly2cw|poly2ccw

## Introduced before R2006a

## forward

Package: map.geodesy
Convert geodetic latitude to authalic, conformal, isometric, or rectifying latitude

## Syntax

```
lat = forward(converter,phi)
lat = forward(converter,phi,angleUnit)
```


## Description

lat = forward(converter, phi) returns the authalic, conformal, isometric, or rectifying latitude coordinates corresponding to geodetic latitude coordinates phi.
lat $=$ forward(converter, phi, angleUnit) specifies the units of input phi.

## Examples

## Convert Geodetic Latitude to Authalic Latitude

Specify geodetic latitude coordinates and create an authalic latitude converter. Then, convert the coordinates.

```
phi = [-90 -67.5 -45 -22.5 0 22.5 45 67.5 90];
conv = map.geodesy.AuthalicLatitudeConverter(wgs84Ellipsoid);
beta = forward(conv,phi)
beta = 1\times9
 -90.0000 -67.4092 -44.8717 -22.4094 0
```


## Convert Geodetic Latitude to Isometric Latitude

Specify geodetic latitude coordinates and create an isometric latitude converter. Then, convert the coordinates.

```
phi = [-90 -67.5 -45 -22.5 0 22.5 45 67.5 90];
```

conv = map.geodesy.IsometricLatitudeConverter(wgs84Ellipsoid);
psi = forward(conv, phi)
psi $=1 \times 9$

- Inf	-1.6087	-0.8766	-0.4006	0	0.4006	0.8766	1.6087	Inf

## Convert Geodetic Latitude to Rectifying Latitude Using Radians

Specify geodetic latitude coordinates and convert them to radians. Create a rectifying latitude converter. Then, convert the coordinates by specifying the angle unit as 'radians '.

```
phi = [-90 -67.5 -45 -22.5 0 22.5 45 67.5 90];
phirad = deg2rad(phi);
conv = map.geodesy.RectifyingLatitudeConverter(wgs84Ellipsoid);
mu = forward(conv,phirad,'radians')
mu = 1\times9
\begin{tabular}{lllllllll}
-1.5708 & -1.1763 & -0.7829 & -0.3909 & 0 & 0.3909 & 0.7829 & 1.1763 & 1.5708
\end{tabular}
```


## Input Arguments

## converter - Latitude converter

AuthalicLatitudeConverter, ConformalLatitudeConverter, IsometricLatitudeConverter, or RectifyingLatitudeConverter object

Latitude converter, specified as an AuthalicLatitudeConverter, ConformalLatitudeConverter, IsometricLatitudeConverter, or RectifyingLatitudeConverter object.
phi - Geodetic latitude coordinates
numeric scalar, vector, matrix, or N-D array
Geodetic latitude coordinates, specified as a numeric scalar value, vector, matrix, or N-D array. If angleUnit is not supplied, phi is in degrees. Otherwise, values of phi must be consistent with the units of angleUnit.

Data Types: single|double
angleUnit - Unit of geodetic latitude coordinates
'degrees' (default)|'radians'
Units of geodetic latitude coordinates, specified as 'degrees ' or 'radians'.

## Output Arguments

## lat - Converted latitude coordinates

numeric scalar, vector, matrix, or N-D array
Converted latitude coordinates, returned as a numeric scalar, vector, matrix, or N-D array. lat is the same size as phi.

The interpretation of lat depends on the latitude converter. If the conversion is:

- authalic, lat represents the variable $\beta$ (beta), and has the same units as phi.
- conformal, lat represents $\chi$ (chi), and has the same units as phi.
- isometric, lat represents $\psi$ (psi). lat is a dimensionless number and does not have an angle unit.
- rectifying, lat represents $\mu$ (mu), and has the same units as phi.


## See Also

inverse
Introduced in R2013a

## framem

Toggle and control display of map frame

## Syntax

```
framem
framem('on')
framem('off')
framem('reset')
framem(linespec)
framem(PropertyName,PropertyValue,...)
```


## Description

framem toggles the visibility of the map frame by setting the map axes property Frame to ' on ' or 'off'. The default setting for map axes is 'off'.
framem('on') sets the map axes property Frame to 'on'.
framem('off') sets the map axes property Frame to 'off'. When called with the value 'off', the map axes property Frame is set to 'off'.
framem( 'reset ') resets the entire frame using the current properties. This is essentially a refresh option.
framem(linespec) sets the map axes FEdgeColor property to the color component of any MATLAB linespec.
framem(PropertyName, PropertyValue, ...) sets the appropriate map axes properties to the desired values. These property names and values are described on the axesm reference page.

## Tips

- You can also create or alter map frame properties using the axesm or setm functions.
- By default the Clipping property is set to ' off'. Override this setting with the following code:
hgrat = gridm('on');
set (hgrat,'Clipping', 'on')


## See Also

axesm|setm

Introduced before R2006a

## fromDegrees

Convert angles from degrees

## Syntax

[A1,...,An] = fromDegrees(toUnits,D1,....,Dn)

## Description

$[\mathrm{A} 1, \ldots, \mathrm{An}]=$ fromDegrees (toUnits, D1, ..., Dn) converts the angles specified by D1, . . . Dn from degrees to the units specified by toUnits. This function is useful for converting angles from degrees when you do not know the output units until run-time.

## Examples

## Convert From Degrees to Radians

Convert several values from degrees to radians.
$[\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4]=$ fromDegrees("radians", $45,90,135,180$ )
$\mathrm{A} 1=0.7854$
$\mathrm{A} 2=1.5708$
$A 3=2.3562$
$A 4=3.1416$
Convert the same values from degrees by specifying an array.
$D=[4590135$ 180];
A = fromDegrees("radians",D)
$\mathrm{A}=1 \times 4$
0.7854
1.5708
2.3562
3.1416

## Input Arguments

## toUnits - Output unit

"degrees" | "radians"
Output unit, specified as "degrees" or "radians". You can also specify abbreviations such as "deg" and "rad".

Data Types: char|string

## D1, ..., Dn - Angles in degrees

numeric array

Angles in degrees, specified as one or more numeric arrays.

## Output Arguments

## A1, ... An - Angles in degrees or radians <br> numeric array

Angles in degrees or radians, returned as the same number of numeric arrays as in D1, ...,Dn. The size of each output array matches the size of the corresponding input array.

## See Also

## Functions

fromRadians | deg2rad | toDegrees | toRadians
Introduced in R2007b

## fromRadians

Convert angles from radians

## Syntax

[A1,...,An] = fromRadians(toUnits,R1,....,Rn)

## Description

[A1, ...,An] = fromRadians(toUnits,R1,...,Rn) converts the angles specified by $\mathrm{R} 1, \ldots, \mathrm{Rn}$ from radians to the units specified by toUnits. This function is useful for converting angles from radians when you do not know the output units until run-time.

## Examples

## Convert from Radians to Degrees

Convert several values from radians to degrees.
$[\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4]=$ fromRadians("degrees", pi/2,pi,3*pi/2,2*pi)
$\mathrm{Al}=90$
$\mathrm{A} 2=180$
$A 3=270$
A4 $=360$
Convert the same values from radians by specifying an array.
R = [pi/2 pi 3*pi/2 2*pi];
A = fromRadians("degrees",R)
$\mathrm{A}=1 \times 4$
$90 \quad 180 \quad 270 \quad 360$

## Input Arguments

## toUnits - Output unit

"degrees" | "radians"
Output unit, specified as "degrees" or "radians". You can also specify abbreviations such as "deg" and "rad".

Data Types: char \| string
R1, ... Rn - Angles in radians
numeric array

Angles in radians, specified as one or more numeric arrays.

## Output Arguments

## A1, ..., An - Angles in degrees or radians <br> numeric array

Angles in degrees or radians, returned as the same number of numeric arrays as in R1, ..., Rn. The size of each output array matches the size of the corresponding input array.

## See Also

## Functions

fromDegrees | rad2deg | toDegrees | toRadians
Introduced in R2007b

## gc2sc

Center and radius of great circle

## Syntax

[lat,lon,radius] = gc2sc(lat0,lon0,az)
[lat,lon, radius] = gc2sc(lat0,lon0,az,angleunits)
mat $=\mathrm{gc} 2 \mathrm{sc}(\ldots)$

## Description

[lat,lon, radius] = gc2sc(lat0,lon0,az) converts a great circle from great circle notation (i.e., lat, lon, azimuth, where (lat, lon) is on the circle) to small circle notation (i.e., lat, lon, radius, where (lat, lon) is the center of the circle and the radius is 90 degrees, which is a definition of a great circle). A great circle has two centers and one is chosen arbitrarily. The other is its antipode. All inputs and outputs are in units of degrees.
[lat,lon, radius] = gc2sc(lat0,lon0,az, angleunits) where angleunits specifies the units of the inputs and outputs, either 'degrees ' or 'radians '.
mat $=\operatorname{gc} 2 \mathrm{sc}(\ldots)$ returns a single output, where mat $=$ [lat lon radius].

## Examples

Represent a great circle passing through $\left(255^{\circ} \mathrm{S}, 70^{\circ} \mathrm{W}\right)$ on an azimuth of 450 as a small circle:
[lat,lon,radius] $=\operatorname{gc} 2 s c(-25,-70,45)$
lat $=$
-39.8557
lon $=$
42.9098
radius =
90
A great circle always bisects the sphere. As a demonstration of this statement, consider the Equator, which passes through any point with a latitude of $0 \underline{0}$ and proceeds on an azimuth of $90^{\circ}$ or $270^{\circ}$.
Represent the Equator as a small circle:
[lat,lon, radius] = gc2sc(0,-70,270)
lat =
90
lon $=$
0

Not surprisingly, the small circle is centered on the North Pole. As always at the poles, the longitude is arbitrary because of the convergence of the meridians.

Note that the center coordinates returned by this function always lead to one of two possibilities. Since the great circle bisects the sphere, the antipode of the returned point is also a center with a radius of $90^{\circ}$. In the above example, the South Pole would also be a suitable center for the Equator in a small circle.

## More About

## Great and Small Circles

A small circle is the intersection of a plane with the surface of a sphere. A great circle is a small circle with a radius of $90^{\circ}$.

```
See Also
antipode |crossfix|gcxgc|gcxsc|rhxrh
```

Introduced before R2006a

## gcm

Current map projection structure

## Syntax

```
mstruct = gcm
mstruct = gcm(hndl)
```


## Description

mstruct $=\mathrm{gcm}$ returns the map axes map structure, which contains the settings for all the current map axes properties.
mstruct $=\mathrm{gcm}(\mathrm{hndl})$ specifies the map axes by axes handle.

## Examples

Establish a map axes with default values, then look at the structure:

```
axesm mercator
mstruct = gcm
mstruct =
 mapprojection: 'mercator'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 falsenorthing: 0
 falseeasting: 0
 fixedorient: []
 geoid: [1 0]
 maplatlimit: [-86 86]
 maplonlimit: [-180 180]
 mapparallels: 0
 nparallels: 1
 origin: [0 0 0]
 scalefactor: 1
 trimlat: [-86 86]
 trimlon: [-180 180]
 frame: 'off'
 ffill: 100
 fedgecolor: [0 0 0]
 ffacecolor: 'none'
 flatlimit: [-86 86]
 flinewidth: 2
 flonlimit: [-180 180]
 grid: 'off'
 galtitude: Inf
 gcolor: [0 0 0]
 glinestyle: ':'
 glinewidth: 0.5000
 mlineexception: []
```

```
 mlinefill: 100
 mlinelimit: []
 mlinelocation: 30
 mlinevisible: 'on'
plineexception: []
 plinefill: 100
 plinelimit: []
plinelocation: 15
 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0 0 0]
 fontname: 'Helvetica'
 fontsize: 10
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelrotation: 'off'
 labelunits: 'degrees'
 meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 86
 mlabelround: 0
 parallellabel: 'off'
plabellocation: 15
plabelmeridian: -180
 plabelround: 0
```


## Tips

You create map structure properties with the axesm function. You can query them with the getm function and modify them with the setm function.

## See Also

axesm| getm| setm

## Introduced before R2006a

## gcpmap

Current mouse point from map axes

## Syntax

pt = gcpmap
pt = gcpmap(hndl)

## Description

pt = gcpmap returns the current point (the location of last button click) of the current map axes in the form [latitude longitude $z$-altitude].
pt $=$ gcpmap (hndl) specifies the map axes in question by its handle.

## Examples

Set up a map axes with a graticule and display a world map:

```
axesm robinson
gridm on
geoshow('landareas.shp')
```

Click somewhere near Boston, Massachusetts to obtain a current point:
pt = gcpmap
pt $=$
44.171
-69.967
2
44.171
-69.967
0
whos

Name	Size	Bytes	Class	Attributes
pt	$2 \times 3$	48	double array	



## Tips

gcpmap works much like the standard MATLAB function get (gca, 'CurrentPoint'), except that the returned matrix is in [lat lon $z$ ], not $[x y z]$.

You must use view (2) and an ordinary projection (not the Globe projection) when working with the gcpmap function.

The CurrentPoint property is updated whenever a button-click event occurs in a MATLAB figure window. The pointer does not have to be within the axes, or even the figure window. Coordinates with respect to the requested axes are returned regardless of the pointer location. Likewise, gcpmap will return values that may look reasonable whether the current point is within the graticule bounds or not, and thus must be used with care.

## See Also

inputm

Introduced before R2006a

## gcwaypts

Equally spaced waypoints along great circle

## Syntax

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2)
[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs)
pts = gcwaypts(lat1,lon1,lat2,lon2...)

## Description

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2) returns the coordinates of equally spaced points along a great circle path connecting two endpoints, (lat1, lon1) and (lat2,lon2).
[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs) specifies the number of equal-length track legs to calculate. nlegs+1 output points are returned, since a final endpoint is required. The default number of legs is 10 .
pts = gcwaypts(lat1,lon1,lat2,lon2...) packs the outputs, which are otherwise two-column vectors, into a two-column matrix of the form [latitude longitude]. This format for successive waypoints along a navigational track is called navigational track format in this guide. See the navigational track format reference page in this section for more information.

## Background

This is a navigational function. It assumes that all latitudes and longitudes are in degrees.
In navigational practice, great circle paths are often approximated by rhumb line segments. This is done to come reasonably close to the shortest distance between points without requiring course changes too frequently. The gcwaypts function provides an easy means of finding waypoints along a great circle path that can serve as endpoints for rhumb line segments (track legs).

## Examples

## Determine Equally Spaced Points Along a Great Circle Path

Imagine you own a sailing yacht and are planning a voyage from North Point, Barbados (13.33 ${ }^{\circ}$ $\left.\mathrm{N}, 59.62^{\circ} \mathrm{W}\right)$, to Brest, France ( $48.36^{\circ} \mathrm{N}, 4.49^{\circ} \mathrm{W}$ ). Divide the track into three equal-length segments.

```
figure('color','w');
ha = axesm('mapproj','mercator',...
 'maplatlim',[10 55],'maplonlim',[-80 10],...
 'MLineLocation',15,'PLineLocation',15);
axis off, gridm on, framem on;
% Load coastline data and plot it in the figure.
load coastlines;
hg = geoshow(coastlat,coastlon,'displaytype','line','color','b');
% Define point locations for Barbados and Brest
barbados = [13.33 -59.62];
```

brest = [48.36-4.49];
\% Calculate the waypoints along the path.
$[l, g]=$ gcwaypts(barbados(1), barbados(2), brest(1), brest(2), 3); geoshow(l,g,'displaytype','line','color','r',...
'markeredgecolor','r','markerfacecolor','r','marker', 'o'); geoshow(barbados(1), barbados(2),'DisplayType','point',...
'markeredgecolor','k','markerfacecolor','k','marker', 'o')
geoshow(brest(1), brest(2),'DisplayType','point',...
'markeredgecolor','k','markerfacecolor','k','marker', 'o')


## See Also

dreckon| legs|navfix|track

## Introduced before R2006a

## gcxgc

Intersection points for pairs of great circles

## Syntax

[lat,lon] = gcxgc(lat1,lon1,az1,lat2,lon2,az2)
[lat,lon] = gcxgc(lat1,lon1,az1,lat2,lon2,az2,units)
latlon $=$ gcxgc( $\qquad$ )

## Description

[lat,lon] = gcxgc(lat1,lon1,az1,lat2,lon2,az2) returns in lat and lon the locations where pairs of great circles intersect. The great circles are defined using great circle notation, which consists of a point on the great circle and the azimuth at that point along which the great circle proceeds. For example, the first great circle in a pair would pass through the point (lat1,lon1) with an azimuth of az1 (in angular units).

For any pair of great circles, there are two possible intersection conditions: the circles are identical or they intersect exactly twice on the sphere.
[lat,lon] = gcxgc(lat1,lon1,az1,lat2,lon2,az2,units) specifies the angular units used for all inputs, where units is any valid angular unit.
latlon = gcxgc (__ ) returns a single output consisting of the concatenated latitude and longitude coordinates of the great circle intersection points.

## Examples

## Find Intersection Points of Two Great Circles

Given a great circle passing through ( $10^{\circ} \mathrm{N}, 13^{\circ} \mathrm{E}$ ) and proceeding on an azimuth of $10^{\circ}$, where does it intersect with a great circle passing through ( 0 ㅇ, $20^{\circ} \mathrm{E}$ ), on an azimuth of -230 (that is, $3377^{\circ}$ )?

```
[newlat,newlon] = gcxgc(10,13,10,0,20,-23)
```

newlat $=$
$14.3105-14.3105$
newlon =
$13.7838-166.2162$

Note that the two intersection points are always antipodes of each other. As a simple example, consider the intersection points of two meridians, which are just great circles with azimuths of 0 or


```
[newlat,newlon] = gcxgc(10,13,0,0,20,180)
```

newlat $=$
$-9090$

```
newlon =
 0}18
```

The two meridians intersect at the North and South Poles, which is exactly correct.

## Input Arguments

## lat1, lon1 - Coordinate of point on first great circle

numeric scalar | $n$-element numeric vector
Latitude or longitude coordinate of a point on the first great circle in each pair, specified as one of these values.

- A numeric scalar to find the intersection of a single pair of great circles.
- A $n$-element numeric vector to find the intersection of $n$ pairs of great circles.
lat1 and lon1 must have the same length.
Example: 10
Example: [-10 20 90-45]


## az1 - Azimuth of first great circle

positive numeric scalar | $n$-element vector of positive numbers
Azimuth of the first great circle of each pair, in angular units, specified as one of these values.

- A positive numeric scalar to find the intersection of a single pair of great circles.
- A $n$-element vector of positive numbers to find the intersection of $n$ pairs of great circles. The length of az1 matches the length of lat1 and lon1.

Example: 20
Example: [20 1045 45]

## lat2, lon2 - Coordinate of point on second great circle

numeric scalar | numeric vector
Latitude or longitude coordinate of a point on the second great circle in each pair, specified as one of these values.

- A numeric scalar to find the intersection of a single pair of great circles.
- A $n$-element numeric vector to find the intersection of $n$ pairs of great circles.
lat2 and lon2 must have the same length as lat1 and lon1.


## Example: 3

Example: $\left[\begin{array}{llll}3 & 30 & 85 & -45\end{array}\right]$

## az2 - Azimuth of second great circle

positive numeric scalar $\mid n$-element vector of positive numbers
Azimuth of the second great circle of each pair, in angular units, specified as one of these values.

- A positive numeric scalar to find the intersection of a single pair of great circles.
- A $n$-element vector of positive numbers to find the intersection of $n$ pairs of great circles. The length of az2 matches the length of lat2 and lon2.

Example: 15
Example: [15 1545 50]
units - Angular units
'degrees' (default)|'radians'
Angular units, specified as 'degrees ' or 'radians '.

## Output Arguments

## lat, lon - Coordinates of great circle intersections

2 -element vector | $n$-by-2 matrix
Coordinates of great circle intersections, returned as one of the following.

- 2-element vector when you find the intersection of a single pair of great circles.
- $n$-by- 2 matrix when you find the intersection of $n$ pairs of great circles.

If a pair of great circles are identical, then gexgc displays a warning and returns NaNs for the latitude and longitude coordinates of the intersection points.

## latlon - Concatenated coordinates of great circle intersections

4 -element vector | $n$-by-4 matrix
Concatenated coordinates of great circle intersections, returned as one of the following. This output is identical to [lat lon].

- 4-element vector when you find the intersection of a single pair of great circles.
- $n$-by-4 matrix when you find the intersection of $n$ pairs of great circles.

If a pair of great circles are identical, then gcxgc displays a warning and returns NaNs for the latitude and longitude coordinates of the intersection points.

## See Also

antipode|gc2sc|scxsc|gcxsc|rhxrh|crossfix|polyxpoly

## Introduced before R2006a

## gCXSC

Intersection points for great and small circle pairs

## Syntax

```
[newlat,newlon] = gcxsc(gclat,gclon,gcaz,sclat,sclon,scrange)
[newlat,newlon] = gcxsc(..., units)
```


## Description

[newlat, newlon] = gcxsc(gclat,gclon,gcaz,sclat,sclon,scrange) returns the points of intersection of a great circle in great circle notation followed by a small circle in small circle notation. For multiple pairings, the inputs must be column vectors. The results are two-column matrices with the coordinates of the intersection points. If the circles do not intersect, or are identical, two NaNs are returned and a warning is displayed. If the two circles are tangent, the single intersection point is repeated twice.
[newlat, newlon] = gcxsc(..., units) where units specifies the standard angle unit. The default value is 'degrees'.

For a pairing of a great circle with a small circle, there are four possible intersection conditions: the circles are identical (possible because great circles are a subset of small circles), they do not intersect, they are tangent to each other (the small circle interior to the great circle) and hence they intersect once, or they intersect twice.

Great circle notation consists of a point on the great circle and the azimuth at that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of angular arc length.

## Examples

Given a great circle passing through ( $433^{\circ} \mathrm{N}, 0^{\circ}$ ) and proceeding on an azimuth of $10^{\circ}$, where does it intersect with a small circle centered at ( $47{ }^{\circ} \mathrm{N}, 3^{\circ} \mathrm{E}$ ) with an arc length radius of $12^{\circ}$ ?

```
[newlat,newlon] = gcxsc(43,0,10,47,3,12)
newlat =
 35.5068 58.9143
newlon =
 -1.6159 5.4039
```


## See Also

gc2sc|gcxgc|scxsc|rhxrh|crossfix|polyxpoly

## Introduced before R2006a

## geocentric2geodeticLat

(To be removed) Convert geocentric to geodetic latitude

Note The geocentric2geodeticLat function will be removed in a future release. Use the geodeticLatitudeFromGeocentric function instead.

## Syntax

phiI = geocentric2geodeticlat(ecc, phi_g)

## Description

phiI = geocentric2geodeticlat(ecc, phi_g) converts an array of geocentric latitude in radians, phi_g, to geodetic latitude in radians, phiI, on a reference ellipsoid with first eccentricity ecc.

## See Also

geodeticLatitudeFromGeocentric
Introduced in R2006b

## geocentricLatitude

Convert geodetic to geocentric latitude

## Syntax

psi = geocentricLatitude(phi,F)
psi = geocentricLatitude(phi,F,angleUnit)

## Description

psi = geocentricLatitude(phi,F) returns the geocentric latitude corresponding to geodetic latitude phi on an ellipsoid with flattening $F$.
psi = geocentricLatitude(phi,F,angleUnit) specifies the units of input phi and output psi.

## Examples

## Convert Geodetic Latitude to Geocentric Latitude

Create a reference ellipsoid and then convert the geodetic latitude to geocentric latitude. The reference ellipsoid contains a flattening factor.

```
s = wgs84Ellipsoid;
geocentricLatitude(45, s.Flattening)
ans =
 44.8076
```


## Convert Geodetic Latitude Expressed in Radians to Geocentric Latitude

Create a reference ellipsoid and then convert a geodetic latitude expressed in radians to geocentric latitude. The reference ellipsoid contains a flattening factor.

```
s = wgs84Ellipsoid;
geocentricLatitude(pi/3, s.Flattening, 'radians')
ans =
 1.0443
```


## Input Arguments

phi - Geodetic latitude of one or more points
scalar value, vector, matrix, or N-D array

Geodetic latitude of one or more points, specified as a scalar value, vector, matrix, or N-D array. Values must be in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.
Data Types: single | double

## F - Flattening of reference spheroid

scalar
Flattening of reference spheroid, specified as a scalar value.
Data Types: single | double
angleUnit - Unit of measurement for angle
'degrees' (default)|'radians'
Unit of measurement for angle, specified as either 'degrees ' or 'radians '.
Data Types: char

## Output Arguments

## psi - Geocentric latitudes of one or more points

scalar value, vector, matrix, or N-D array
Geocentric latitudes of one or more points, returned as a scalar value, vector, matrix, or N-D array. Values are in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.

## See Also

Functions<br>parametricLatitude | geodeticLatitudeFromGeocentric<br>Objects<br>AuthalicLatitudeConverter|ConformalLatitudeConverter|<br>IsometricLatitudeConverter|RectifyingLatitudeConverter<br>Introduced in R2013a

## geoclip

Clip geographic shape to latitude-longitude limits

## Syntax

clipped = geoclip(shape,latlim,lonlim)

## Description

clipped = geoclip(shape,latlim,lonlim) clips the geographic point, line, or polygon shapes in shape to the latitude and longitude limits in latlim and lonlim, respectively.

To crop raster data that is represented by an array and a geographic raster reference object, use the geocrop function instead.

## Examples

## Clip Shapes in Geographic Coordinates

Read worldwide land areas as a geospatial table. Extract the polygon shapes.

```
land = readgeotable("landareas.shp");
shape = land.Shape
shape=537\times1 object
 16\times1 geopolyshape array with properties:
 NumRegions: [16\times1 double]
 NumHoles: [16\times1 double]
 Geometry: "polygon"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1\times1 geocrs]
```

Specify the latitude and longitude limits for an area containing part of Asia. Then, clip the shapes.

```
latlim = [4 42];
lonlim = [65 130];
clipped = geoclip(shape,latlim,lonlim);
```

Display the clipped shapes on a map with no basemap. Display the bounding box as a rectangle.

```
figure
geobasemap none
hold on
geoplot(clipped)
geoplot(latlim([1 2 2 1 1]),lonlim([1 1 2 2 1]),"k")
```



## Remove Shapes with No Coordinate Data from Output

Read the names and locations of world cities as a geospatial table. Extract the point shapes.

```
cities = readgeotable("worldcities.shp");
shape = cities.Shape
shape =
 318x1 geopointshape array with properties:
 NumPoints: [318x1 double]
 Latitude: [318x1 double]
 Longitude: [318x1 double]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Specify the latitude and longitude limits for an area containing part of Asia. Then, clip the shapes.

```
latlim = [4 42];
lonlim = [65 130];
clipped = geoclip(shape,latlim,lonlim);
```

When a point shape lies outside the specified limits, the clipped shape has no coordinate data and the NumPoints property is 0 . Remove shapes with no coordinate data from the clipped shapes.

```
idx = clipped.NumPoints ~= 0;
clipped = clipped(idx)
clipped =
 57x1 geopointshape array with properties:
 NumPoints: [57x1 double]
 Latitude: [57x1 double]
 Longitude: [57x1 double]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

When a line or polygon shape has no coordinate data, its respective NumParts or NumRegions property is 0 .

## Shift Longitude Limits

Create a line shape in geographic coordinates from global coastline data. The longitude coordinates are in the range of -180 to 180 degrees.

```
load coastlines
coast = geolineshape(coastlat,coastlon)
coast =
 geolineshape with properties:
 NumParts: 241
 Geometry: "line"
 CoordinateSystemType: "geographic"
 GeographicCRS: []
```

Shift the longitude coordinates so they are in the range of 0 to 360 degrees.

```
coastShift = geoclip(coast,[-90 90],[0 360]);
```

Display the shifted line shape on a map.

```
figure
geobasemap none
hold on
geoplot(coastShift)
```



## Input Arguments

## shape - Shape

geopointshape, geolineshape, or geopolyshape object| array of geopointshape, geolineshape, or geopolyshape objects

Shape, specified as a geopointshape, geolineshape, or geopolyshape object or as an array of geopointshape, geolineshape, or geopolyshape objects. When you specify an array, you can include a combination of point, line, and polygon shape objects.

## latlim - Latitude limits

two-element vector
Latitude limits, specified as a two-element vector of the form [slat nlat], where slat is the southern limit in degrees and $n l$ at is the northern limit in degrees.

## Lonlim - Longitude limits

two-element vector
Longitude limits, specified as a two-element vector of the form [wlon elon], where wlon is the western limit in degrees and elon is the eastern limit in degrees.

## Output Arguments

## clipped - Clipped shape

geopointshape, geolineshape, or geopolyshape object | array of geopointshape, geolineshape, or geopolyshape objects

Clipped shape, returned as a geopointshape, geolineshape, or geopolyshape object or as an array of geopointshape, geolineshape, or geopolyshape objects.
clipped has the same type and size as shape.
If an element of shape lies completely outside the specified limits, then the corresponding element of clipped does not contain coordinate data. When a point, line, or polygon shape does not contain coordinate data, its respective NumPoints, NumParts, or NumRegions property is 0.

## Tips

- If you clip a shape within a geospatial table, the function does not modify any attributes of the table.
- If you do not know the latitude and longitude limits you want, you can open and explore a geographic axes by using the geoaxes function. Return the limits of the axes by using the geolimits function or interactively select the southwest and northeast corners of a bounding box by using the ginput function.


## See Also

Functions
mapclip|geocrop
Topics
"Create Geospatial Tables"

## Introduced in R2022a

## geocontourxy

Contour grid in local system with latitude-longitude results

## Syntax

[contourLines, contourPolygons] = geocontourxy(X,Y,Z,lat0,lon0,h0)
$\qquad$ ] = geocontourxy( $\qquad$ ,Name, Value)

## Description

[contourLines,contourPolygons] = geocontourxy(X,Y,Z,lat0,lon0,h0) returns line and polygon geoshapes containing contour lines and contour fill polygons, respectively. This function is non-graphical. You can plot the return values using geoshow, if desired.
[___ ] = geocontourxy ( $\qquad$ , Name, Value) specifies name-value pairs that control aspects of the operation. Parameter names can be abbreviated and are case-insensitive.

## Examples

## Calculate Contour Lines and Polygons for Area Near Hawaii

Define a set of $X$ and $Y$ coordinates and create contour lines and contour polygons.

```
X = -150000:10000:150000;
Y = 0:10000:300000;
[xmesh, ymesh] = meshgrid(X/50000, (Y - 150000)/50000);
Z = 8 + peaks(xmesh, ymesh);
lat0 = dm2degrees([21 18]);
lon0 = dm2degrees([-157 49]);
h0 = 300;
levels = 0:2:18;
[contourLines, contourPolygons] = geocontourxy(X,Y,Z,lat0,lon0,h0, ...
 'LevelList',levels,'XYRotation',120)
contourLines =
 8x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (8 features concatenated with 7 delimiters)
 Latitude: [21.1171 21.0296 20.9819 20.9814 20.9880 21.0702 21.1122 ...]
 Longitude: [-158.5364 -158.5053 -158.4015 -158.3987 -158.3903 ...]
 Height: [769.9110 771.5545 686.9961 684.5002 672.2181 584.6248 ...]
 Feature properties:
 ContourLevel: [2 4 6 8 10 12 14 16]
contourPolygons =
 9x1 geoshape vector with properties:
```

```
Collection properties:
 Geometry: 'polygon'
 Metadata: [1x1 struct]
Vertex properties:
 (9 features concatenated with 8 delimiters)
 Latitude: [21.1171 21.1630 21.1671 21.1431 21.1122 21.0702 20.9880 ...]
 Longitude: [-158.5364 -158.5114 -158.4450 -158.3876 -158.3542 ...]
 Height: [769.9110 725.7670 650.4579 599.1402 578.2085 584.6248 ...]
Feature properties:
 LowerContourLevel: [0 2 4 6 8 10 12 14 16]
 UpperContourLevel: [2 4 6 8 10 12 14 16 18]
```

Display Hawaii on a map, add a marker, and then display the polygons returned by geocontourxy on the map.

```
figure
usamap([18.5 22.5],[-161 -154])
hawaii = shaperead('usastatehi.shp', 'UseGeoCoords', true,...
 'Selector',{@(name) strcmpi(name,'Hawaii'), 'Name'});
geoshow(hawaii)
geoshow(lat0,lon0,'DisplayType','point','Marker','o',...
 'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',10)
cmap = parula(1 + length(levels));
for k = 1:length(contourPolygons)
 lat = contourPolygons(k).Latitude;
 lon = contourPolygons(k).Longitude;
 geoshow(lat,lon,'Display','polygon', ...
 'FaceColor',cmap(k,:),'FaceAlpha',0.5,'EdgeColor','none')
end
geoshow(contourLines.Latitude,contourLines.Longitude,'Color','black')
```



## Input Arguments

## $X-X$-component of a mesh that locates each element of $\boldsymbol{Z}$ in a local $x-y$ plane

vector or matrix
$X$-component of a mesh that locates each element of $Z$ in a local $x$ - $y$ plane, specified as a vector or matrix. geocontourxy assumes that units are meters unless you provide a Spheroid input, in which case the units of your input must match theLengthUnit property of the Spheroid object.

Data Types: single | double

## $Y-Y$-component of a mesh that locates each element of $\mathbf{Z}$ in a local $\boldsymbol{x}$ - $\boldsymbol{y}$ plane vector or matrix

Y-component of a mesh that locates each element of $Z$ in a local $x-y$ plane. specified as a vector or matrix. geocontourxy assumes that units are meters unless you provide a Spheroid input, in which case the units of your input must match theLengthUnit property of the Spheroid object.
Data Types: single | double

## Z - Data to be contoured

2-D array
Data to be contoured, specified as a 2-D array.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64

## lat0 - Geodetic latitude of local origin (reference) point <br> scalar value in units of degrees

Geodetic latitude of local origin (reference) point, specified as a scalar value in units of degrees.
Data Types: single | double
Lon0 - Geodetic longitude of local origin (reference) point
scalar value in units of degrees
Geodetic longitude of local origin (reference) point, specified as a scalar value in units of degrees.
Data Types: single | double

## h0 - Ellipsoidal height of local origin (reference) point

scalar value
Ellipsoidal height of local origin (reference) point, specified as a scalar value. geocontourxy assumes that units are meters unless you provide a Spheroid input, in which case the units of your input must match the unit specified in theLengthUnit property of the Spheroid object.
Data Types: single | double

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [contourLines, contourPolygons] =
geocontourxy (X,Y,Z,lat0,lon0,h0,'LevelList', levels, 'XYRotation',120)

## LevelList - Contour levels

vector of $Z$-values
Contour levels, specified as a vector of Z-values. By default, the geocontourxy function chooses levels that span the range of values.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

## XYRotation - Rotation angle of the local $x-y$ system

0 (default) | scalar value in units of degrees
Rotation angle of the local $x-y$ system, measured counterclockwise from the $x E a s t-y N o r t h ~ s y s t e m, ~$ specified as a scalar value in units of degrees.
Data Types: single | double

## Spheroid - Reference spheroid

WGS84 reference ellipsoid (default) | referenceEllipsoid | oblateSpheroid | referenceSphere

Reference spheroid, specified as a referenceEllipsoid, oblateSpheroid, or referenceSphere object. Use the constructor for one of these three classes, or the wgs84Ellipsoid function, to construct a Mapping Toolbox spheroid object. (You cannot directly pass in to geocontourxy the name of your spheroid. Instead, pass that name to referenceEllipsoid or referenceSphere and
use the resulting object.) By default, geocontourxy uses the WGS84 reference ellipsoid with units of meters.

## Output Arguments

## contourLines - Contour lines

line geoshape
Contour lines, returned as a line geoshape with one element per contour level. Latitude and Longitude properties contain contour line vertices in degrees. The contour level value of the $k$-th element is stored in the ContourLevel feature property of contourLines ( $k$ ). A third vertex property, Height, contains the ellipsoidal height of each vertex. In combination with Latitude and Longitude, it completes the definition of the 3-D location of the contour line in the plane that contains the local origin and is parallel to the tangent plane at the origin latitude and longitude.

## contourPolygons - Contour polygons <br> polygon geoshape

Contour polygons, returned as a polygon geoshape with one element (contour fill polygon) per contour interval. Latitude and Longitude properties contain the vertices of the contour fill polygons, specified in degrees. The LowerContourLevel and UpperContourLevel properties of contourPolygons ( $k$ ) store the limits of the $k$-th contour interval. As in the case of lines, a third vertex property, Height, is included.

See Also<br>contourm | contourfm | geodetic2enu | enu2geodetic<br>Topics<br>"Create and Display Polygons"

Introduced in R2016a

## geocrop

Crop geographic raster

## Syntax

$[B, R B]=$ geocrop( $A, R A$, latlim,lonlim)

## Description

$[B, R B]=$ geocrop(A,RA,latlim,lonlim) crops the raster specified by $A$ and raster reference $R A$ and returns the cropped raster $B$ and raster reference $R B$. The returned raster is cropped to geographic limits in degrees close to those specified by latlim and lonlim.

To clip vector data represented by a point, line, or polygon shape in geographic coordinates, use the geoclip function instead.

## Examples

## Crop Geographic Raster

Crop a geographic raster and display the cropped raster on a map.
First, load elevation raster data and a geographic cells reference object for the Korean peninsula. Then, crop the raster to the limits specified by latlim and lonlim.

```
load korea5c
latlim = [34.25 38.72];
lonlim = [125.85 129.92];
[B,RB] = geocrop(korea5c,korea5cR,latlim,lonlim);
```

Display the cropped raster as a surface on a map. Apply a colormap appropriate for elevation data using the demcmap function.

```
worldmap(latlim,lonlim)
geoshow(B,RB,'DisplayType','surface')
demcmap(B)
```



## Shift Longitude Limits

Shift the longitude limits of a raster with limits that span 360 degrees using the geocrop function.
Then, display the shifted data as a surface on a map.
First, load elevation raster data for the world and a geographic cells reference object. Then, shift the longitude limits of the raster from [ 0,360 ] to $[-180,180]$.

```
load topo60c
latlim = topo60cR.LatitudeLimits;
[B,RB] = geocrop(topo60c,topo60cR,latlim,[-180 180]);
```

Compare the rasters by querying their LongitudeLimits properties.

```
topo60cR.LongitudeLimits
```

ans $=1 \times 2$

0360

RB.LongitudeLimits
ans $=1 \times 2$

Display the shifted data as a surface on a map. Move the meridian labels to the bottom of the map using the ml abel function. Specify meridian labels to display using the MLabelLocation property. Then, apply a colormap appropriate for topographic data using the demcmap function. Note that the shifted longitude limits appear at the edges of the map.

```
worldmap(RB.LatitudeLimits,RB.LongitudeLimits)
geoshow(B,RB,'DisplayType','surface')
mlabel('south')
setm(gca,'MLabelLocation',-180:90:180)
demcmap(B)
```



## Input Arguments

## A - Geographic raster

array
Geographic raster, specified as an $M$-by- $N$ or $M$-by- $N$-by- $P$ numeric or logical array.

## RA - Raster reference

GeographicCellsReference object | GeographicPostingsReference object
Raster reference for A, specified as a GeographicCellsReference object or GeographicPostingsReference object.

## latlim - Latitude limits

two-element vector
Latitude limits, specified as a two-element numeric vector of the form [slat nlat], where slat is the southernmost limit in degrees and nl at is the northernmost limit in degrees.

## Lonlim - Longitude limits

two-element vector
Longitude limits, specified as a two-element numeric vector of the form [wlon elon], where wlon is the westernmost limit in degrees and elon is the easternmost limit in degrees.

## Output Arguments

B - Cropped geographic raster
array
Cropped geographic raster, returned as a numeric or logical array. The data type and size of $B$ matches the data type and size of A.

If the limits specified by latlim and lonlim do not intersect the raster specified by $A$ and RA, then $B$ is empty.

## RB - Raster reference

GeographicCellsReference object | GeographicPostingsReference object
Raster reference for B, returned as a GeographicCellsReference object or GeographicPostingsReference object. The object type of RB matches the object type of RA.

The exact latitude and longitude limits of RB do not match the limits specified by latlim and lonlim, unless they coincide with a cell boundary or posting location. Otherwise, the limits of RB are slightly larger than latlim and lonlim.

If the limits specified by latlim and lonlim do not intersect the raster specified by $A$ and $R A$, then RB is empty.

## See Also

mapcrop|geoclip|georesize

## Introduced in R2020a

## geocrs

Geographic coordinate reference system object

## Description

A geographic coordinate reference system (CRS) provides information that assigns latitude, longitude, and height coordinates to physical locations. Geographic CRSs consist of a datum, a prime meridian, and an angular unit of measurement.

Projected CRSs consist of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS. For more information about projected CRSs, see projcrs.

## Creation

There are several ways to create geographic CRS objects, including:

- Import raster data using functions such as readgeoraster or wms read, and then query the GeographicCRS property of the returned raster reference object.
- Get information about a shapefile using the shapeinfo function, and then query the CoordinateReferenceSystem field of the returned structure.
- Access the geographic CRS of a projected CRS by querying the GeographicCRS property of a projers object.
- Use the geocrs function (described here).


## Syntax

```
g = geocrs(code)
g = geocrs(code,'Authority',authority)
g = geocrs(wkt)
```


## Description

$g=$ geocrs (code) creates a geographic CRS object using the EPSG code specified by code.
$\mathrm{g}=$ geocrs(code, 'Authority', authority) creates a geographic CRS object using the specified code and authority.
$\mathrm{g}=$ geocrs(wkt) creates a geographic CRS object using a specified well-known text (WKT) string representation.

## Input Arguments

code - Geographic CRS code
positive integer | string scalar | character vector

Geographic CRS code, specified as a positive integer, string scalar, or character vector. By default, the geocrs function assumes the code argument refers to an EPSG code. To specify other types of codes, use the 'Authority ' name-value pair.

If referring to an EPSG or ESRI code, specify this argument as a positive integer. If referring to an IGNF code, specify this argument as a string scalar or character vector.

For information on valid EPSG codes, see the EPSG home page.

## authority - Authority

'EPSG' (default)|'ESRI'|'IGNF'
Authority, specified as 'EPSG', 'ESRI', or 'IGNF '. This argument specifies which authority the geocrs function uses to determine the properties of the created geographic CRS object. If you do not specify an authority, then the geocrs function uses 'EPSG'.

## wkt - Well-known text

string scalar | character vector
Well-known text (WKT), specified as a string scalar or character vector. You can use well-known text in either the WKT 1 or WKT 2 standard.

## Properties

## Name - CRS name

string scalar
This property is read-only.
CRS name, returned as a string scalar.
Data Types: string

## Datum - Datum name

string scalar
This property is read-only.
Datum name, returned as a string scalar.
Data Types: string
Spheroid - Reference spheroid
referenceEllipsoid object|referenceSphere object|oblateSpheroid object
This property is read-only.
Reference spheroid used by the datum, returned as a referenceEllipsoid object, referenceSphere object, or oblateSpheroid object.
Data Types: string

## PrimeMeridian - Longitude origin offset from Greenwich double

This property is read-only.

Longitude origin offset from Greenwich, returned as a double. The units of the PrimeMeridian property match the value of the AngleUnit property.

Data Types: double

## AngleUnit - Angle unit

string scalar
This property is read-only.
Angle unit, returned as a string scalar. The typical values are "degree" and "radian".
Data Types: string

## Object Functions

wktstring Well-known text string
isequal Compare two projers or geocrs objects for equivalence

## Examples

## Get Geographic CRS from EPSG Code

Create a geographic CRS object by specifying an EPSG code.

```
g = geocrs(6668)
g =
 geocrs with properties:
 Name: "JGD2011"
 Datum: "Japanese Geodetic Datum 2011"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```


## Get Geographic CRS from ESRI Code

Create a geographic CRS object from an ESRI code by using the 'Authority' name-value pair.
g = geocrs(37220,'Authority','ESRI')
g =
geocrs with properties:
Name: "GCS_Guam_1963"
Datum: "D_Guam_1963"
Spheroid: [1x1 referenceEllipsoid]
PrimeMeridian: 0
AngleUnit: "degree"

## Get Geographic CRS from IGNF Code

Create a geographic CRS object from an IGNF code by using the 'Authority ' name-value pair. Specify the code using a string or character vector.

```
g = geocrs('RGFG95G','Authority','IGNF')
g =
 geocrs with properties:
 Name: "RGFG95 geographiques (dms)"
 Datum: "Reseau Geodesique Francais Guyane 1995"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```


## Get Geographic CRS from Projection File

Import a WKT projection file as a character vector using the fileread function. Then, create a geographic CRS object by specifying the vector.

```
wkt = fileread('landareas.prj');
g = geocrs(wkt)
g =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```


## Get Geographic CRS from Imported Raster Data

Import raster data as an array and a geographic reference object using the readgeoraster function. Then, get the geographic CRS by querying the GeographicCRS property of the reference object.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
R.GeographicCRS
ans =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```

Alternatively, return information about the same file as a RasterInfo object using the georasterinfo function. Then, get the geographic CRS by querying the CoordinateReferenceSystem property of the object.

```
info = georasterinfo('n39 w106 3arc v2.dt1');
info.CoordinateReferenceSystem
ans =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```


## Find Reference Ellipsoid for Geographic CRS

Find the reference ellipsoid for a geographic CRS by creating a geocrs object and accessing its Spheroid property.

```
g = geocrs(4957);
g.Spheroid
ans =
referenceEllipsoid with defining properties:
 Code: 7019
 Name: 'GRS 1980'
 LengthUnit: 'meter'
 SemimajorAxis: 6378137
 SemiminorAxis: 6356752.31414036
 InverseFlattening: 298.257222101
 Eccentricity: 0.0818191910428158
 and additional properties:
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```


## See Also

## Functions

fileread

## Objects

projcrs| referenceEllipsoid

## Topics

"Reference Spheroids"
External Websites
EPSG home page

Introduced in R2020b

## geodetic2aer

Transform geodetic coordinates to local spherical

## Syntax

```
[az,elev,slantRange] = geodetic2aer(lat,lon,h,lat0,lon0,h0,spheroid)
[az,elev,slantRange] = geodetic2aer(
```

$\qquad$

``` , angleUnit)
```


## Description

[az,elev,slantRange] = geodetic2aer(lat,lon,h,lat0,lon0,h0, spheroid) transforms the geodetic coordinates specified by lat, lon, and $h$ to the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange. Specify the origin of the local AER system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[az,elev,slantRange] = geodetic2aer(__ , angleUnit) specifies the units for latitude, longitude, azimuth, and elevation. Specify angleUnit as 'degrees' (the default) or 'radians '.

## Examples

## Calculate AER Coordinates from Geodetic Coordinates

Find the AER coordinates of the Matterhorn with respect to Zermatt, Switzerland, using the geodetic coordinates of Zermatt and the Matterhorn.

First, specify the reference spheroid as WGS 84. For more information about WGS 84, see "Reference Spheroids". The units for ellipsoidal height and slant range must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.

```
wgs84 = wgs84Ellipsoid;
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is Zermatt. Specify h0 as ellipsoidal height in meters.

```
lat0 = 46.017;
lon0 = 7.750;
h0 = 1673;
```

Specify the geodetic coordinates of the point of interest. In this example, the point of interest is the Matterhorn. Specify h as ellipsoidal height in meters.

```
lat = 45.977;
lon = 7.658;
h = 4531;
```

Then, calculate the AER coordinates of the Matterhorn with respect to Zermatt. To view the results in standard notation, specify the display format as shortG.

```
format shortG
[az,elev,slantRange] = geodetic2aer(lat,lon,h,lat0,lon0,h0,wgs84)
az =
 238.08
elev =
 18.744
slantRange =
 8876.8
```

Reverse the transformation using the aer2geodetic function.

```
[lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,wgs84)
lat =
 45.977
lon =
 7.658
h =
 4 5 3 1
```


## Input Arguments

## lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h - Ellipsoidal height

scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

Data Types: single|double

## Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## angleUnit - Angle units

'degrees' (default) | 'radians'
Angle units, specified as 'degrees' (the default) or 'radians '.

## Output Arguments

## az - Azimuth angles

scalar | vector | matrix | N-D array

Azimuth angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Values are specified in degrees within the half-open interval [0360). To use values in radians, specify the angleUnit argument as 'radians '.

## elev - Elevation angles

scalar | vector $\mid$ matrix | N-D array
Elevation angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N -D array. Elevations are measured with respect to a plane that is perpendicular to the normal of the spheroid surface. If the local origin is on the surface of the spheroid ( $\mathrm{h} 0=0$ ), then the plane is tangent to the spheroid.

Values are specified in degrees within the closed interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

## slantRange - Distances from local origin

scalar | vector | matrix | N-D array
Distances from the local origin, returned as a scalar, vector, matrix, or N-D array. Each distance is calculated along a straight, 3-D, Cartesian line. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

aer2geodetic|ecef2aer|geodetic2enu|geodetic2ned
Topics
"Choose a 3-D Coordinate System"
Introduced in R2012b

## geodetic2ecef

Transform geodetic coordinates to geocentric Earth-centered Earth-fixed

## Syntax

```
[X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h)
[X,Y,Z] = geodetic2ecef(
```

$\qquad$

``` ,angleUnit)
[X,Y,Z] = geodetic2ecef(lat,lon,h,spheroid)
```


## Description

[ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$ = geodetic2ecef(spheroid, lat,lon,h) transforms the geodetic coordinates specified by lat, lon, and $h$ to the geocentric Earth-Centered Earth-Fixed (ECEF) Cartesian coordinates specified by $X, Y$, and $Z$. Specify spheroid as the reference spheroid for the geodetic coordinates.
[X,Y,Z] = geodetic2ecef( $\qquad$ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.
$[X, Y, Z]=$ geodetic2ecef(lat,lon,h,spheroid) is supported but not recommended. Unlike the previous syntaxes, specify lat and lon in radians. Specify spheroid as either a reference spheroid or an ellipsoid vector of the form [semimajor_axis, eccentricity]. Specify $h$ in the same units as the length unit of the spheroid argument. Additionally, the outputs $X, Y$, and $Z$ return in the same units as the length unit of the spheroid argument.

## Examples

## Calculate ECEF Coordinates Using Geodetic Coordinates

Find the ECEF coordinates of Paris, France, using its geodetic coordinates.
First, specify the reference spheroid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for the ellipsoidal height and ECEF coordinates must match the units specified by the LengthUnit property of the reference spheroid.

```
wgs84 = wgs84Ellipsoid('kilometer');
```

Specify the geodetic coordinates of Paris. Specify $h$ as ellipsoidal height in kilometers.

```
lat = 48.8562;
lon = 2.3508;
h = 0.0674;
```

Then, calculate the ECEF coordinates of Paris. In this example, $x$ and $y$ display in scientific notation.

```
[x,y,z] = geodetic2ecef(wgs84,lat,lon,h)
x = 4.2010e+03
y = 172.4603
```

$z=4.7801 e+03$
Reverse the transformation using the ecef2geodetic function.
[lat,lon,h] = ecef2geodetic(wgs84, $x, y, z$ )
lat $=48.8562$
lon $=2.3508$
$h=0.0674$

## Input Arguments

spheroid - Reference spheroid
referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

## lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single | double

## Lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single | double
h - Ellipsoidal height
scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## X - ECEF x-coordinates

scalar | vector | matrix | N-D array
ECEF $x$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Y - ECEF $\boldsymbol{y}$-coordinates
scalar | vector | matrix | N-D array
ECEF $y$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Z - ECEF z-coordinates

scalar | vector | matrix | N-D array
ECEF $z$-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Tips

- The geocentric Cartesian (ECEF) coordinate system is fixed with respect to the Earth, with its origin at the center of the spheroid and its positive $x$-, $y$-, and $z$-axes intersecting the surface at the following points:

	Latitude	Longitude	Notes
$x$-axis	0	0	Equator at the Prime Meridian
$y$-axis	0	90	Equator at 90-degrees East
$z$-axis	90	0	North Pole

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.

## See Also

ecef2geodetic|ecef0ffset|geodetic2aer|geodetic2ned|geodetic2enu|ecef2enu
Topics
"Choose a 3-D Coordinate System"

## Introduced in R2012b

## geodetic2enu

Transform geodetic coordinates to local east-north-up

## Syntax

[xEast,yNorth,zUp] = geodetic2enu(lat,lon,h,lat0,lon0,h0,spheroid)
[xEast,yNorth,zUp] = geodetic2enu(___, angleUnit)

## Description

[xEast,yNorth,zUp] = geodetic2enu(lat,lon,h,lat0,lon0,h0, spheroid) transforms the geodetic coordinates specified by lat, lon, and $h$ to the local east-north-up (ENU) Cartesian coordinates specified by xEast, yNorth, and zDown. Specify the origin of the local ENU system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[xEast,yNorth,zUp] = geodetic2enu( $\qquad$ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate ENU Coordinates from Geodetic Coordinates

Find the ENU coordinates of the Matterhorn with respect to Zermatt, Switzerland, using their geodetic coordinates.

First, specify the reference spheroid as WGS84. For more information about WGS84, see "Reference Spheroids". The units for ellipsoidal height and ENU coordinates must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.

```
wgs84 = wgs84Ellipsoid;
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is Zermatt, Switzerland. Specify h0 as ellipsoidal height in meters.

```
lat0 = 46.017;
lon0 = 7.750;
h0 = 1673;
```

Specify the geodetic coordinates of the point of interest. In this example, the point of interest is the Matterhorn. Specify h as ellipsoidal height in meters.

```
lat = 45.976;
lon = 7.658;
h = 4531;
```

Then, calculate the ENU coordinates of the Matterhorn with respect to Zermatt. View the results in standard notation by specifying the display format as shortG.

```
format shortG
[xEast,yNorth,zUp] = geodetic2enu(lat,lon,h,lat0,lon0,h0,wgs84)
xEast =
 -7134.8
yNorth =
 -4556.3
zUp =
 2852.4
```

Reverse the transformation using the enu2geodetic function.

```
[lat,lon,h] = enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,wgs84)
lat =
 45.976
lon =
 7.658
h =
 4 5 3 1
```


## Input Arguments

## lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

Data Types: single | double

## lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h - Ellipsoidal height

scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single \| double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## xEast - ENU x-coordinates

scalar | vector | matrix | N-D array
ENU $x$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument.

For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## yNorth - ENU y-coordinates

scalar | vector | matrix | N-D array
ENU $y$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
zUp - ENU z-coordinates
scalar | vector | matrix | N-D array
ENU $z$-coordinates of one or more points in the local ENU system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

ecef2enu|enu2geodetic|geodetic2aer|geodetic2ned

## Topics

"Choose a 3-D Coordinate System"

## Introduced in R2012b

## geodetic2ned

Transform geodetic coordinates to local north-east-down

## Syntax

[xNorth, yEast,zDown] = geodetic2ned(lat,lon, h,lat0,lon0,h0,spheroid)
$\qquad$ ] = geodetic2ned( $\qquad$ , angleUnit)

## Description

[xNorth,yEast,zDown] = geodetic2ned(lat,lon,h,lat0,lon0,h0, spheroid) transforms the geodetic coordinates specified by lat, lon, and $h$ to the local north-east-down (NED) Cartesian coordinates specified by xNorth, yEast, and zDown. Specify the origin of the local NED system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = geodetic2ned (___ , , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

## Examples

## Calculate NED Coordinates from Geodetic Coordinates

Find the NED coordinates of Mount Mansfield with respect to a nearby aircraft, using their geodetic coordinates.

First, specify the reference spheroid as WGS 84. For more information about WGS 84, see "Reference Spheroids". The units for the ellipsoidal height and NED coordinates must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.

```
wgs84 = wgs84Ellipsoid;
```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the aircraft. Specify h0 as ellipsoidal height in meters.

```
lat0 = 44.532;
lon0 = -72.782;
h0 = 1699;
```

Specify the geodetic coordinates of the point of interest. In this example, the point of interest is Mount Mansfield. Specify h as ellipsoidal height in meters.

```
lat = 44.544;
lon = -72.814;
h = 1340;
```

Then, calculate the NED coordinates of Mount Mansfield with respect to the aircraft. Since the ellipsoidal height of the aircraft is greater than the height of Mount Mansfield, a passenger needs to look down to see the mountaintop. The $z$-axis of an NED coordinate system points down. Thus, the
value of zDown is positive. View the results in standard notation by specifying the display format as shortG.

```
format shortG
[xNorth,yEast,zDown] = geodetic2ned(lat,lon,h,lat0,lon0,h0,wgs84)
xNorth =
 1334.3
yEast =
 -2543.6
zDown =
 359.65
```

Reverse the transformation using the ned2geodetic function.

```
[lat,lon,h] = ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0,wgs84)
```

lat =
44.544
lon =
$-72.814$
$\mathrm{h}=$
1340

## Input Arguments

## lat - Geodetic latitude

scalar | vector | matrix | N-D array
Geodetic latitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

Data Types: single | double

## lon - Geodetic longitude

scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

## Data Types: single | double

## h - Ellipsoidal height

scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## lat0 - Geodetic latitude of local origin

scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

## Lon0 - Geodetic longitude of local origin

scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single | double

## h0 - Ellipsoidal height of local origin

scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

## spheroid - Reference spheroid

referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## xNorth - NED x-coordinates

scalar | vector | matrix | N-D array

NED $x$-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## yEast - NED y-coordinates

scalar | vector | matrix | N-D array
NED $y$-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## zDown - NED z-coordinates

scalar | vector | matrix | N-D array
NED $z$-coordinates of one or more points in the local NED system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

## See Also

ecef2ned | ned2geodetic | geodetic2aer | geodetic2enu

## Topics

"Choose a 3-D Coordinate System"

## Introduced in R2012b

## geodetic2geocentricLat

(To be removed) Convert geodetic to geocentric latitude

Note The geodetic2geocentricLat function will be removed in a future release. Use the geocentricLatitude function instead.

## Syntax

phi_g = geodetic2geocentriclat(ecc, phi)

## Description

phi_g = geodetic2geocentriclat(ecc, phi) converts an array of geodetic latitude in radians, phi, to geocentric latitude in radians, phi_g, on a reference ellipsoid with first eccentricity ecc.

## See Also

geocentricLatitude
Introduced in R2006b

## geodeticLatitudeFromGeocentric

Convert geocentric to geodetic latitude

## Syntax

phi = geodeticLatitudeFromGeocentric(psi,F)
phi = geodeticLatitudeFromGeocentric(psi, F,angleUnit)

## Description

phi = geodeticLatitudeFromGeocentric (psi,F) returns the geodetic latitude corresponding to geocentric latitude psi on an ellipsoid with flattening $F$.
phi = geodeticLatitudeFromGeocentric(psi,F,angleUnit) specifies the units of input psi and output phi.

## Examples

## Convert Geocentric Latitude to Geodetic Latitude

Create a reference ellipsoid.
s = wgs84Ellipsoid;
Convert the geocentric latitude to geodetic latitude. The reference ellipsoid contains a flattening factor.

```
geodeticLatitudeFromGeocentric(45, s.Flattening)
ans = 45.1924
```


## Convert Geocentric Latitude Expressed in Radians to Geodetic Latitude

Create a reference ellipsoid.
s = wgs84Ellipsoid;
Convert a geocentric latitude expressed in radians to geodetic latitude. The reference ellipsoid contains a flattening factor.

```
geodeticLatitudeFromGeocentric(pi/3, s.Flattening, 'radians')
ans = 1.0501
```


## Input Arguments

## psi - Geocentric latitude of one or more points

scalar value, vector, matrix, or N-D array
Geocentric latitudes of one or more points, returned as a scalar value, vector, matrix, or N-D array. Values are in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.
Data Types: single | double
F - Flattening of reference spheroid
scalar
Flattening of reference spheroid, specified as a scalar value.
Data Types: double
angleUnit - Unit of measurement for angle
'degrees' (default)|'radians'
Unit of measurement for angle, specified as either 'degrees ' or 'radians'.
Data Types: char

## Output Arguments

phi - Geodetic latitude of one or more points
scalar value, vector, matrix, or N-D array
Geodetic latitude of one or more points, returned as a scalar value, vector, matrix, or N-D array. Values must be in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.

## See Also

## Functions

```
geodeticLatitudeFromParametric | geocentricLatitude
Objects
AuthalicLatitudeConverter|ConformalLatitudeConverter|
IsometricLatitudeConverter|RectifyingLatitudeConverter
```

Introduced in R2013a

## geodeticLatitudeFromParametric

Convert parametric to geodetic latitude

## Syntax

```
phi = geodeticLatitudeFromParametric(beta,F)
phi = geodeticLatitudeFromParametric(beta,F,angleUnit)
```


## Description

phi = geodeticLatitudeFromParametric(beta,F) returns the geodetic latitude corresponding to parametric latitude beta on an ellipsoid with flattening $F$.
phi = geodeticLatitudeFromParametric(beta, F, angleUnit) specifies the units of input beta and output phi.

## Examples

## Convert Parametric Latitude to Geodetic Latitude

Create a reference ellipsoid and then convert the parametric latitude to geodetic latitude. The reference ellipsoid contains a flattening factor.

```
s = wgs84Ellipsoid;
```

geodeticLatitudeFromParametric(45, s.Flattening)
ans $=$
45.0962

## Convert Parametric Latitude Expressed in Radians to Geodetic Latitude

Create a reference ellipsoid and then convert a parametric latitude expressed in radians to geodetic latitude. The reference ellipsoid contains a flattening factor.
s = wgs84Ellipsoid;
geodeticLatitudeFromParametric(pi/3, s.Flattening, 'radians')
ans $=$
1.0487

## Input Arguments

## beta - Parametric latitude of one or more points

scalar value, vector, matrix, or N-D array

Parametric latitude of one or more points, specified as a scalar value, vector, matrix, or N-D array. Values must be in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.
Data Types: single | double

## F - Flattening of reference spheroid

scalar
Flattening of reference spheroid, specified as a scalar value.
Data Types: double
angleUnit - Unit of measurement for angle
'degrees' (default)|'radians'
Unit of measurement for angle, specified as either 'degrees ' or 'radians '.
Data Types: char

## Output Arguments

## phi - Geodetic latitudes of one or more points

scalar value, vector, matrix, or N-D array
Geodetic latitudes of one or more points, returned as a scalar value, vector, matrix, or N-D array. Values are in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.

## See Also

## Functions

geodeticLatitudeFromGeocentric| parametricLatitude
Objects
AuthalicLatitudeConverter|ConformalLatitudeConverter|
IsometricLatitudeConverter|RectifyingLatitudeConverter
Introduced in R2013a

## geoglobe

Create geographic globe

## Syntax

geoglobe(parent)
geoglobe(parent, Name, Value)
$\mathrm{g}=$ geoglobe( $\qquad$ )

## Description

geoglobe(parent) creates a geographic globe in the specified figure, panel, or tab group. The figure must be created using the uifigure function. For information about navigating the globe, see "Geographic Globe Navigation" on page 1-494.

The geographic globe requires hardware graphics support for WebGL ${ }^{\text {TM }}$. For more information, see "Tips" on page 1-495.
geoglobe(parent, Name, Value) specifies additional options for the globe using one or more name-value pair arguments. Specify the options after all other input arguments. For a list of options, see GeographicGlobe.
$\mathrm{g}=$ geoglobe ( _ _ ) returns a GeographicGlobe object. This syntax is useful for controlling the properties of the geographic globe.

## Examples

## Display Geographic Globe

Display a geographic globe in a figure created using the uifigure function.

```
uif = uifigure;
g = geoglobe(uif);
```



## Specify and Change Basemap

Create a geographic globe. Specify the basemap using a name-value pair.
uif = uifigure;
g = geoglobe(uif,'Basemap','landcover');


Change the basemap of an existing geographic globe by using the geobasemap function. geobasemap(g,'streets-dark')


## Display Geographic Globes in Tabs

Create a tab group that fills an entire figure. To make the group fill the figure, specify the width and height of the group as the width and height of the figure. Then, display a geographic globe in each tab.

```
uif = uifigure;
pos = [0 0 uif.Position(3) uif.Position(4)];
tgroup = uitabgroup(uif,'Position',pos);
tab1 = uitab(tgroup,'Title','Default Basemap');
g1 = geoglobe(tab1);
tab2 = uitab(tgroup,'Title','Gray Terrain Basemap');
g2 = geoglobe(tab2,'Basemap','grayterrain');
```



## Input Arguments

## parent - Parent container

Figure object created using uifigure | Panel object | Tab object
Parent container, specified as a Figure object created using the uifigure function, a Panel object, or a Tab object.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: geoglobe(uif, 'Basemap', 'streets') sets the basemap of the geographic globe

Note The properties listed here are only a subset. For a full list, see GeographicGlobe.

## Basemap - Map to plot data on

'satellite' (default) | 'streets' | 'streets-light' | 'streets-dark' | custom basemap | ...
Map on which to plot data, specified as one of the values listed in the table. Six of the basemaps in the table are tiled data sets created using Natural Earth. Five of the basemaps are high-zoom-level maps hosted by Esri.



All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included with MATLAB and Mapping Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are not available for download. For more about downloading basemaps and changing the default basemap on your local system, see "Access Basemaps and Terrain for Geographic Globe".

The basemaps hosted by Esri update periodically. As a result, you might see differences in your visualizations over time.

Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.
Example: $g$ = geoglobe(uifigure,'Basemap','bluegreen')
Example: g.Basemap = 'bluegreen'
Data Types: char \| string

## Terrain - Terrain data

'gmted2010' (default) | 'none' | string scalar | character vector
Terrain data, specified as one of these values:

- 'gmted2010' - Tiled global terrain derived from the GMTED2010 model by the U.S. Geological Survey (USGS) and National Geospatial-Intelligence Agency (NGA) and hosted by MathWorks. Internet access is required to use 'gmted2010'.
- 'none' - No terrain.
- String scalar or character vector - Name of custom terrain added using the addCustomTerrain function.


## Position - Size and location

[0 0 1 1] (default) | four-element vector of form [left bottom width height]
Size and location, specified as a four-element vector of the form [left bottom width height]. By default, MATLAB measures the values in units normalized to the container. To change the units, set the Units property.

- The left and bottom elements define the distance from the lower-left corner of the container figure, panel, or tab to the lower-left corner of the position boundary.
- The width and height elements are the position boundary dimensions.

This red line in this figure shows the position boundary of the geographic globe.


## Units - Position units

'normalized' (default)|'inches' | 'centimeters' | 'points' |'pixels'|'characters'

Position units, specified as one of these values.

Units	Description
'normalized' (default)	Units normalized with respect to the container, which is typically the figure or a panel. The lower left corner of the container is $(0,0)$ and the upper right corner is $(1,1)$.
'inches '	Inches.
'centimeters'	Centimeters.
'characters'	Units based on the default uicontrol font of the graphics root object:   - The character width is the width of the letter $\chi$.   - The character height is the distance between the baselines of two lines of text.
'points'	Typography points. One point equals 1/72 inch.
'pixels'	Pixels.   Distances in pixels are independent of your system resolution on Windows and Macintosh systems.   - On Windows systems, a pixel is $1 / 96$ th of an inch.   - On Macintosh systems, a pixel is $1 / 72$ nd of an inch.   - On Linux ${ }^{\circledR}$ systems, the size of a pixel is determined by your system resolution.

When specifying the units as a name-value pair during object creation, specify the Units name-value pair before specifying name-value pairs that use those units, for example Position.

## Limitations

- In the Live Editor, geographic globes appear in a separate window instead of within the live script.
- Deploying geographic globes using MATLAB Compiler is not supported on Linux.
- If multiple windows requiring WebGL are open at once, then the geographic globe might display this error:

Globe Viewer needs to close because the WebGL context has been lost.

## More About

## Geographic Globe Navigation

Interactively navigate the globe using your mouse.

- Pan by left-clicking and dragging.
- Zoom by scrolling or by right-clicking and dragging.
- Tilt and rotate by holding Ctrl and dragging or by middle-clicking and dragging.

On a touch screen, navigate the globe using gestures.

- Pan by dragging one finger.
- Zoom by pinching two fingers.
- Tilt by dragging two fingers in the same direction.
- Rotate by dragging two fingers in a circle.

To programmatically navigate the globe, use the campos, camheight, camheading, campitch, and camroll object functions.

## Tips

- The geographic globe requires hardware graphics support for WebGL. To determine if your system has hardware graphics support for WebGL, display axes in a figure created using the uifigure function. Get renderer info about the axes using the rendererinfo function. Then, query the GraphicsRenderer property. Your system has hardware graphics support if the GraphicsRenderer property has a value of 'WebGL'.

```
fig = uifigure;
ax = axes(fig);
info = rendererinfo(ax);
info.GraphicsRenderer
ans =
 'WebGL'
```

- If you create a geographic globe with no output argument, then you can assign the globe to a variable later by using the findall function. If there is more than one geographic globe, then findall returns a vector of globe objects.

```
uif = uifigure;
geoglobe(uif)
g = findall(groot,'Type','globe');
```

If there is more than one geographic globe, then findall returns a vector of globe objects.

```
uif = uifigure;
geoglobe(uif)
uif2 = uifigure;
geoglobe(uif2)
g = findall(groot,'Type','globe')
g =
 2\times1 GeographicGlobe array:
 GeographicGlobe
 GeographicGlobe
```


## See Also

Functions
geoplot3
Objects
GeographicGlobe

Introduced in R2020a

## GeographicCellsReference

Reference raster cells to geographic coordinates

## Description

A geographic cells raster reference object contains information that describes the relationship between a geographic coordinate system and an intrinsic coordinate system on page 1-502 that is anchored to the columns and rows of a 2-D spatially referenced raster grid or image of cells.

In order to reference a raster of cells to geographic coordinates by using a GeographicCellsReference object, the raster must be sampled regularly in latitude and longitude, and its columns and rows must be aligned with meridians and parallels, respectively. The sample spacing from row to row need not equal the sample spacing from column to column.

This image illustrates a 8 -by-10 geographic raster of cells. The raster cells have an extent of 1 degree in latitude and longitude, cover longitude values in the range [40,50] in degrees, and cover latitude values in the range $[20,28]$ in degrees. The boundary of the raster of cells is made up of the outermost boundaries of the outermost cells.


To reference a raster of postings to geographic coordinates, use a GeographicPostingsReference object instead.

## Creation

You can use these functions to create GeographicCellsReference objects:

- readgeoraster - Import a raster data file as an array and a reference object.
- wms read - Import a raster map from a Web Map Service (WMS) server as an array and a reference object.
- georefcells - Create a geographic raster reference object by specifying the latitude and longitude limits of the raster and either the size of the raster or the extent of the cells.
- georasterref - Convert a world file to a geographic raster reference object.
- refmatToGeoRasterReference - Convert a referencing matrix to a geographic raster reference object.
- refvecToGeoRasterReference - Convert a referencing vector to a geographic raster reference object.


## Properties

## LatitudeLimits - Latitude limits of the geographic quadrangle bounding the georeferenced raster

[0.5 2.5] (default)| two-element vector
Latitude limits of the geographic quadrangle bounding the georeferenced raster, specified as a twoelement vector of the form [southern_limit northern_limit].
Example: [-90 90]
Data Types: double
LongitudeLimits - Longitude limits of the geographic quadrangle bounding the georeferenced raster
[0.5 2.5] (default)| two-element vector
Longitude limits of the geographic quadrangle bounding the georeferenced raster, specified as a twoelement vector of the form [western_limit eastern_limit].
Example: [-100 180]
Data Types: double
RasterSize - Number of rows and columns of the raster or image associated with the referencing object
[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster or image associated with the referencing object, specified as a two-element vector, [ $m n$ ], where $m$ represents the number of rows and $n$ the number of columns. For convenience, you can assign a size vector having more than two elements. This enables assignments like R.RasterSize $=\operatorname{size}($ RGB ), where RGB is $m$-by- $n$-by- 3 . In cases like this, the object stores only the first two elements of the size vector and ignores the higher (nonspatial) dimensions.
Example: [200 300]
Data Types: double

## RasterInterpretation - Geometric nature of the raster

'cells' (default)
This property is read-only.
Geometric nature of the raster, specified as 'cells'. The value 'cells ' indicates that the raster comprises a grid of quadrangular cells, and is bounded on all sides by cell edges. For an $m$-by-n raster, points with an intrinsic $x$-coordinate of 1 or $n$ or an intrinsic $y$-coordinate of 1 or $m$ fall within the raster, not on its edges.
Data Types: char

## AngleUnit - Unit of measurement used for angle-valued properties <br> 'degree' (default)

Unit of measurement used for angle-valued properties, specified as 'degree'.
Cannot be set.

## Data Types: char

## ColumnsStartFrom - Edge from which column indexing starts 'south' (default)|'north'

Edge from which column indexing starts, specified as 'south ' or 'north '.
Example: 'south'
Data Types: char
RowsStartFrom - Edge from which row indexing starts
'west' (default)|'east'
Edge from which row indexing starts, specified as 'west' or 'east'.
Example: 'east'
Data Types: char

## CellextentInLatitude - Extent in latitude of individual cells

1 (default) | positive numeric scalar
Extent in latitude of individual cells, specified as a positive numeric scalar. Distance, in units of latitude, between the northern and southern limits of a single raster cell. The value is the same for all cells in the raster.

Example: 2.5
Data Types: double

## CellExtentInLongitude - Extent in longitude of individual cells

1 (default) | positive numeric scalar
Extent in longitude of individual cells, specified as a positive numeric scalar. Distance, in units of longitude, between the western and eastern limits of a single raster cell. The value is always positive, and is the same for all cells in the raster.

Example: 2.5
Data Types: double

## RasterExtentInLatitude - Latitude extent ("height") of the quadrangle covered by the raster <br> 2 (default) | positive numeric scalar

This property is read-only.
Latitude extent ("height") of the quadrangle covered by the raster, specified as a positive numeric scalar.

Example: 2
Data Types: double
RasterExtentInLongitude - Longitude extent ("width") of the quadrangle covered by the raster
2 (default) | positive numeric scalar
This property is read-only.

Longitude extent ("width") of the quadrangle covered by the raster, specified as a positive numeric scalar.

Data Types: double
XIntrinsicLimits - Raster limits in intrinsic $\boldsymbol{x}$ coordinates
[0.5 2.5] (default) | two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic $x$ coordinates, specified as a two-element row vector of positive integers, [xMin xMax]. For an $m$-by- $n$ raster, XIntrinsicLimits equals [0.5, m+0.5], because the RasterInterpretation is 'cells'.
Example: [0.5 2.5]
Data Types: double
YIntrinsicLimits - Raster limits in intrinsic y coordinates
[0.5 2.5] (default) |two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic $y$ coordinates, specified as a two-element row vector of positive integers, [yMin yMax]. For an $m$-by- $n$ raster, YIntrinsicLimits equals [0.5, $n+0.5$ ], because the RasterInterpretation is 'cells'.
Data Types: double
CoordinateSystemType - Type of coordinate system to which the image or raster is referenced
'geographic' (default)
This property is read-only.
Type of coordinate system to which the image or raster is referenced, specified as 'geographic'.
Data Types: char

## GeographicCRS - Geographic coordinate reference system

[] (default) | geocrs object
Geographic coordinate reference system (CRS), specified as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

## Object Functions

contains geographicGrid geographicToDiscrete geographicToIntrinsic intrinsicToGeographic intrinsicXToLongitude intrinsicYToLatitude latitudeToIntrinsicY longitudeToIntrinsicX

Determine if geographic or map raster contains points Geographic coordinates of raster elements Transform geographic to discrete coordinates Transform geographic to intrinsic coordinates Transform intrinsic to geographic coordinates Convert from intrinsic x to longitude coordinates Convert from intrinsic y to latitude coordinates Convert from latitude to intrinsic y coordinates Convert from longitude to intrinsic x coordinates

sizesMatch	Determine if geographic or map raster object and image or raster are size-   compatible   Return world file parameters for transformation
worldFileMatrix	

## Examples

## Display Geographic Raster with Regularly Spaced Cell Centers

Import a GeoTIFF image as an array and a GeographicCellsReference object by using the readgeoraster function.

```
[Z,R] = readgeoraster('katrina.tif');
```

View the properties of the GeographicCellsReference object.

```
R
R =
 GeographicCellsReference with properties:
 LatitudeLimits: [10 40]
 LongitudeLimits: [-100 -70]
 RasterSize: [1024 1024]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInLatitude: 0.029296875
 CellExtentInLongitude: 0.029296875
 RasterExtentInLatitude: 30
 RasterExtentInLongitude: 30
 XIntrinsicLimits: [0.5 1024.5]
 YIntrinsicLimits: [0.5 1024.5]
 CoordinateSystemType: 'geographic'
 GeographicCRS: [1x1 geocrs]
 AngleUnit: 'degree'
```

Create a world map with limits that match the limits of the reference object. Then, display the image.
worldmap (Z,R)
geoshow(Z,R)


## More About

## Intrinsic Coordinate System

A 2-D Cartesian system with its $x$-axis running parallel to the rows of a raster or image and its $y$-axis running parallel to the columns. $x$ increases by 1 from column to column, and $y$ increases by 1 from row to row.

Mapping Toolbox and Image Processing Toolbox ${ }^{\mathrm{TM}}$ use the convention for the location of the origin relative to the raster cells or sampling points such that, at a sample location or at the center of a cell, $x$ has an integer value equal to the column index. Likewise, at a sample location or at the center of a cell, $y$ has an integer value equal to the row index. For details, see Image Coordinate Systems (Image Processing Toolbox).

## See Also

Functions
georefcells|georasterref|readgeoraster|wms read

## Objects

GeographicPostingsReference | MapCellsReference | MapPostingsReference

## Topics

"Spatially Reference Imported Rasters"

Introduced in R2013b

## GeographicGlobe

Control geographic globe appearance and behavior

## Description

Use a geographic globe to plot 3-D lines and markers over basemaps and terrain.

## Creation

Create a geographic globe object using the geoglobe function.

## Properties

## Maps

## Basemap - Map to plot data on

'satellite' (default) | 'streets' | 'streets-light' | 'streets-dark' | custom basemap | ...
Map on which to plot data, specified as one of the values listed in the table. Six of the basemaps in the table are tiled data sets created using Natural Earth. Five of the basemaps are high-zoom-level maps hosted by Esri.




All basemaps except 'darkwater' require Internet access. The 'darkwater ' basemap is included with MATLAB and Mapping Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are not available for download. For more about downloading basemaps and changing the default basemap on your local system, see "Access Basemaps and Terrain for Geographic Globe".

The basemaps hosted by Esri update periodically. As a result, you might see differences in your visualizations over time.

Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.
Example: g = geoglobe(uifigure,'Basemap','bluegreen')
Example: g.Basemap = 'bluegreen'
Data Types: char \| string

## Terrain - Terrain data

'gmted2010' (default) | ' none' | string scalar | character vector
Terrain data, specified as one of these values:

- 'gmted2010' - Global terrain derived from the GMTED2010 model created by the U.S. Geological Survey (USGS) and National Geospatial-Intelligence Agency (NGA).
- 'none' - No terrain.
- string scalar or character vector - Name of custom terrain added using the addCustomTer rain function.


## Multiple Plots

## ColorOrder - Color order

seven predefined colors (default) | three-column matrix of RGB triplets
Color order for lines plotted on the globe, specified as a three-column matrix of RGB triplets. This property defines the palette of colors MATLAB uses to create plot objects such as lines. Each row of the array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the intensities of the red, green, and blue components of a color. The intensities must be in the range [0, 1]. This table lists the default colors.

Colors	ColorOrder Matrix		
		0	0.4470

MATLAB assigns colors to objects according to their order of creation. For example, when plotting lines, the first line uses the first color, the second line uses the second color, and so on. If there are more lines than colors, then the cycle repeats.

Change the color order in either of the following ways:

- Call the colororder function to change the color order for all globe objects in a UI figure. The colors of existing plots in the UI figure update immediately. If you place additional globe objects into the figure, those globe objects also use the new color order. If you continue to call plotting commands, those commands also use the new colors.
- Set the ColorOrder property on the globe, call the hold function to set the globe hold state to ' on ' , and then call the desired plotting functions. This is like calling the colororder function, but in this case you are setting the color order for the specific globe, not the entire UI figure. Setting the hold state to ' on ' is necessary to ensure that subsequent plotting commands do not reset the globe to use the default color order.


## NextSeriesIndex - SeriesIndex value for next object

whole number
This property is read-only.
SeriesIndex value for the next plot object added to the globe, returned as a whole number greater than or equal to 0 . This property is useful when you want to track how the objects cycle through the
colors in the color order. This property maintains a count of the objects in the globe that have a SeriesIndex property. MATLAB uses it to assign the value of the SeriesIndex property for each new object. The count starts at 1 when you create the globe, and it increases by 1 for each additional object. Thus, the count is typically $n+1$, where $n$ is the number of objects in the globe.

## NextPlot - Properties to reset

'replace' (default)|'add'|'replacechildren' | 'replaceall'
Properties to reset when adding a new plot to the globe, specified as one of these values:

- 'replace' and 'replaceall' - Delete existing plots and reset globe properties, except Position and Units, to their default values before displaying the new plot.
- 'add ' - Add new plots to the existing globe. Do not delete existing plots or reset globe properties before displaying the new plot.
- 'replacechildren' - Delete existing plots before displaying the new plot. Reset the ColorOrderIndex property to 1, but do not reset other globe properties. The next plot added to the globe uses the first color based on the ColorOrder property.


## Position

## Position - Size and location

[0 0 1 1] (default)|four-element vector of form [left bottom width height]
Size and location, specified as a four-element vector of the form [left bottom width height]. By default, MATLAB measures the values in units normalized to the container. To change the units, set the Units property.

- The left and bottom elements define the distance from the lower left corner of the container UI figure, panel, or tab to the lower left corner of the position boundary.
- The width and height elements are the position boundary dimensions.


## Units - Position units

'normalized' (default)|'inches'|'centimeters'|'points'|'pixels'|'characters'
Position units, specified as one of these values.

Units	Description
' normalized ' (default)	Units normalized with respect to the container,   which is typically the figure or a panel. The lower   left corner of the container is (0,0) and the   upper right corner is $(1,1)$.
'inches '	Inches.
'centimeters '	Centimeters.
' characters '	Units based on the default uicontrol font of the   graphics root object:   -The character width is the width of the letter   $x$.


Units
'points'

## Description

Typography points. One point equals 1/72 inch.
Pixels.
Distances in pixels are independent of your system resolution on Windows and Macintosh systems.

- On Windows systems, a pixel is $1 / 96$ th of an inch.
- On Macintosh systems, a pixel is $1 / 72$ nd of an inch.
- On Linux systems, the size of a pixel is determined by your system resolution.

When specifying the units as a name-value pair during object creation, specify the Units name-value pair before specifying name-value pairs that use those units, for example Position.

## Interactivity

## Visible - State of visibility

'on' (default) | 'off'
State of visibility, specified as one of these values:

- 'on' - Display the object.
- 'off' - Hide the object without deleting it. You still can access the properties of an invisible object.


## Parent/Child

## Parent - Parent container

Figure object created using uifigure | Panel object | Tab object
Parent container, specified as a Figure object created using the uifigure function, a Panel object within a UI figure, or a Tab object within a UI figure.

## Children - Children

empty GraphicsPlaceholder array | array of Line objects
Children, returned as an array of graphics objects. Use this property to view a list of the children or to reorder the children by setting the property to a permutation of itself.

You cannot add or remove children using the Children property. To add a child to this list, set the Parent property of the child graphics object to the GeographicGlobe object.

## HandleVisibility - Visibility of object handle

'on' (default)| 'off'|'callback'
Visibility of the object handle in the Children property of the parent, specified as one of these values:

- ' on ' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- ' callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to ' on ' to list all object handles regardless of their HandleVisibility property setting.

## Identifiers

Type - Type of graphics object
'globe'
This property is read-only.
Type of graphics object returned as 'globe '.

## Tag - Object identifier

' ' (default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

## UserData - User data

[] (default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see "Share Data Within App Designer Apps".

## Object Functions

## Change Hold State and Basemap

hold	These hold syntaxes are supported for geographic globe objects:   - hold(g,'on') retains plots, terrain, and basemaps in the globe specified by $g$ so that new plots added to the globe g do not delete existing plots or reset the terrain and basemaps. New plots use the next color based on the ColorOrder property of the globe. MATLAB adjusts the camera line of sight to display the full range of data.   - hold(g, 'off') sets the hold state to off so that new plots added to the globe clear existing plots and reset all globe properties, including terrain and basemaps. The next plot added to the globe uses the first color based on the ColorOrder property of the globe. This option is the default behavior.   - hold ( g ) toggles the hold state between on and off.
geobasemap	This geobasemap syntax is supported for geographic globe objects:   - geobasemap( g , basemap) sets the basemap for the globe specified by g . For example, geobasemap(g,'topographic') sets the basemap to a general-purpose map with styling to depict topographic features. For a list of basemaps, see the Basemap property.

## Change View

campos Set or query position of camera for geographic globe camheight Set or query height of camera for geographic globe camheading Set or query heading angle of camera for geographic globe campitch Set or query pitch angle of camera for geographic globe camroll Set or query roll angle of camera for geographic globe

## Examples

## Display Geographic Globe

Display a geographic globe in a figure created using the uifigure function.

```
uif = uifigure;
g = geoglobe(uif);
```



## See Also

geoglobe | geoplot3
Introduced in R2020a

## geographicGrid

Package: map.rasterref
Geographic coordinates of raster elements

## Syntax

[lat,lon] = geographicGrid(R)
[lat,lon] = geographicGrid(R,gridOption)

## Description

[lat,lon] = geographicGrid(R) returns the geographic coordinates of raster elements as the 2-
$D$ arrays lat and lon. The coordinates of raster element (i,j) are (lat(i,j),lon(i,j)).
[lat,lon] = geographicGrid(R,gridOption), where gridOption is 'gridvectors', returns lat and lon as vectors. The coordinates of raster element (i,j) are (lat(i), lon(j)). The default for gridOption is 'fullgrid', which returns lat and lon as 2-D arrays.

## Examples

## Find Coordinates of Raster Elements

Import elevation data [1] on page 1-0 for an area around South Boulder Peak in Colorado as an array and a geographic postings reference object. Find the coordinates of each element in the array.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
[lat,lon] = geographicGrid(R);
```

Create a map with latitude and longitude limits that match the limits of the data. Display the data using an appropriate colormap.

```
usamap(R.LatitudeLimits,R.LongitudeLimits)
surfm(lat,lon,Z)
demcmap(Z)
```


[1] The elevation data used in this example is courtesy of the U.S. Geological Survey.

## Get Vectors Instead of Arrays

Create a geographic cells reference object for a 3 -by-4 raster with latitude values in the range $[0,30$ ] degrees and longitude values in the range [-20,20] degrees. Get the coordinates of the raster elements and return them as row vectors.

```
R = georefcells([0 30],[-20 20],[3 4]);
[lat,lon] = geographicGrid(R,'gridvectors')
lat = 1\times3
 5 15 25
lon = 1\times4
 -15 -5 5 15
```

If you do not specify the second argument as 'gridvectors', then the geographicGrid function returns 2-D arrays by default.
[latFull,lonFull] = geographicGrid(R)

```
latFull = 3×4
```

5	5	5	5
15	15	15	15
25	25	25	25

lonFull = 3×4

-15	-5	5	15
-15	-5	5	15
-15	-5	5	15

## Input Arguments

## R - Spatial reference

GeographicCellsReference object | GeographicPostingsReference object
Spatial reference, specified as a GeographicCellsReference or GeographicPostingsReference object.

If $R$ is a GeographicCellsReference object, then lat and lon are cell centers. If $R$ is a GeographicPostingsReference object, then lat and lon are posting points.

## gridOption - Grid option

```
'fullgrid' (default)|'gridvectors'
```

Grid option, specified as one of these values:

- 'fullgrid' - Return lat and lon as 2-D arrays, where each column of lat is identical and each row of lon is identical. This is the default behavior.
- 'gridvectors ' - Return lat and lon as row vectors. Use this option when you want to reduce memory usage and when 2-D arrays are unnecessary, such as when plotting large data sets with the surfm function.

This table shows the difference between 'fullgrid' and 'gridvectors'.


Data Types: char|string

## Output Arguments

## lat - Latitudes

2-D array (default) | row vector
Latitudes, returned as a 2-D array or a row vector. By default, lat is a 2-D array. To return lat as a row vector, specify gridOption as 'gridvectors'.

By default, and when gridOption is 'fullgrid', the sizes of lat and lon each equal the RasterSize property of $R$. When gridOption is 'gridvectors', the lengths of lat and lon equal the first and second elements of the RasterSize property of $R$, respectively.

## lon - Longitudes

2-D array (default) | row vector
Longitudes, returned as a 2-D array or a row vector. By default, lon is a 2-D array. To return lon as a row vector, specify grid0ption as 'gridvectors'.

By default, and when grid0ption is 'fullgrid', the sizes of lat and lon each equal the RasterSize property of R. When gridOption is 'gridvectors', the lengths of lat and lon equal the first and second elements of the RasterSize property of R , respectively.

## See Also

## Functions

ndgrid | meshgrid |intrinsicToGeographic|worldGrid

## Objects

GeographicCellsReference | GeographicPostingsReference
Introduced in R2021a

## GeographicPostingsReference

Reference raster postings to geographic coordinates

## Description

A geographic postings raster reference object contains information that describes the relationship between a geographic coordinate system and an intrinsic coordinate system on page 1-522 that is anchored to the columns and rows of a 2-D spatially referenced grid of point samples (or postings).

In order to reference a raster of postings to geographic coordinates by using a GeographicPostingsReference object, the raster must be sampled regularly in latitude and longitude, and its columns and rows must be aligned with meridians and parallels, respectively. The sample spacing from row to row need not equal the sample spacing from column to column.

This image illustrates a 9 -by-11 geographic raster of postings. The postings are spaced 1 degree apart in latitude and longitude, cover longitude values in the range [40,50] in degrees, and cover latitude values in the range $[20,28]$ in degrees. The boundary of the raster of postings is a geographic quadrangle with edges that pass through the outermost postings.


To reference a raster of cells to geographic coordinates, use a GeographicCellsReference object instead.

## Creation

You can use these functions to create GeographicPostingsReference objects:

- readgeoraster - Import a raster data file as an array and a reference object.
- georefpostings - Create a geographic raster reference object by specifying the latitude and longitude limits of the raster and either the size of the raster or the spacing of the postings.
- georasterref - Convert a world file to a geographic raster reference object.
- refmatToGeoRasterReference - Convert a referencing matrix to a geographic raster reference object.


## Properties

## LatitudeLimits - Latitude limits of the geographic quadrangle bounding the georeferenced raster

[0.5 1.5] (default)| two-element vector
Latitude limits of the geographic quadrangle bounding the georeferenced raster, specified as a twoelement vector of the form [southern_limit northern_limit].
Example: [-20 70]
Data Types: double

## LongitudeLimits - Longitude limits of the geographic quadrangle bounding the georeferenced raster <br> [0.5 1.5] (default)| two-element vector

Longitude limits of the geographic quadrangle bounding the georeferenced raster, specified as a twoelement vector of the form [western_limit eastern_limit].
Example: [-100 180]
Data Types: double
RasterSize - Number of rows and columns of the raster or image associated with the referencing object
[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster or image associated with the referencing object, specified as a two-element vector, [ $m n$ ], where $m$ represents the number of rows and $n$ the number of columns. For convenience, you can assign a size vector having more than two elements. This enables assignments like R.RasterSize $=$ size(RGB), where RGB is $m$-by- $n$-by- 3 . In cases like this, the object stores only the first two elements of the size vector and ignores the higher (nonspatial) dimensions.
Example: [200 300]
Data Types: double

## RasterInterpretation - Geometric nature of the raster

'postings' (default)
This property is read-only.
Geometric nature of the raster, specified as 'postings '.
The value 'postings ' indicates that the raster comprises a grid of sample points, where rows or columns of samples run along the edge of the grid. For an $m$-by- $n$ raster, points with an intrinsic $x$ coordinate of 1 or $n$ and/or an intrinsic $y$-coordinate of 1 or $m$ fall right on an edge (or corner) of the raster.

Data Types: char

## AngleUnit - Unit of measurement used for angle-valued properties <br> 'degree' (default)

This property is read-only.

Unit of measurement used for angle-valued properties, specified as 'degree'.
Data Types: char

## ColumnsStartFrom - Edge from which column indexing starts 'south' (default)|'north'

Edge from which column indexing starts, specified as 'south ' or ' north '.
Example: 'south'
Data Types: char
RowsStartFrom - Edge from which row indexing starts
'west' (default)|'east'
Edge from which row indexing starts, specified as 'west' or 'east'.
Example: 'east'
Data Types: char

## SampleSpacingInLatitude - North-south distance in latitude between adjacent samples in the raster <br> 1 (default) | positive numeric scalar

North-south distance in latitude between adjacent samples (postings) in the raster, specified as a positive numeric scalar. The value is always positive, and is the constant throughout the raster.
Example: 2.5
Data Types: double

## SampleSpacingInLongitude - East-west distance in longitude between adjacent samples in the raster

1 (default) | positive numeric scalar
East-west distance in longitude between adjacent samples (postings) in the raster, specified as a positive numeric scalar. The value is always positive, and is the constant throughout the raster.

Example: 2.5
Data Types: double

## RasterExtentInLatitude - Latitude extent ("height") of the quadrangle covered by the raster <br> 1 (default) | positive numeric scalar

This property is read-only.
Latitude extent ("height") of the quadrangle covered by the raster, specified as a positive numeric scalar.

Data Types: double
RasterExtentInLongitude - Longitude extent ("width") of the quadrangle covered by the raster
1 (default) | positive numeric scalar
This property is read-only.

Longitude extent ("width") of the quadrangle covered by the raster, specified as a positive numeric scalar.

Data Types: double
XIntrinsicLimits - Raster limits in intrinsic $\boldsymbol{x}$ coordinates
[1 2] (default) | two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic $x$ coordinates, specified as a two-element row vector of positive integers, [xMin xMax]. For an $m$-by- $n$ raster, XIntrinsicLimits equals [ 1 m ], because the RasterInterpretation is 'postings'.

Data Types: double
YIntrinsicLimits - Raster limits in intrinsic $\boldsymbol{y}$ coordinates
[1 2] (default)| two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic $y$ coordinates, specified as a two-element row vector of positive integers, [yMin yMax]. For an $m$-by- $n$ raster, YIntrinsicLimits equals [1 m ], because the RasterInterpretation is 'postings'.
Data Types: double

## CoordinateSystemType - Type of coordinate system to which the image or raster is referenced <br> ' geographic ' (default)| two-element row vector of positive integers

This property is read-only.
Type of coordinate system to which the image or raster is referenced, specified as 'geographic'.
Data Types: char
GeographicCRS - Geographic coordinate reference system
[] (default) | geocrs object
Geographic coordinate reference system (CRS), specified as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

## Object Functions

contains geographicGrid geographicToDiscrete geographicToIntrinsic intrinsicToGeographic intrinsicXToLongitude intrinsicYToLatitude latitudeToIntrinsicY longitudeToIntrinsicX sizesMatch

Determine if geographic or map raster contains points
Geographic coordinates of raster elements Transform geographic to discrete coordinates Transform geographic to intrinsic coordinates Transform intrinsic to geographic coordinates Convert from intrinsic x to longitude coordinates Convert from intrinsic y to latitude coordinates Convert from latitude to intrinsic y coordinates Convert from longitude to intrinsic x coordinates Determine if geographic or map raster object and image or raster are sizecompatible
worldFileMatrix Return world file parameters for transformation

## Examples

## Display Geographic Raster of Regularly Spaced Posting Points

Import elevation data as an array and a GeographicPostingsReference object by using the readgeoraster function. Prepare the data for plotting by specifying the output type as 'double'.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');
```

View the properties of the GeographicPostingsReference object.

```
R
R =
 GeographicPostingsReference with properties:
 LatitudeLimits: [39 40]
 LongitudeLimits: [-106 -105]
 RasterSize: [1201 1201]
 RasterInterpretation: 'postings'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 SampleSpacingInLatitude: 1/1200
 SampleSpacingInLongitude: 1/1200
 RasterExtentInLatitude: 1
 RasterExtentInLongitude: 1
 XIntrinsicLimits: [1 1201]
 YIntrinsicLimits: [1 1201]
 CoordinateSystemType: 'geographic'
 GeographicCRS: [1x1 geocrs]
 AngleUnit: 'degree'
```

Create map axes with limits that match the limits of the reference object. Display the elevation data as a surface. Apply a colormap that is appropriate for elevation data.

```
usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)
```



## More About

## Intrinsic Coordinate System

A 2-D Cartesian system with its $x$-axis running parallel to the rows of a raster or image and its $y$-axis running parallel to the columns. $x$ increases by 1 from column to column, and $y$ increases by 1 from row to row.

Mapping Toolbox and Image Processing Toolbox use the convention for the location of the origin relative to the raster cells or sampling points such that, at a sample location or at the center of a cell, $x$ has an integer value equal to the column index. Likewise, at a sample location or at the center of a cell, $y$ has an integer value equal to the row index. For details, see Image Coordinate Systems (Image Processing Toolbox).

## See Also

## Functions

georefcells|georasterref|readgeoraster

```
Objects
GeographicCellsReference|MapCellsReference|MapPostingsReference
Topics
"Spatially Reference Imported Rasters"
```

Introduced in R2013b

## geographicToDiscrete

Package: map. rasterref
Transform geographic to discrete coordinates

## Syntax

[I,J] = geographicToDiscrete(R,lat,lon)

## Description

$[I, J]=$ geographicToDiscrete(R,lat,lon) returns the indices corresponding to geographic coordinates lat and lon in geographic raster R. If R.RasterInterpretation is:

- 'cells', then I and J are the row and column subscripts of the raster cells (or image pixels)
- 'postings ', then I and J refer to the nearest sample point (posting)


## Examples

## Find Indices of Nearest Posting Point from Geographic Coordinates

Import elevation data [1] on page 1-0 for a region in Colorado as an array and a GeographicPostingsReference object. Find the indices of the posting point nearest to the latitude and longitude of South Boulder Peak, which are 39.9539 and - 105.2992 degrees, respectively.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
[I,J] = geographicToDiscre\overline{te(R,39.9539,-105.2992)}
I = 56
J = 842
```

The result means that the posting point closest to the geographic coordinates is in row 56 and column 842 of the array.
[1] The elevation data used in this example is from the U.S. Geological Survey.

## Input Arguments

R - Geographic raster
GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.

## lat - Latitude coordinates

numeric array

Latitude coordinates, specified as a numeric array.
Data Types: single | double

## Lon - Longitude coordinates

numeric array
Longitude coordinates, specified as a numeric array. lon is the same size as lat.
Data Types: single | double

## Output Arguments

## I - Longitude indices

array of integers
Longitude indices, returned as an array of integers. I is the same size as lat.
For an $m$-by- $n$ raster, $1 \leq \mathrm{I} \leq m$, except for points ( lat $(k)$, lat $(k)$ ) that fall outside the bounds of the raster as defined by the function contains. In this case $\mathrm{I}(k)$ and $\mathrm{J}(k)$ are NaN .

Data Types: double

## J - Latitude indices

array of integers
Latitude indices, returned as an array of integers. J is the same size as lat.
For an $m$-by- $n$ raster, $1 \leq \mathrm{J} \leq n e x c e p t$ for points ( $\operatorname{lat}(k)$, $\operatorname{lat}(k)$ ) that fall outside the bounds of the raster as defined by the function contains. In this case $I(k)$ and $J(k)$ are NaN.
Data Types: double

## See Also

contains | geographicToIntrinsic| latitudeToIntrinsicY|longitudeToIntrinsicX| worldToDiscrete

## Introduced in R2013b

## geographicTolntrinsic

Package: map. rasterref
Transform geographic to intrinsic coordinates

## Syntax

[xIntrinsic,yIntrinsic] = geographicToIntrinsic(R,lat,lon)

## Description

[xIntrinsic,yIntrinsic] = geographicToIntrinsic(R,lat,lon) returns the intrinsic coordinates corresponding to geographic coordinates lat and lon in geographic raster R.

## Examples

## Find Intrinsic Coordinates from Geographic Coordinates

Find the intrinsic coordinates of a cell within a raster by specifying a raster reference object and geographic coordinates.

First, load a geographic cells reference object for the Korean peninsula. To do this, load the korea5cR variable from the korea5c MAT-file. Then, specify the geographic coordinates of Seoul.

```
load korea5c korea5cR
lat = 37.57;
lon = 126.98;
```

Find the intrinsic coordinates.

```
[xIntrinsic,yIntrinsic] = geographicToIntrinsic(korea5cR,lat,lon)
xIntrinsic = 144.2600
yIntrinsic = 91.3400
```

The result means that the geographic coordinates are in the cell in column 144 and row 91 of the raster.

You can reverse the operation by using the intrinsicToGeographic function.

```
[lat,lon] = intrinsicToGeographic(korea5cR,xIntrinsic,yIntrinsic)
lat = 37.5700
lon = 126.9800
```


## Input Arguments

## R-Geographic raster

GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.

## lat - Latitude coordinates

numeric array
Latitude coordinates, specified as a numeric array. Valid values of lat are in the range [-90, 90] degrees or are NaN . lat coordinates can be outside the bounds of the raster R.
Data Types: single | double

## Lon - Longitude coordinates

numeric array
Longitude coordinates, specified as a numeric array. lon is the same size as lat. lon coordinates can be outside the bounds of the raster R .
Data Types: single | double

## Output Arguments

## xIntrinsic - x-coordinates in intrinsic coordinate system

numeric array
$x$-coordinates in intrinsic coordinate system, returned as a numeric array. xIntrinsic is the same size as lat.

When $\operatorname{lon}(k)$ is outside the bounds of raster $\mathrm{R}, \mathrm{xIntrinsic}(k)$ is extrapolated in the intrinsic coordinate system.

## Data Types: double

yIntrinsic - $\boldsymbol{y}$-coordinates in intrinsic coordinate system
numeric array
$y$-coordinates in intrinsic coordinate system, returned as a numeric array. yIntrinsic is the same size as lat.

When lat $(k)$ is valid and outside the bounds of raster $\mathrm{R}, \mathrm{yIntrinsic}(k)$ is extrapolated in the intrinsic coordinate system.
Data Types: double

## See Also <br> intrinsicToGeographic|latitudeToIntrinsicY|longitudeToIntrinsicX| geographicToDiscrete|worldToIntrinsic <br> Introduced in R2013b

## geointerp

Geographic raster interpolation

## Syntax

Vq = geointerp( $\mathrm{V}, \mathrm{R}$, latq, lonq)
$\mathrm{Vq}=$ geointerp( $\qquad$ , method)

## Description

$\mathrm{Vq}=$ geointerp $(\mathrm{V}, \mathrm{R}$, latq, lonq) interpolates the geographically referenced raster V , using bilinear interpolation. The function returns a value in Vq for each of the query points in arrays latq and lonq. R is a geographic raster reference object that specifies the location and extent of data in V .

Vq = geointerp( $\qquad$ ,method) specifies alternate interpolation methods.

## Examples

## Interpolate Values at Specific Latitudes and Longitudes

Load elevation raster data and a geographic cells reference object.
load topo60c
Specify the latitude and longitude values you want to interpolate. Then, interpolate the values.

```
latq = [-40 -20 20 40];
lonq = [42 54 38 62];
Vq = geointerp(topo60c,topo60cR,latq,lonq)
Vq= 1\times4
10
\(-2.8327 \quad-4.3855 \quad-0.7125 \quad 0.1700\)
```


## Input Arguments

## V - Georeferenced raster grid

numeric or logical array
Georeferenced raster grid, specified as numeric or logical array.
Data Types: single | double | int8|int16| int32|int64|uint8|uint16|uint32|uint64| logical

## R - Geographic raster

GeographicCellsReference or GeographicPostingsReference object

Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.

To convert a referencing matrix to a geographic raster reference object, use refmatToGeoRasterReference.To convert a referencing vector to a geographic raster reference object, use refvecToGeoRasterReference.

## latq - Latitude of query point coordinates

numeric array
Latitude of query point coordinates, specified as a numeric array.
Data Types: single | double

## lonq - Longitude of query point coordinates,

numeric array
Longitude of query point coordinates, specified as a numeric array.
Data Types: single | double
method - Interpolation methods
'linear' (default)|'nearest' | 'cubic' | 'spline'
Interpolation methods, specified as one of the following values.

Method	Description
'nearest'	Nearest neighbor interpolation
' linear'	Bilinear interpolation
' cubic'	Bicubic interpolation
'spline'	Spline interpolation

Data Types: char \| string

## Output Arguments

## Vq - Interpolated values

numeric array
Interpolated values, returned as a numeric array.

## See Also

mapinterp|interp2|griddedInterpolant
Introduced in R2017a

## geoloc2grid

Convert geolocated data array to regular data grid

## Syntax

$[Z, R]=$ geoloc2grid(lat,lon, $A$, cellsize)

## Description

$[Z, R]=$ geoloc2grid(lat, lon, $A$, cellsize) converts the geolocated data array $A$, given geolocation points in lat and lon, to produce a regular data grid, $Z$, and the corresponding raster reference object R . cellsize is a scalar that specifies the width and height of data cells in the regular data grid, using the same angular units as lat and lon. Data cells in $Z$ falling outside the area covered by A are set to NaN .

## Examples

## Display Geolocated and Regular Data Grids

Load the geolocated data array map1 and grid it to $1 / 2$-degree cells.

```
load mapmtx
cellsize = 0.5;
[Z,R] = geoloc2grid(lt1,lg1,map1,cellsize);
```

Create a figure.

```
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')
```

Define map limits.

```
latlim = [-35 70];
lonlim = [0 100];
```

Display map1 as a geolocated data array and Z as a regular data grid using subplots.

```
subplot(1,2,1)
ax = axesm('mercator','MapLatLimit',latlim,...
 'MapLonLimit',lonlim,'Grid','on',...
 'MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(lt1,lg1,map1,'DisplayType','texturemap');
subplot(1,2,2)
ax = axesm('mercator','MapLatLimit',latlim,...
 'MapLonLimit',lonlim,'Grid','on',...
 'MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(Z,R,'DisplayType','texturemap');
```



## Tips

geoloc2grid provides an easy-to-use alternative to gridding geolocated data arrays with imbedm. There is no need to preallocate the output map; there are no data gaps in the output (even if cellsize is chosen to be very small), and the output map is smoother.

## Compatibility Considerations

geoloc2grid returns raster reference objects instead of referencing vectors
Behavior changed in R2021a
Starting in R2021a, the geoloc2grid function returns a raster reference object instead of a referencing vector. This change is unlikely to affect your existing code because most Mapping Toolbox functions that accept referencing vectors as input also accept raster reference objects.

## See Also

## Functions

imbedm

```
Objects
GeographicCellsReference | GeographicPostingsReference| MapPostingsReference |
MapCellsReference
```

Introduced before R2006a

## geopeaks

Generate synthetic data set on sphere

## Syntax

Z = geopeaks(lat,lon)
Z = geopeaks(R)
Z = geopeaks( $\qquad$ ,spheroid)

## Description

$Z=$ geopeaks(lat,lon) evaluates a "peaks-like" function at specific latitudes and longitudes on the surface of a sphere, returning the synthetic data set Z. The function is continuous and smooth at all points, including the poles. Reminiscent of the MATLAB peaks function, geopeaks undulates gently between values of -10 and 8 , with about a half dozen local extrema.
$Z=$ geopeaks (R) evaluates the geopeaks function at cell centers or sample posting points defined by a geographic raster reference object, R .

Z = geopeaks( $\qquad$ , spheroid) evaluates the function on a specific spheroid. The choice of spheroid makes very little difference. This option exists mainly to support formal testing. If you do not specify spheroid and the GeographicCRS property of $R$ is not empty, then geopeaks uses the spheroid contained in the Spheroid property of the geocrs object in the GeographicCRS property of $R$.

## Examples

## Generate Profile Along Meridian

Define latitude and longitude values along meridian that includes Paris, France.

```
lon = dms2degrees([2 21 3]);
lat = -90:0.5:90;
```

Generate a data set, specifying a spheroid.
z = geopeaks(lat, lon, wgs84Ellipsoid);
Display the profile.

```
figure
plot(lat,z)
xlabel('Latitude')
```



## Generate Global Raster and Display Results on World Map

Create a raster reference object for a 181-by-361 grid of postings.

```
latlim = [-90 90];
lonlim = [-180 180];
sampleSpacing = 1;
R = georefpostings(latlim,lonlim,sampleSpacing,sampleSpacing)
R =
 GeographicPostingsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [181 361]
 RasterInterpretation: 'postings'
 ColumnsStartFrom: 'south'
 RowsStartFrom: 'west'
 SampleSpacingInLatitude: 1
 SampleSpacingInLongitude: 1
 RasterExtentInLatitude: 180
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [1 361]
 YIntrinsicLimits: [1 181]
 CoordinateSystemType: 'geographic'
```

```
GeographicCRS: []
 AngleUnit: 'degree'
```

Generate a data set.
Z = geopeaks(R);
Display the resultant data set on a map.
figure
worldmap world
geoshow(Z,R,'DisplayType','surface','CData',Z,'ZData',zeros(size(Z)))
load coastlines
geoshow(coastlat,coastlon,'Color','k')
colorbar


## Input Arguments

## lat - Geodetic latitude of one or more points

scalar, vector, or matrix
Geodetic latitude of one or more points, specified as a scalar value, vector, or matrix. Values must be in degrees.

The lat input argument must match the lon input argument in size unless either value is scalar (in which case it will expand in size to match the other), or lat is a column vector and lon is a row vector (they will expand to form a plaid latitude-longitude mesh).
Example: lat $=-90: 0.5: 90$
Data Types: single | double

## lon - Geodetic longitude of one or more points

scalar, vector, or matrix
Geodetic longitude of one or more points, specified as a scalar value, vector, or matrix. Values must be in degrees.

The lon input argument must match the lat input argument in size unless either value is scalar (in which case it will expand in size to match the other), or lon is a column vector and lat is a row vector (they will expand to form a plaid latitude-longitude mesh).
Example: lon $=-180: 0.5: 180$
Data Types: single | double

## R - Geographic raster

GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object. The geographic raster stores the latitude and longitude of points.

Example: R = georefcells([0 80], [-140 60], 0.25, 0.25)
spheroid - Reference spheroid
referenceEllipsoid| oblateSpheroid| referenceSphere
Reference spheroid, specified as a referenceEllipsoid, oblateSpheroid, or referenceSphere object.
Example: spheroid = referenceEllipsoid('GRS80')

## Output Arguments

## Z - Synthetic data set

scalar value, vector, or matrix
Synthetic data set, returned as a scalar value, vector, or matrix of class single or double, depending on the class of the input. The function is evaluated at each element of lat and lon (following expansion as noted above), or at each cell center or posting point defined by R.

## See Also

peaks

Introduced in R2015b

## geoplot3

Geographic globe plot

## Syntax

```
geoplot3(g,lat,lon,h)
geoplot3(___,LineSpec)
geoplot3(__,Name,Value)
p = geoplot3(
```

$\qquad$

## Description

geoplot3( g , lat, lon, h ) plots a 3-D line in the geographic globe specified by g at the vertices specified by lat, lon, and h .
geoplot3( $\qquad$ ,LineSpec) sets the line style, marker, and color.
geoplot3( $\qquad$ ,Name, Value) specifies additional options for the line using one or more namevalue pair arguments. Specify the options after all other input arguments. For a list of options, see Line Properties.
$\mathrm{p}=$ geoplot3( ___) returns a Line object. This syntax is useful for controlling the properties of the line.

## Examples

## Plot Line over Local Region

Plot the path of a glider above a local region. First, import sample data representing the path. Get the latitude, longitude, and geoid height values.

```
trk = gpxread('sample_mixed','FeatureType','track');
lat = trk.Latitude;
lon = trk.Longitude;
h = trk.Elevation;
```

Create a geographic globe. Then, plot the path as a line. By default, the view is directly above the data. Tilt the view by holding $\mathbf{C t r l}$ and dragging.

```
uif = uifigure;
g = geoglobe(uif);
geoplot3(g,lat,lon,h,'c')
```



## Plot Line Between Distant Points

When you plot a line between points that are far apart, the data may be obscured because the line passes through the Earth. View the entire line by inserting points between the specified data points.

For example, specify the coordinates of New York City and Paris. Then, plot a line between them. Indicate there is no height data by specifying the fourth argument of geoplot3 as an empty array. Note that you cannot see the line because it passes through the Earth.

```
lat = [40.71 48.86];
lon = [-74.01 2.35];
uif = uifigure;
g = geoglobe(uif);
geoplot3(g,lat,lon,[],'y','LineWidth',2)
```



To see the line, insert points along a great circle using the interpm function. Then, plot the line again. Note that the line is visible.
[latI,lonI] = interpm(lat,lon,0.1,'gc');
geoplot3(g,latI, lonI, [], 'y', 'LineWidth', 2)


## Plot Line over Global Region

When you plot a line over a large region such as a state or country, part of the line may be obscured because it passes through terrain. View the entire line by removing the terrain data from the globe.

For example, import sample coastline data and plot it on a geographic globe. By default, the globe includes terrain data derived from the GMTED2010 model. Note that the line appears broken.

```
load coastlines
uif = uifigure;
g = geoglobe(uif);
p = geoplot3(g,coastlat,coastlon,[],'m');
```



To see the line, set the Terrain property of the globe to 'none '. Indicate the plotted data sits on the WGS84 reference ellipsoid by setting the HeightReference property of the line to 'ellipsoid'. Note that the line is visible over the basemap.

```
g.Terrain = 'none';
p.HeightReference = 'ellipsoid';
```



## Plot Circle Markers Instead of Line

Import sample data representing the path of a glider. Get the latitude, longitude, and geoid height values.

```
trk = gpxread('sample_mixed','FeatureType','track');
lat = trk.Latitude;
lon = trk.Longitude;
h = trk.Elevation;
```

Create a geographic globe. Then, plot the data using circle markers. Plot a marker at every 25th data point by setting the MarkerIndices property.

```
uif = uifigure;
g = geoglobe(uif);
mskip = 1:25:length(lat);
geoplot3(g,lat,lon,h,'co','MarkerIndices',mskip)
```



## Plot Data with Height Referenced to Terrain

Plot a line from the surface of Gross Reservoir to a point above South Boulder Peak.
Specify the latitude, longitude, and height of the two endpoints. Specify the heights relative to the terrain, so that 0 represents ground level and not sea level.
lat $=$ [39.95384 39.95];
lon $=$ [-105.29916-105.3608];
hTerrain = [10 0];
Plot the line on a geographic globe. Indicate that height values are referenced to the terrain using the HeightReference property. By default, the view is directly above the data. Tilt the view by holding Ctrl and dragging.
uif = uifigure;
g = geoglobe(uif);
geoplot3(g,lat,lon,hTerrain,'y','HeightReference','terrain', ...
'LineWidth', 3)


## Input Arguments

## g - Geographic globe

GeographicGlobe object
Geographic globe, specified as a GeographicGlobe object. ${ }^{6}$

## lat - Geodetic latitudes

vector
Geodetic latitudes in degrees, specified as a vector.
lat and lon must be the same size.
Data Types: single | double

## lon - Geodetic longitudes

vector
Geodetic longitudes in degrees, specified as a vector.
lat and lon must be the same size.
Data Types: single | double

## h - Heights

vector
Heights in meters, specified as a vector. By default, height values are referenced to the geoid, or mean sea level.

6 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

Reference height values to the WGS84 reference ellipsoid by setting the HeightReference property of the line to 'ellipsoid'. Reference height values to the terrain, or ground, by setting the HeightReference property to 'terrain'.
$h$ must be either a scalar or a vector of the same size as lat and lon. If $h$ is a scalar, then every point is plotted at the same height.

## Data Types: single | double

## LineSpec - Line style, marker, and color

character vector | string scalar
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

Example: ' - or ' is a red solid line with circle markers

Line Style and Marker	Description
-	Solid line (default)
0	Circle marker


Color	Description
y	yellow
m	magenta
c	cyan
r	red
g	green
b	blue
w	white
k	black

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: geoplot3(g, 1:10, 1:10, 1:10, 'Color', 'r') changes the color of the line

Note The properties listed here are only a subset. For a full list, see Line Properties.

## HeightReference - Height reference

'geoid' (default)|'terrain'|'ellipsoid'
Height reference, specified as one of these values:

- 'geoid' - Height values are relative to the geoid (mean sea level).
- 'terrain' - Height values are relative to the ground.
- 'ellipsoid ' - Height values are relative to the WGS84 reference ellipsoid.

For more information about terrain, geoid, and ellipsoid height, see "Find Ellipsoidal Height from Orthometric and Geoid Height".

## Color - Line color

[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r'|'g'|'b'|...
Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to $F$. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal   Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	'\#FF0000'	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	'\#00FF00'	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	'\#0000FF'	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$' \# 00 F F F F^{\prime}$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	$' \# F F 00 F F^{\prime}$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	$' \# 000000 '$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	$' \# F F F F F F^{\prime}$	

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD '	
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	$\square$
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
[0.4660 0.6740 0.1880]	'\#77AC30'	
[0.3010 0.7450 0.9330]	'\#4DBEEE'	$\square$
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: 'blue'
Example: [0 0 1]
Example: '\#0000FF'

## LineStyle - Line style

'- ' (default)|'none'
Line style, specified as one of these options:

Line Style	Description	Resulting Line
' - '	Solid line (default)	
' none'	No line	No line

## Marker - Marker symbol

'none' (default) | 'o'
Marker symbol, specified as 'none ' or ' o '. By default, the line does not display markers. Specify ' o ' to display circle markers at each data point or vertex.

Markers do not tilt or rotate as you navigate the globe.

## Limitations

- Unlike most Line objects, lines created using geoplot3 cannot have their parent changed to any object except a geographic globe.
- In MATLAB Online, if you refresh the URL, the plotted lines can disappear. To make the lines reappear, either click on the frame of the geographic globe or change a property of the line.


## See Also

geoglobe | Line Properties
Introduced in R2020a

## geopoint

Geographic point vector

## Description

A geopoint vector is a container object that holds geographic point coordinates and attributes. The points are coupled, such that the size of the latitude and longitude coordinate arrays are always equal and match the size of any dynamically added attribute arrays. Each entry of a coordinate pair and associated attributes, if any, represents a discrete element in the geopoint vector.

To create a geographic point shape for use with a geospatial table, create a geopointshape object instead.

## Creation

## Syntax

```
p = geopoint()
p = geopoint(latitude,longitude)
p = geopoint(latitude,longitude,Name,Value)
p = geopoint(structArray)
p = geopoint(latitude,longitude,structArray)
```


## Description

$\mathrm{p}=$ geopoint() constructs an empty geopoint vector with these default property settings:
$p=$
0x1 geopoint vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
Latitude: []
Longitude: []
$\mathrm{p}=$ geopoint(latitude, longitude) sets the Latitude and Longitude properties of geopoint vector $p$
p = geopoint(latitude,longitude, Name, Value) sets the Latitude and Longitude properties, then adds dynamic properties to the geopoint vector using Name, Value argument pairs. You can specify several name-value pair arguments in any order as
Name1, Value1, . . . , NameN, ValueN.
$\mathrm{p}=$ geopoint(structArray) constructs a new geopoint vector from the fields of the structure, structArray.

- If structArray contains the field Lat, and does not contain a field Latitude, then the Lat values are assigned to the Latitude property. Similar behavior occurs when structArray contains the field Lon, and does not contain the field Longitude.
- If structArray contains both Lat and Latitude fields, then both field values are assigned to $p$. Similar behavior occurs for Lon and Longitude fields when both are present in structArray
- Other fields of structArray are assigned to p and become dynamic properties. Field values in structArray that are not numeric data types, string scalars, string arrays, character vectors, or cell arrays of numeric data types or character vectors are ignored.
p = geopoint(latitude, longitude, structArray) sets the Latitude and Longitude properties, and sets dynamic properties from the field values of the structure, structArray.
- If structArray contains the fields Lat, Latitude, Lon, or Longitude, then those field values are ignored.


## Properties

Each element in a geopoint vector is considered a feature. For more about the property types in geopoint, see "Collection Properties" on page 1-563 and "Feature Properties" on page 1-563.

Dynamic properties are new features that are added to a geopoint vector and that apply to each individual feature in the geopoint vector. You can attach new dynamic Feature properties to the object during construction with a Name, Value pair or after construction using dot (.) notation. This is similar to adding dynamic fields to a structure. For an example of adding dynamic Feature properties, see "Construct Geopoint Vector Using Name-Value Pairs" on page 1-552.

## Geometry - Type of geometry

'point'
Type of geometry, specified as 'point '. For geopoint, Geometry is always 'point '.
Data Types: char | string

## Latitude - Latitude coordinates

numeric row or column vector
Latitude coordinates, specified as a numeric row or column vector.

## Data Types: double | single

## Longitude - Longitude coordinates

numeric row or column vector
Longitude coordinates, specified as a numeric row or column vector.
Data Types: double \| single

## Metadata - Information for the entire set of geopoint vector elements

scalar structure
Information for the entire set of geopoint vector elements, specified as a scalar structure. You can add any data type to the structure.

- If Metadata is provided as a dynamic property Name in the constructor, and the corresponding Value is a scalar structure, then Value is copied to the Metadata property. Otherwise, an error is issued.
- If a Metadata field is provided by structArray, and both Metadata and structArray are scalar structures, then the Metadata field value is copied to the Metadata property value. If structArray is a scalar but the Metadata field is not a structure, then an error is issued. If structArray is not scalar, then the Metadata field is ignored.

Data Types: struct

## Object Functions

append
Append features to geographic or planar vector
cat Concatenate geographic or planar vector
disp Display geographic or planar vector
fieldnames Return dynamic property names of geographic or planar vector
isempty Determine if geographic or planar vector is empty
isfield Determine if dynamic property exists in geographic or planar vector
isprop Determine if property exists in geographic or planar vector
length Return number of elements in geographic or planar vector
properties Return property names of geographic or planar vector
rmfield Remove dynamic property from geographic or planar vector
rmprop Remove property from geographic or planar vector
size $\quad$ Return size of geographic or planar vector
struct Convert geographic or planar vector to scalar structure
vertcat Vertically concatenate geographic or planar vectors

## Examples

## Construct Geopoint Vector and Display It

This example shows how to create a geopoint vector, specifying latitude and longitude coordinates, and display it.

## Create Geopoint Containing Single Point and Display It

Create a geopoint vector using the latitude and longitude of Paris, France, and display it. When using a geopoint vector, the geometry of the constructed object is always 'point'.

```
lat = 48.8566;
lon = 2.3522;
p = geopoint(lat,lon)
p =
 1\times1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1\times1 struct]
 Feature properties:
 Latitude: 48.8566
 Longitude: 2.3522
```

Display the point in a plot. You can pass a geopoint vector directly to the geoshow command. geoshow can read the latitude and longitude values from the geopoint vector and also reads the geometry type.
geoshow( p )


## Display Point on a Map

To display your point with more context, plot your point over a map using the web map display function wmmarker. You can pass a geopoint vector directly to the wmmarker command.
wmmarker(p)
The wmmarker function opens a web map and displays the point on the map.


## Construct Geopoint Vector from File

Import data from a text file with the latitudes and longitudes of some European capitals. The latitude coordinates are in the first column and the longitude coordinates are in the second column. The coordinates are separated by single space character.

```
data = importdata('european capitals.txt');
```

Create a geopoint vector containing the latitude and longitude data.

```
p = geopoint(data(:,1),data(:,2))
p =
 13\times1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1×1 struct]
 Feature properties:
 Latitude: [48.8566 51.5074 40.4168 41.9028 52.5200 52.3680 52.2297 47.4979 44.4268 50.0755
 Longitude: [2.3522 -0.1278 -3.7038 12.4964 13.4050 4.9036 21.0122 19.0402 26.1025 14.4378 17
```

Plot the points on a map showing the landmass of Europe.

```
worldmap europe
geoshow('landareas.shp','FaceColor', [0.15 0.5 0.15])
geoshow(p)
```



Alternatively, you can also plot these points over a map using the geoplot function. This example includes a line specification parameter to specify a plus sign marker and the color red. The example also increases the line width for better visibility of the markers.
figure
geoplot(p.Latitude, p.Longitude,'+r','LineWidth', 2)


## Construct Geopoint Vector Using Name-Value Pairs

Create a geopoint vector, specifying Latitude, Longitude, and Temperature, where Temperature is part of a Name-Value pair.

```
 point = geopoint(42, -72, 'Temperature', 89)
point =
 1x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: 42
 Longitude: -72
 Temperature: 89
```

Construct a geopoint object specifying names.

```
 p = geopoint([51.519 48.871], [-..13 2.4131],...
 'Name', {"London", "Paris"})
```

$\mathrm{p}=$

```
2x1 geopoint vector with properties:
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [51.5190 48.8710]
 Longitude: [-0.1300 2.4131]
 Name: {'London' 'Paris'}
```


## Construct Geopoint Vector From a Structure Array

Read shape data into a geostruct (a structure array containing Lat and Lon fields).

```
S = shaperead('worldcities.shp', 'UseGeoCoords', true)
S =
318x1 struct array with fields:
 Geometry
 Lon
 Lat
 Name
```

Create a geopoint vector specifying the geostruct.

```
p = geopoint(S)
p =
 318x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [1\times318 double]
 Longitude: [1\times318 double]
 Name: {1\times318 cell}
```

Add a Filename field to the Metadata structure. The Metadata property pertains to all elements of a geopoint vector.

```
p.Metadata.Filename = 'worldcities.shp';
m = p.Metadata
ans =
 Filename: 'worldcities.shp'
```


## Construct a Geopoint Vector Using Numeric Arrays and a Structure Array

Create a structure array.

```
[structArray, A] = shaperead('worldcities.shp', 'UseGeoCoords', true)
structArray =
318x1 struct array with fields:
 Geometry
 Lon
 Lat
A =
318x1 struct array with fields:
 Name
```

Use the numeric arrays and the structure containing the list of names to construct a geopoint vector.

```
p = geopoint([structArray.Lat], [structArray.Lon], A)
p =
 318x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [1x318 double]
 Longitude: [1x318 double]
 Name: {1x318 cell}
```


## Add Coordinate and Dynamic Properties

Generate an empty geopoint vector using the default constructor, then populate the geopoint vector using dot notation with properties from data fields in structure structArray.

```
structArray = shaperead('worldcities.shp', 'UseGeoCoords', true);
p = geopoint();
p.Latitude = [structArray.Lat];
p.Longitude = [structArray.Lon];
p.Name = structArray.Name;
p
p =
 318x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [1\times318 double]
 Longitude: [1\times318 double]
 Name: {1x318 cell}
```


## Add New Values to Existing geopoint Vector

This example shows how to add new values to an existing geopoint vector. The example appends data about Paderborn Germany to the geopoint vector of data about world cities.

Read world cities data using the shaperead command. shaperead returns a structure array.

```
structArray = shaperead('worldcities.shp', 'UseGeoCoords', true);
```

Create a geopoint vector from the structure array. Display the last of the 318 elements in the vector.

```
p = geopoint(structArray);
p(end)
ans =
 lx1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: 34.8519
 Longitude: 113.8061
 Name: 'Zhengzhou'
```

Add the Paderborn data to the end of the geopoint vector. Display the last of the existing elements and the new element.

```
lat = 51.715254;
lon = 8.75213;
p = append(p, lat, lon, 'Name', 'Paderborn');
p(end-1:end)
ans =
 2x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [34.8519 51.7153]
 Longitude: [113.8061 8.7521]
 Name: {'Zhengzhou' 'Paderborn'}
```

Another way to add a point at the end of a vector is to use linear indexing. For example, add data about Arlington, Massachusetts to the end of the world cities vector. Notice how, after the initial assignment statement appends a value to the Latitude property vector, using end +1 , all other property vectors automatically expand by one element. Display the last of the existing elements and the new element.

```
p(end+1).Latitude = 42.417060
p =
 320x1 geopoint vector with properties:
 Collection properties:
```

```
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [5.2985 24.6525 5.6106 37.0613 9.0235 -34.6645 12.8767 ...]
 Longitude: [-3.9509 54.7589 -0.2121 35.3894 38.7575 138.8528 44.5408 ...]
 Name: {1\times320 cell}
p(end).Longitude = - 71.170200;
p(end).Name = 'Arlington';
p(end-1:end)
ans =
 2x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [51.7153 42.4171]
 Longitude: [8.7521 -71.1702]
 Name: {'Paderborn' 'Arlington'}
```


## Manipulate a Geopoint Vector

Construct a geopoint vector containing two features and then add two dynamic properties.

```
lat = [51.519 48.871];
lon = [-.13 2.4131];
p = geopoint(lat, lon);
p.Name = {'London', 'Paris'}; % Add character feature dynamic property
p.ID = [1 2] % Add numeric feature dynamic property
p =
 2x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [51.5190 48.8710]
 Longitude: [-0.1300 2.4131]
 Name: {'London' 'Paris'}
 ID: [1 2]
```

Add the coordinates for a third feature.

```
p(3).Latitude = 45.472;
p(3).Longitude = 9.184
p =
 3x1 geopoint vector with properties:
```

```
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [51.5190 48.8710 45.4720]
 Longitude: [-0.1300 2.4131 9.1840]
 Name: {'London' 'Paris' ''}
 ID: [1 2 0]
```

Note that lengths of all feature properties are synchronized with default values.
Set the values for the ID feature dynamic property with more values than contained in Latitude or Longitude.

```
p.ID = 1:4
p =
 4x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [51.5190 48.8710 45.4720 0]
 Longitude: [-0.1300 2.4131 9.1840 0]
 Name: {'London' 'Paris' '' ''}
 ID: [1 2 3 4]
```

Note that all feature properties are expanded to match in size.
Set the values for the ID feature dynamic property with fewer values than contained in the Latitude or Longitude properties.

```
p.ID = 1:2
p =
 4x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [51.5190 48.8710 45.4720 0]
 Longitude: [-0.1300 2.4131 9.1840 0]
 Name: {'London' 'Paris' '' ''}
 ID: [1 2 0 0]
```

The ID property values expand to match the length of the Latitude and Longitude property values.

Set the value of either coordinate property (Latitude or Longitude) with fewer values.

$$
\text { p.Latitude }=\left[\begin{array}{lll}
51.519 & 48.871
\end{array}\right]
$$

$p=$

```
2x1 geopoint vector with properties:
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [51.5190 48.8710]
 Longitude: [-0.1300 2.4131]
 Name: {'London' 'Paris'}
 ID: [1 2]
```

All properties shrink to match in size.
Remove the ID property by setting its value to [ ].

```
p.ID = []
p =
2x1 geopoint vector with properties:
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [51.5190 48.8710]
 Longitude: [-0.1300 2.4131]
 Name: {'London' 'Paris'}
```

Remove all dynamic properties and set the object to empty by setting a coordinate property value to [ ].

```
p.Latitude = []
p =
 0x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [lx1 struct]
 Feature properties:
 Latitude: []
 Longitude: []
```


## Sort Dynamic Properties and Extract Subsets

Read data from shapefile. Initially the field names of the class are in random order.

```
structArray = shaperead('tsunamis.shp', 'UseGeoCoords', true);
% Field names in random order
p = geopoint(structArray)
p =
162x1 geopoint vector with properties:
```

```
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [1x162 double]
 Longitude: [1\times162 double]
 Year: [1\times162 double]
 Month: [1x162 double]
 Day: [1x162 double]
 Hour: [1\times162 double]
 Minute: [1\times162 double]
 Second: [1x162 double]
 Val_Code: [1\times162 double]
 Valīdity: {1x162 cell}
 Cause_Code: [1\times162 double]
 C
 Eq_Mag: [1\times162 double]
 Country: {1x162 cell}
 Location: {1\times162 cell}
 Max_Height: [1x162 double]
 Iida_Mag: [1x162 double]
 Intens̄ity: [1x162 double]
 Num_Deaths: [1x162 double]
 Desc_Deaths: [1x162 double
```

Using the method fieldnames and typical MATLAB vector notation, the field names in the geopoint vector are alphabetically sorted.

```
p = p(:, sort(fieldnames(p)))
p =
162x1 geopoint vector with properties:
Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Feature properties:
 Latitude: [1x162 double]
 Longitude: [1x162 double]
 Cause: {1x162 cell}
 Cause_Code: [1x162 double]
 Country: {1x162 cell}
 Day: [1x162 double]
 Desc_Deaths: [1x162 double]
 Eq_Mag: [1\times162 double]
 Hour: [1x162 double]
 Iida_Mag: [1x162 double]
 Intensity: [1x162 double]
 Location: {1x162 cell}
 Max_Height: [1x162 double]
 Minute: [1\times162 double]
 Month: [1x162 double]
 Num_Deaths: [1x162 double]
 Second: [1\times162 double]
 Val_Code: [1\times162 double]
 Validity: {1x162 cell}
 Year: [1x162 double]
```

Using typical MATLAB vector notation, extract a subset of data from the base geopoint vector into a geopoint vector albeit smaller in size.

```
subp = p(20:40,{'Location','Country','Year'}) % get subset of data
subp =
 21x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [1x21 double]
 Longitude: [1x21 double]
 Location: {1x21 cell}
 Country: {1x21 cell}
 Year: [1x21 double]
```

Note that the coordinate properties Latitude and Longitude, and the Collection properties, are retained in this subset of geopoint vectors.

## Set, Get, and Remove Dynamic Property Values

To set property values, use the () operator, or assign array values to corresponding fields, or use dot '. ' notation (object. property) to assign new property values.
pts = geopoint();

```
pts.Latitude = [42 44 45];
```

pts.Longitude $=\left[\begin{array}{ll}-72 & -72.1 \\ -71]\end{array}\right.$
pts
pts =
$3 \times 1$ geopoint vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
Latitude: [42 44 45]
Longitude: [-72 -72.1000 -71]

Use ( ) to assign values to fields.

```
pts(3).Latitude = 45.5;
pts
pts =
 3x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
```

```
 Latitude: [42 44 45.5000]
Longitude: [-72 -72.1000 -71]
```

Use dot notation to create new dynamic properties

```
pts.Name = {'point1', 'point2', 'point3'}
pts =
 3x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [42 44 45.5000]
 Longitude: [-72 -72.1000 -71]
 Name: {'point1' 'point2' 'point3'}
```

Get property values

```
pts.Name
```

ans =
'point1' 'point2' 'point3'

Remove dynamic properties. To delete or remove dynamic properties, set them to [] or set the Latitude or Longitude property to [].

```
pts.Temperature = 1:3
pts =
 3x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [42 44 45.5000]
 Longitude: [-72 -72.1000 -71]
 Name: {'point1' 'point2' 'point3'}
 Temperature: [1 2 3]
```

By setting the Temperature property to [], this dynamic property is deleted.

```
pts.Temperature = []
pts =
 3x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [42 44 45.5000]
```

```
Longitude: [-72 -72.1000 -71]
 Name: {'point1' 'point2' 'point3'}
```

To clear all fields in the geopoint vector, set the Latitude or Longitude property to [ ].

```
pts.Latitude = []
pts =
 0x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: []
 Longitude: []
```


## Modify geopoint Object and Its Metadata

If you typically store latitude and longitude coordinates in an $N$-by- 2 or 2-by- $M$ array, you can assign these numeric values to a geopoint vector. If the coordinates are $N$-by- 2 , the first column is assigned to the Latitude property and the second column to the Longitude property. If the coordinates are 2-by- $M$, then the first row is assigned to the Latitude property and the second row to the Longitude property.

```
load coastlines;
ltln = [coastlat coastlon]; % 9865x2 array
pts = geopoint; % null constructor
pts(1:numel(coastlat)) = ltln; % assign array
pts.Metadata.Name = 'coastline';
pts
pts =
 9865x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [lx1 struct]
 Feature properties:
 Latitude: [-83.8300 -84.3300 -84.5000 -84.6700 -84.9200 -85.4200 ...]
 Longitude: [-180 -178-174 -170 -166.0000 -163 -158 -152 -146 -147 ...]
pts.Metadata
ans = struct with fields:
 Name: 'coastline'
```


## More About

## Collection Properties

Collection properties contain only one value per class instance. In contrast, the Feature property type has attribute values associated with each feature. Geometry and Metadata are the only two Collection properties.

## Feature Properties

Feature properties contain one value (a scalar number, a scalar string, or a character vector) for each feature in a geopoint vector. They are suitable for properties such as name, owner, serial number, or age, that describe a given feature (an element of a geopoint vector) as a whole. The Latitude and Longitude coordinate properties are feature properties as there is one value for each element in the geopoint vector.

Feature properties can be added after construction using dot notation. This is similar to adding dynamic fields to a structure.

## Tips

- If Latitude, Longitude, or a dynamic property is set with more values than features in the geopoint vector, then all other properties expand in size using 0 for numeric values and an empty character vector ( $'$ ' ) for cell values. See "Manipulate a Geopoint Vector" on page 1-556 for examples of these behaviors.
- If a dynamic property is set with fewer values than the number of features, then this dynamic property expands to match the size of the other properties by inserting a 0 , if the value is numeric, or an empty character vector ( ' ' ), if the value is a cell array.
- If the Latitude or Longitude property of the geopoint vector is set with fewer values than contained in the object, then all other properties shrink in size.
- If either Latitude or Longitude are set to [ ], then both coordinate properties are set to [ ] and all dynamic properties are removed.
- If a dynamic property is set to [ ], then it is removed from the object.


## See Also

## Functions

gpxread | shaperead

## Objects

geoshape | mappoint | mapshape
Introduced in R2012a

## geopointshape

Point shape in geographic coordinates

## Description

A geopointshape object represents a point or multipoint in geographic coordinates. A multipoint is an individual point shape that contains a set of point locations.

To represent a point or multipoint in planar coordinates, use a mappointshape object instead.

## Creation

To create geopointshape objects, either:

- Import point data in geographic coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the geopointshape function (described here).


## Syntax

shape = geopointshape(lat,lon)

## Description

shape $=$ geopointshape(lat,lon) creates a geopointshape object or array of geopointshape objects with the specified latitude and longitude coordinates. The sizes of lat, lon, and the geopointshape object array shape match.

## Input Arguments

## Lat - Latitude coordinates

numeric array | cell array of numeric arrays
Latitude coordinates, specified as a numeric array or a cell array of numeric arrays.

- Create a point by specifying a scalar, such as 39.
- Create a multipoint by specifying an array within a cell, such as $\left.\left\{\begin{array}{llll}38 & -30 & 29\end{array}\right]\right\}$.
- Create an array of points by specifying an array, such as [38-30 29].
- Create an array of points and multipoints by specifying a cell array of numeric arrays, such as \{39,[38-30 29]\}.

Create placeholders for points with missing data by including NaN values. The NaN values in lat must correspond to the NaN values in lon.

The size of lat must match the size of lon. For cell arrays, the size of the array in each cell of lat must match the size of the array in the corresponding cell of lon.

Data Types: double | cell

## Lon - Longitude coordinates

numeric array | cell array of numeric arrays
Longitude coordinates, specified as a numeric array or a cell array of numeric arrays.

- Create a point by specifying a scalar, such as -113.
- Create a multipoint by specifying an array within a cell, such as $\left\{\left[\begin{array}{lll}-66 & -31 & 42\end{array}\right]\right\}$.
- Create an array of points by specifying an array, such as [ $\left.\begin{array}{llll}-66 & -31 & 42\end{array}\right]$.
- Create an array of points and multipoints by specifying a cell array of numeric arrays, such as $\{-113,[-66-3142]\}$.

Create placeholders for points with missing data by including NaN values. The NaN values in lat must correspond to the NaN values in lon.

The size of lat must match the size of lon. For cell arrays, the size of the array in each cell of lat must match the size of the array in the corresponding cell of lon.

## Properties

## NumPoints - Number of points

array of nonnegative integers
This property is read-only.
Number of points, returned as an array of nonnegative integers.
For a geopointshape scalar, the value of NumPoints is 1 when the geopointshape object represents a single point and more than 1 when the object represents a multipoint.

For a geopointshape array, the size of NumPoints matches the size of the array.
Data Types: double
Latitude - Latitude coordinates
array
Latitude coordinates, specified as an array.
For a geopointshape scalar, the size of Latitude matches the value of NumPoints.
For a geopointshape array, the size of Latitude matches the size of NumPoints. If the array contains geopointshape objects with multipoints, then accessing the Latitude property of the array is not supported. Instead, access the Latitude property of individual objects within the array.

This property is read-only for arrays when any element of NumPoints is greater than 1.
Latitude and Longitude must be the same size.
Data Types: double

## Longitude - Longitude coordinates

array
Longitude coordinates, specified as an array.

For a geopointshape scalar, the size of Longitude matches the value of NumPoints.
For a geopointshape array, the size of Longitude matches the size of NumPoints. If the array contains geopointshape objects with multipoints, then accessing the Longitude property of the array is not supported. Instead, access the Longitude property of individual elements within the array.

This property is read-only for arrays when any element of NumPoints is greater than 1.
Latitude and Longitude must be the same size.
Data Types: double
Geometry - Geometric type
"point" (default)
This property is read-only.
Geometric type, returned as "point".
Data Types: string

## CoordinateSystemType - Coordinate system type

"geographic" (default)
This property is read-only.
Coordinate system type, returned as "geographic".
Data Types: string
GeographicCRS - Geographic coordinate reference system
[] (default) | geocrs object
Geographic coordinate reference system (CRS), specified as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

## Object Functions

geoplot Plot points, lines, and polygons in geographic axes
geoclip Clip geographic shape to latitude-longitude limits

## Examples

## Get Information About Imported Geographic Points

Import a GPX file containing the coordinates of locations in Boston as a geospatial table. The GPX file represents the locations using points. Get information about the points by querying the Shape variable of the table.

```
GT = readgeotable("boston_placenames.gpx");
GT.Shape
ans =
 13\times1 geopointshape array with properties:
```

NumPoints: [ $13 \times 1$ double] Latitude: [13×1 double]
Longitude: [13×1 double]
Geometry: "point"
CoordinateSystemType: "geographic"
GeographicCRS: [1×1 geocrs]

Display the locations on a road map by passing the geospatial table to the geoplot function.
figure
geoplot(GT,"o",MarkerFaceColor="\#0072BD")
geobasemap streets


## Create Geographic Points and Multipoints

Create an individual point as a geopointshape scalar. Specify the geographic CRS as the World Geodetic System of 1984, which has the EPSG code 4326.

```
point = geopointshape(39,-113);
g = geocrs(4326);
point.GeographicCRS = g
point =
 geopointshape with properties:
```

```
 NumPoints: 1
 Latitude: 39
 Longitude: -113
 Geometry: "point"
CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create a multipoint as a geopointshape scalar.

```
multipoint = geopointshape({[38 -30 29]},{[-66 -31 42]});
multipoint.GeographicCRS = g
multipoint =
 geopointshape with properties:
 NumPoints: 3
 Latitude: [38 -30 29]
 Longitude: [-66 -31 42]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create three individual points as a 1-by-3 geopointshape vector.

```
pointVector = geopointshape([38 -20 29],[-66 -31 42]);
pointVector.GeographicCRS = g
pointVector =
 1x3 geopointshape array with properties:
 NumPoints: [llll
 Latitude: [38 -20 29]
 Longitude: [-66 -31 42]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create one individual point and one multipoint as a 1-by-2 geopointshape vector.

```
pointMultipoint = geopointshape({39,[38 -30 29]},{-113,[-66 -31 42]});
pointMultipoint.GeographicCRS = g
pointMultipoint =
 1x2 geopointshape array with properties:
 NumPoints: [1 3]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```


## Compatibility Considerations

Points with missing coordinate data have some changed property values
Behavior changed in R2022a
When a point shape has missing coordinate data, its NumPoints property has a value of 0 and its Latitude and Longitude properties each have a value of NaN .

- When you create a point by specifying both coordinates as NaN values, its NumPoints property has a value of 0 . In the previous release, the property had a value of 1.
- When a point has no coordinate data, its Latitude and Longitude properties each have a value of NaN . In the previous release, the properties were each empty double values.

These changes make it easier to create and access the properties of geopointshape arrays when the input coordinates contain missing data. For example, you can now access the coordinates of a geopointshape array when the array contains a combination of points with coordinate data (NumPoints is 1 ) and without coordinate data (NumPoints is 0 ). In the previous release, MATLAB issued an error.

## See Also

## Functions

readgeotable

## Objects

geolineshape|geopolyshape|mappointshape

## Topics

"Create Geospatial Tables"
Introduced in R2021b

## geolineshape

Line shape in geographic coordinates

## Description

A geolineshape object represents a line or multiline in geographic coordinates. A multiline is an individual line shape that contains a set of separate lines.

To represent a line or multiline in planar coordinates, use a maplineshape object instead.

## Creation

To create geolineshape objects, either:

- Import line data in geographic coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the geolineshape function (described here).


## Syntax

shape = geolineshape(lat,lon)

## Description

shape = geolineshape(lat,lon) creates a geolineshape object or array of geolineshape objects with vertices at the specified latitude and longitude coordinates. The sizes of lat, lon, and the geolineshape object array shape match.

## Input Arguments

## lat - Latitude coordinates

numeric vector | cell array of numeric vectors
Latitude coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a line by specifying a vector, such as [65 6253 66].
- Create a multiline by specifying a vector and including line breaks as NaN values, such as [55 34 18 NaN 141942 26].
- Create an array of lines and multilines by specifying a cell array of vectors, such as $\left\{\left[\begin{array}{ll}55 & 34\end{array}\right.\right.$ 18],[14 19 NaN 4226 31]\}.

The NaN values in lat must correspond to the NaN values in lon.
The size of lat must match the size of lon. For cell arrays, the size of the vector in each cell of lat must match the size of the vector in the corresponding cell of lon.
Data Types: double | cell

## Lon - Longitude coordinates

## numeric vector | cell array of numeric vectors

Longitude coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a line by specifying a vector, such as [4 59121 98].
- Create a multiline by specifying a vector and including line breaks as NaN values, such as [78 56 63 NaN 83106104 126].
- Create an array of lines and multilines by specifying a cell array of vectors, such as \{[78 56 63],[83 106 NaN 104126 131]\}.

The NaN values in lat must correspond to the NaN values in lon.
The size of lat must match the size of lon. For cell arrays, the size of the vector in each cell of lat must match the size of the vector in the corresponding cell of lon.

## Properties

## NumParts - Number of line parts

array of nonnegative integers
This property is read-only.
Number of line parts, returned as an array of nonnegative integers.
For a geolineshape scalar, the value of NumParts is 1 when the geolineshape object represents a single line and more than 1 when the object represents a multiline.

For a geolineshape array, the size of NumParts matches the size of the array.
Data Types: double

## Geometry - Geometric type

"line" (default)
This property is read-only.
Geometric type, returned as "line".
Data Types: string
CoordinateSystemType - Coordinate system type
"geographic" (default)
This property is read-only.
Coordinate system type, returned as "geographic".
Data Types: string

## GeographicCRS - Geographic coordinate reference system

[] (default) | geocrs object
Geographic coordinate reference system (CRS), specified as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

## Object Functions

geoplot Plot points, lines, and polygons in geographic axes
geoclip Clip geographic shape to latitude-longitude limits

## Examples

## Get Information About Imported Geographic Lines

Import the tracks layer of a GPX file containing routes in Massachusetts as a geospatial table. The tracks layer represents the routes using lines. Get information about the line in the second track by querying the Shape variable of the table.

```
GT = readgeotable("sample_tracks.gpx",Layer="tracks");
GT.Shape(2)
ans =
 geolineshape with properties:
 NumParts: 5
 Geometry: "line"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1×1 geocrs]
```

Create a subtable that contains the second track. Display the second track on a road map.

```
GT2 = GT(2,:);
geoplot(GT2,LineWidth=2)
geobasemap streets
```



## Create Geographic Lines and Multilines

Create an individual line as a geolineshape scalar. Specify the geographic CRS as the World Geodetic System of 1984, which has the EPSG code 4326.

```
lat = [65 62 53 66];
lon = [4 59 121 98];
lineshp = geolineshape(lat,lon);
g = geocrs(4326);
lineshp.GeographicCRS = g
lineshp =
 geolineshape with properties:
 NumParts: 1
 Geometry: "line"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create a multiline as a geolineshape scalar.

```
lat = [55 34 18 NaN 14 19 42 26];
lon = [78 56 63 NaN 83 106 104 126];
```

```
multiline = geolineshape(lat,lon);
multiline.GeographicCRS = g
multiline =
 geolineshape with properties:
 NumParts: 2
 Geometry: "line"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create one individual line and one multiline as a 1 -by- 2 geolineshape array.

```
lat = {[55 34 18],[14 19 NaN 42 26 37]};
lon = {[78 56 63],[83 106 NaN 104 126 113]};
lineMultiline = geolineshape(lat,lon);
lineMultiline.GeographicCRS = g
lineMultiline=1\times2 object
 1x2 geolineshape array with properties:
 NumParts: [1 2]
 Geometry: "line"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```


## See Also

## Functions

readgeotable
Objects
geopointshape | geopolyshape | maplineshape
Topics
"Create Geospatial Tables"
Introduced in R2021b

## geoplot

Plot points, lines, and polygons in geographic axes

## Syntax

```
geoplot(GT)
geoplot(shape)
geoplot(___,LineSpec)
geoplot(lat,lon)
geoplot(lat,lon,LineSpec)
geoplot(lat1,lon1,...,latN,lonN)
geoplot(lat1,lon1,LineSpec1,...,latN,lonN,LineSpecN)
geoplot(
```

$\qquad$

```
 ,Name=Value)
geoplot(gx,
```

$\qquad$

``` \(\mathrm{h}=\) geoplot \((\)
``` \(\qquad\)
``` )
```


## Description

Mapping Toolbox extends the functionality of the geoplot (MATLAB) function. It adds support for displaying points, lines, and polygons with coordinates in any supported geographic or projected coordinate reference system (CRS). If you do not have Mapping Toolbox installed, then see geoplot.

## Table and Shape Data

geoplot (GT) plots the point, line, or polygon shape objects within the Shape variable of the geospatial table GT.
geoplot (shape) plots the point, line, or polygon shape objects in shape on a geographic axes.
geoplot( $\qquad$ , LineSpec) sets the style, marker symbol, and color for the plotted shapes. You can use the LineSpec argument with either of the GT or shape arguments.

## Numeric Data

geoplot(lat,lon) plots a line with vertices at the latitudes and longitudes in lat and lon, respectively.
geoplot (lat,lon,LineSpec) sets the style, marker symbol, and color for the line.
geoplot(lat1, lon1, ..., latN,lonN) plots multiple pairs of latitude and longitude coordinates on the same set of geographic axes.
geoplot(lat1,lon1,LineSpec1,...,latN,lonN,LineSpecN) assigns specific line styles, markers, and colors to each latitude-longitude pair.

## Additional Options

geoplot( $\qquad$ ,Name=Value) specifies options for the plot using one or more name-value arguments.
geoplot(gx, $\qquad$ ) plots in the geographic axes specified by gx instead of the current axes.
h = geoplot ( $\qquad$ ) returns a Point, Line, or Polygon object. The type of object depends on the type of input. Use h to modify the properties of the plot object.

## Examples

Plot Shapes from Geospatial Table
Import a shapefile containing road data for Concord, MA, into the workspace as a geospatial table. The table represents roads using line shapes in projected coordinates.

```
GT = readgeotable("concord roads.shp");
GT.Shape
ans=609\times1 object
 16\times1 maplineshape array with properties:
 NumParts: [16\times1 double]
 Geometry: "line"
 CoordinateSystemType: "planar"
 ProjectedCRS: [1×1 projcrs]
```

Display the line shapes by passing the table to the geoplot function.
figure
geoplot(GT)
Change the basemap and add a title.

```
geobasemap streets
title("Road Network Over Streets Basemap")
```

Road Network Over Streets Basemap


## Plot from Geospatial Table Using Custom Colors

One way to plot data from a geospatial table and customize the colors is to set the ColorVariable property. You can set this property by using a name-value argument when you call the geoplot function, or you can set it on the plot object later.

Read a shapefile containing tsunami (tidal wave) events into the workspace as a geospatial table. The table represents the tsunami events using point shapes in geographic coordinates.

GT = readgeotable("tsunamis.shp",CoordinateSystemType="geographic");
Create a subtable containing events for a region surrounding Southeast Asia.

```
bbox = geopolyshape([-25 35 35 -25 -25],[90 90 170 170 90]);
inpoly = isinterior(bbox,GT.Shape);
GT2 = GT(inpoly,:);
```

Display the point shapes within the table. Vary the marker colors by specifying the ColorVariable name-value argument as a table variable. Return the Point object as $h$, so you can change the ColorVariable property later.
figure
h = geoplot(GT2,ColorVariable="Year",MarkerSize=20);
Change the basemap, add a colorbar, and add a title.

```
geobasemap grayterrain
colorbar
title("Tsunamis by Year")
```



Change the marker colors again by setting the ColorVariable property to a different table variable.

```
h.ColorVariable = "Max_Height";
```

title("Tsunamis by Maxímum Height")


Plot Shapes in Geographic Coordinates
Read a shapefile containing world cities into the workspace as a geospatial table. The table represents the cities using point shapes in geographic coordinates.

```
GT = readgeotable("worldcities.shp");
shape = GT.Shape
shape =
 318\times1 geopointshape array with properties:
 NumPoints: [318\times1 double]
 Latitude: [318\times1 double]
 Longitude: [318×1 double]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1×1 geocrs]
```

Clip the shapes to a region containing part of Europe.
clipped = geoclip(shape,[30 60],[-20 35]);
Display the shapes using red plus sign markers over a topographic basemap.

```
figure
geoplot(clipped,"r+")
geobasemap topographic
title("Cities Over Topographic Basemap")
```



## Plot Shapes in Projected Coordinates

Read hydrography data into the workspace as a geospatial table. The table represents the data using polygon shapes in projected coordinates. Extract the polygon shape for a pond.

```
GT = readgeotable("concord_hydro_area.shp");
shape = GT.Shape(14)
shape =
 mappolyshape with properties:
 NumRegions: 1
 NumHoles: 3
 Geometry: "polygon"
 CoordinateSystemType: "planar"
 ProjectedCRS: [1\times1 projcrs]
```

To plot shapes in projected coordinates using the geoplot function, the ProjectedCRS property of the shape must not be empty. View the contents of the ProjectedCRS property.
shape.ProjectedCRS

```
ans =
 projcrs with properties:
```

                                    Name: "NAD83 / Massachusetts Mainland"
            GeographicCRS: [1×1 geocrs]
            ProjectionMethod: "Lambert Conic Conformal (2SP)"
                    LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]
    Display the polygon shape. Then, change the basemap and add a title.
figure
geoplot(shape)
geobasemap streets
title("Pond Over Streets Basemap")


## Plot Shapes Using Custom Colors

Read a shapefile of US states into the workspace as a geospatial table. The table represents the states using polygon shapes in geographic coordinates.

```
GT = readgeotable("usastatehi.shp");
shape = GT.Shape;
```

Clip the shapes to a region containing the conterminous US.

```
clipped = geoclip(shape,[17 56],[-127 -65]);
```

Display the shapes. Vary the colors by using the ColorData name-value argument.
figure
c = 1:length(clipped);
geoplot(clipped,ColorData=c)
Change the basemap and add a title.

```
geobasemap grayland
title("Conterminous US")
```

Conterminous US


## Plot Points and Lines from Numeric Data

Load a MAT file containing the coordinates of global coastlines into the workspace. The variables within the MAT file, coastlat and coastlon, specify numeric latitude and longitude coordinates, respectively. Display the coordinates using a blue line over a topographic basemap.

```
load coastlines
figure
geoplot(coastlat,coastlon,"b")
geobasemap topographic
```

Read the geographic coordinates of European capitals into the workspace. Display the capitals using magenta circle markers on the same map.

```
[lat,lon] = readvars("european capitals.txt");
hold on
geoplot(lat,lon,"om",MarkerFaceColor="m")
title("European Capitals Over Topographic Basemap")
```

Center the map over Europe by changing its limits.
geolimits([30 60],[-13 43])


## Plot Point, Line, and Polygon Shapes on Same Axes

Import several shapefiles into the workspace as geospatial tables.

- landareas.shp contains world land areas. The table represents the areas using polygon shapes in geographic coordinates (geopolyshape objects).
- worldrivers.shp contains world rivers. The table represents the rivers using line shapes in geographic coordinates (geolineshape objects).
- worldcities.shp contains world cities. The table represents the cities using point shapes in geographic coordinates (geopointshape objects).

```
land = readgeotable("landareas.shp");
rivers = readgeotable("worldrivers.shp");
cities = readgeotable("worldcities.shp");
```

Display each set of shapes using separate calls to the geoplot function. Different shapes support different name-value arguments.

- Display the land areas using green polygons.
- Display the rivers using blue lines.
- Display the cities using black points.

```
figure
geoplot(land,FaceColor=[0.7 0.9 0.5],EdgeColor=[0.7 0.9 0.5])
hold on
geoplot(rivers,Color=[0 0.4470 0.7410])
geoplot(cities,"k")
```

Remove the basemap and add a title. Then, zoom in by changing the geographic limits.

```
geobasemap none
title("World Land Areas, Rivers, and Cities")
geolimits([-72 85],[-180 180])
```



## Specify Geographic Axes

Create multiple geographic axes in a single figure by using a tiled chart layout.
Create a 1-by-2 tiled chart layout.
t = tiledlayout(1,2);
Load a MAT file containing the coordinates of global coastlines into the workspace. The variables within the MAT file, coastlat and coastlon, specify numeric latitude and longitude coordinates, respectively.
load coastlines
Place a geographic axes in the first tile. Plot the coordinates as a line on the axes.

```
gx1 = geoaxes(t);
geoplot(gx1,coastlat,coastlon)
title(gxl,"Coastline Coordinates")
```

Read a shapefile containing world land areas into the workspace as a geospatial table. The table represents the land areas using polygon shapes in geographic coordinates.

```
GT = readgeotable("landareas.shp");
```

Place a new geographic axes in the second tile. Plot the land areas as a polygon on the new axes.

```
gx2 = geoaxes(t);
gx2.Layout.Tile = 2;
geoplot(gx2,GT)
title(gx2,"Land Areas")
```

Zoom both axes to a region containing Africa.

```
latlim = [-55 60];
lonlim = [-21 53];
geolimits(gx1,latlim,lonlim)
geolimits(gx2,latlim,lonlim)
```



## Modify Point, Line, or Polygon After Creation

Import several shapefiles into the workspace as geospatial tables.

- landareas. shp contains world land areas. The table represents the areas using polygon shapes in geographic coordinates (geopolyshape objects).
- worldrivers.shp contains world rivers. The table represents the rivers using line shapes in geographic coordinates (geolineshape objects).
- worldcities.shp contains world cities. The table represents the cities using point shapes in geographic coordinates (geopointshape objects).

```
land = readgeotable("landareas.shp");
rivers = readgeotable("worldrivers.shp");
cities = readgeotable("worldcities.shp");
```

Display each set of shapes by using separate calls to the geoplot function.

- Display the land areas and return the polygon in h1. The polygon in h1 represents multiple polygon shapes in land.
- Display the rivers and return the line in h2. The line in h2 represents multiple line shapes in rivers.
- Display the cities and return the point in h3. The point in h3 represents multiple point shapes in cities.
figure
h1 = geoplot(land);
hold on
h2 = geoplot(rivers);
h3 = geoplot(cities);
Change the geographic limits of the map, add a title, and remove the basemap.

```
geolimits([-72 85],[-180 180])
title("World Land Areas, Rivers, and Cities")
geobasemap none
```



Update properties of the polygon, point, and line objects. Each object supports different properties.

- Change the fill and outline colors of the polygons to green.
- Change the color of the lines to blue.
- Change the color of the markers to black.
h1.FaceColor = [0.7 0.9 0.5];
h1.EdgeColor = [0.7 0.9 0.5];
h2.Color = [0 0.4470 0.7410];
h3.MarkerEdgeColor = "k";



## Input Arguments

## GT - Geospatial table

geospatial table
Geospatial table. A geospatial table is a table or timetable object with a Shape variable that contains point, line, or polygon shapes. For more information about geospatial tables, see "Create Geospatial Tables".

The Shape variable of the table must contain only one type of shape. The ProjectedCRS property of mappointshape, maplineshape, and mappolyshape objects within the Shape variable must not be empty.

The geoplot function can display shapes with coordinates in any supported geographic or projected CRS. The function displays the shape data into a Web Mercator map projection.

## shape - Point, line, or polygon shapes

vector of geopointshape objects | vector of geolineshape objects | vector of geopolyshape objects | vector of mappointshape objects | vector of maplineshape objects | vector of mappolyshape objects

Point, line, or polygon shapes, specified as one of these options:

- A vector of geopointshape objects - Point shapes in geographic coordinates
- A vector of geolineshape objects - Line shapes in geographic coordinates
- A vector of geopolyshape objects - Polygon shapes in geographic coordinates
- A vector of mappointshape objects - Point shapes in projected coordinates
- A vector of maplineshape objects - Line shapes in projected coordinates
- A vector of mappolyshape objects - Polygon shapes in projected coordinates

You can also specify this argument as a scalar point, line, or polygon shape.
The ProjectedCRS property of mappointshape, maplineshape, and mappolyshape objects must not be empty.

The geoplot function can display shapes with coordinates in any supported geographic or projected CRS. The function displays the shape data into a Web Mercator map projection.

## lat - Latitude coordinates in degrees

finite vector of real numbers
Latitude coordinates in degrees, specified as a finite vector of real numbers. The vector can contain NaN values.

The geoplot function assumes numeric coordinates are referenced to the WGS84 coordinate reference system. To plot points or lines with coordinates in a different CRS, use the coordinates to create a geopointshape or geolineshape object and set its GeographicCRS property. Then, pass the object you created to the geoplot function.
lat must be the same size as lon.
Example: [43.0327 38.892144 .0435 ]
Data Types: single|double

## lon - Longitude coordinates in degrees

finite vector of real numbers
Longitude coordinates in degrees, specified as a finite vector of real numbers. The vector can contain NaN values.

The geoplot function assumes numeric coordinates are referenced to the WGS84 coordinate reference system. To plot points or lines with coordinates in a different CRS, use the coordinates to create a geopointshape or geolineshape object and set its GeographicCRS property. Then, pass the object you created to the geoplot function.
lon must be the same size as lat.
Example: [-107.5556-77.0269-72.5565]
Data Types: single | double

## LineSpec - Line style, marker, and color

character vector | string scalar
Line style, marker, and color, specified as a character vector or string scalar containing symbols. You can specify the symbols in any order. Different types of input support different characteristics (line, marker style, and color).

Type of Input	Supported Characteristics	Example
GT or shape contains   geopointshape or   mappointshape objects	Marker and color	'ro' specifies red circle   markers
GT or shape contains   geolineshape or   maplineshape objects	Line style and color	'r-- ' specifies red dashed   lines
GT or shape contains   geopolyshape or   mappolyshape objects	Line style and color	'r-- ' specifies red dashed   lines
lat and lon contain numeric   data	Line style, marker, and color	' - -or' specifies red dashed   lines with circle markers

You do not need to specify all supported characteristics. For example, if you plot a line from numeric data and specify only the marker, then the plot shows only the marker and no line.

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - - -
':'	Dotted line	.............
' - .	Dash-dotted line	---------


Marker	Description	Resulting Marker
'o'	Circle	$\bigcirc$
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
'x'	Cross	$\times$
'_'	Horizontal line	-
'1'	Vertical line	\|
's'	Square	$\square$
'd'	Diamond	$\diamond$
'^'	Upward-pointing triangle	$\triangle$
'v'	Downward-pointing triangle	$\nabla$


Marker	Description	Resulting Marker
' >'	Right-pointing triangle	$\Delta$
' <'	Left-pointing triangle	$\Delta$
' $\mathrm{p}^{\prime}$	Pentagram	$\Delta$
' h '	Hexagram	$\vdots$


Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	$\square$
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	$\square$
'blue'	'b'	[0061]	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$\square$
'magenta'	'm'	[110c]	$\square$
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	[00clul	
'white'	'w'	[11 111$]$	$\square$

## gx - Target geographic axes

GeographicAxes object
Target geographic axes, specified as a GeographicAxes object. ${ }^{7}$ You can modify the appearance and behavior of a GeographicAxes object by setting its properties. For a list of properties, see GeographicAxes Properties.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: geoplot (47,-122,Marker="*", Color="m") displays a magenta star marker at the specified latitude and longitude.

Specify properties for the plot by using name-value arguments. The supported name-value arguments depend on the type of input.

Type of Input	Supported Name-Value Arguments
GT or shape contains geopointshape or   mappointshape objects	See Point Properties
GT or shape contains geolineshape or   maplineshape objects	See Line Properties

[^5]| Type of Input | Supported Name-Value Arguments |
| :--- | :--- |
| GT or shape contains geopolyshape or <br> mappolyshape objects | See Polygon Properties |
| lat and lon contain numeric data | See Line Properties |

## Output Arguments

## h - Plot object

geographic Point object | geographic chart Line object | geographic Polygon object | column vector of chart Line objects

Plot object. The value of $h$ depends on the type of input you pass to the geoplot function.

Type of Input	Value of $\mathbf{h}$
GT or shape contains geopointshape or   mappointshape objects	A geographic Point object. A Point object can   represent multiple geopointshape or   mappointshape objects.
GT or shape contains geolineshape or   maplineshape objects	A geographic chart Line object. A Line object   can represent multiple geolineshape or   maplineshape objects.
GT or shape contains geopolyshape or   mappolyshape objects	A geographic Polygon object. A Polygon object   can represent multiple geopolyshape or   mappolyshape objects.
lat and lon contain numeric data	A column vector of chart Line objects. Each   object corresponds to a vector of latitude-   longitude pairs.

## See Also

## Functions

geobasemap | geolimits | geoaxes | geoplot3

## Topics

"Create Choropleth Map from Table Data"
"Create Classification Map from Table Data"

## Introduced in R2022a

## geopolyshape

Polygon in geographic coordinates

## Description

A geopolyshape object represents a polygon or multipolygon in geographic coordinates. A polygon is a region bounded by a closed curve and can include interior holes. A multipolygon is an individual polygon shape that includes multiple nonintersecting regions.

To represent a polygon or multipolygon in planar coordinates, use a mappolyshape object instead.

## Creation

To create geopolyshape objects, either:

- Import polygon data in geographic coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the geopolyshape function (described here).


## Syntax

shape $=$ geopolyshape(lat,lon)

## Description

shape = geopolyshape(lat,lon) creates a geopolyshape object or array of geopolyshape objects with vertices at the specified latitude and longitude coordinates. The sizes of lat, lon, and the geopolyshape object array shape match.

The geopolyshape function assumes that lat and lon define polygons with valid topology. A polygon has valid topology when:

- Region interiors are to the right as you trace boundaries from vertex to vertex.
- The boundaries have no self-intersections.

In general, the outer boundaries of polygons with valid topology have vertices in a clockwise order and the interior holes have vertices in a counterclockwise order.

## Input Arguments

## lat - Latitude coordinates

numeric vector | cell array of numeric vectors
Latitude coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a polygon by specifying a vector, such as $\left[\begin{array}{llll}39 & 45 & 19 & 39\end{array}\right]$.
- Create a polygon with holes or a multipolygon by specifying a vector and including breaks between the hole and region boundaries as NaN values, such as [ $\begin{array}{llllllllllll}37 & 46 & 31 & 20 & 37 & \mathrm{NaN} & 45 & 49\end{array}$ 353245 NaN 354042 35].
- Create an array of polygons and multipolygons by specifying a cell array of vectors, such as \{[37 463120 37],[45 49353245 NaN 354042 35]\}.

The NaN values in lat must correspond to the NaN values in lon.
The size of lat must match the size of lon. For cell arrays, the size of the vector in each cell of lat must match the size of the vector in the corresponding cell of lon.
Data Types: double | cell
Lon - Longitude coordinates
numeric vector | cell array of numeric vectors
Longitude coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a polygon by specifying a vector, such as [-113 -49-100 -113].
- Create a polygon with holes or a multipolygon by specifying a vector and including breaks between the hole and region boundaries as NaN values, such as [69 901057969 NaN 652 43146 NaN 183222 18].
- Create an array of polygons and multipolygons by specifying a cell array of vectors, such as \{[69 9010579 69],[6 5243146 NaN 183222 18]\}.

The NaN values in lat must correspond to the NaN values in lon.
The size of lat must match the size of lon. For cell arrays, the size of the vector in each cell of lat must match the size of the vector in the corresponding cell of lon.

## Properties

## NumRegions - Number of polygon regions

array of nonnegative integers
This property is read-only.
Number of polygon regions, returned as an array of nonnegative integers. A region is a connected area such that any two points within the area can be connected by a path entirely within the area. Regions may contain holes.

For a geopolyshape scalar, the value of NumRegions is 1 when the geopolyshape object represents a single polygon and more than 1 when the object represents a multipolygon.

For a geopolyshape array, the size of NumRegions matches the size of the array.

## Data Types: double

## NumHoles - Number of holes

array of nonnegative integers
This property is read-only.
Number of holes in the polygon or multipolygon, returned as an array of nonnegative integers.

For a geopolyshape array, the size of NumHoles matches the size of the array.
Data Types: double
Geometry - Geometric type
"polygon" (default)
This property is read-only.
Geometric type, returned as "polygon".
Data Types: string

## CoordinateSystemType - Coordinate system type <br> "geographic" (default)

This property is read-only.
Coordinate system type, returned as "geographic".
Data Types: string

## GeographicCRS - Geographic coordinate reference system

[] (default) | geocrs object
Geographic coordinate reference system (CRS), specified as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

## Object Functions

geoplot Plot points, lines, and polygons in geographic axes
geoclip Clip geographic shape to latitude-longitude limits
isinterior Query geographic or planar points in polygon

## Examples

## Get Information About Imported Geographic Polygons

Import a shapefile containing worldwide land areas as a geospatial table. The shapefile represents the land areas using polygons.

```
GT = readgeotable("landareas.shp");
```

Create a subtable that contains the polygon representing Africa, Europe, and Asia. Get information about the polygon by querying the Shape variable of the table.

```
row = GT.Name == "Africa and Eurasia";
rowGT = GT(row,:);
rowGT.Shape
ans =
 geopolyshape with properties:
 NumRegions: 2
 NumHoles: 22
 Geometry: "polygon"
```

```
CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Display the polygon on a world map.
worldmap([-45 80],[-25 195])
geoshow(rowGT)


## Create Geographic Polygons and Multipolygons

Create an individual polygon with no holes as a geopolyshape scalar. Specify the geographic CRS as the World Geodetic System of 1984, which has the EPSG code 4326.

```
lat = [39 45 19 39];
lon = [-113 -49 -100 -113];
polyshp = geopolyshape(lat,lon);
g = geocrs(4326);
polyshp.GeographicCRS = g
polyshp =
 geopolyshape with properties:
 NumRegions: 1
```

```
NumHoles: 0
Geometry: "polygon"
CoordinateSystemType: "geographic"
GeographicCRS: [1x1 geocrs]
```

Create a multipolygon with two regions and one hole as a geopolyshape scalar.

```
lat = [37 46 31 20 37 NaN 45 49 35 32 45 NaN 35 40 42 35];
lon = [69 90 105 79 69 NaN 6 52 43 14 6 NaN 18 32 22 18];
multipolygon = geopolyshape(lat,lon);
multipolygon.GeographicCRS = g
multipolygon =
 geopolyshape with properties:
 NumRegions: 2
 NumHoles: 1
 Geometry: "polygon"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Create two individual polygons as a 1-by-2 geopolyshape array. The second polygon contains a hole.

```
lat = {[37 46 31 20 37],[45 49 35 32 45 NaN 35 40 42 35]};
lon = {[69 90 105 79 69],[6 52 43 14 6 NaN 18 32 22 18]};
polyArray = geopolyshape(lat,lon);
polyArray.GeographicCRS = g
polyArray=1\times2 object
 1x2 geopolyshape array with properties:
 NumRegions: [1 1]
 NumHoles: [0 1]
 Geometry: "polygon"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```


## See Also

## Functions

readgeotable

## Objects

geopointshape | geolineshape |mappolyshape

## Topics

"Create Geospatial Tables"
Introduced in R2021b

## geoquadline

Geographic quadrangle bounding multi-part line

## Syntax

[latlim,lonlim] = geoquadline(lat,lon)

## Description

[latlim,lonlim] = geoquadline(lat,lon) returns the limits of the tightest possible geographic quadrangle that bounds a line connecting vertices with geographic coordinates specified by lat and lon.

## Examples

## Bounding Quadrangle for the Brahmaputra River

Read shape data and then create a bounding box around the line.

```
brahmaputra = shaperead('worldrivers.shp','Selector', ...
 {@(name) strcmp(name,'Brahmaputra'), 'Name'}, 'UseGeoCoords',true);
[latlim, lonlim] = geoquadline(brahmaputra.Lat, brahmaputra.Lon)
latlim =
 23.8285 30.3831
lonlim =
 81.8971 95.4970
```


## Input Arguments

## lat - Latitudes along a line

vector
Latitudes along a line, specified as a vector representing an ordered sequences of vertices, in units of degrees. The line may be broken into multiple parts, delimited by values of NaN .

## Data Types: single | double

## lon - Longitudes along a line

vector
Longitudes along a line, specified as a vector representing an ordered sequences of vertices, in units of degrees. The line may be broken into multiple parts, delimited by values of NaN.
Data Types: single | double

## Output Arguments

## Latlim - Latitude limits

1-by-2 vector
Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [southern_limit northern_limit], in units of degrees. The elements are in ascending order, and both lie in the closed interval [-90 90].

## Lonlim - Longitude limits

1-by-2 vector
Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [western_limit eastern_limit], in units of degrees. The limits are wrapped to the interval [-180 180]. They are not necessarily in numerical ascending order.

## See Also

bufgeoquad | geoquadpt | outlinegeoquad | ingeoquad
Introduced in R2012b

## geoquadpt

Geographic quadrangle bounding scattered points

## Syntax

[latlim,lonlim] = geoquadpt(lat,lon)

## Description

[latlim,lonlim] = geoquadpt(lat,lon) returns the limits of the tightest possible geographic quadrangle that bounds a set of points with geographic coordinates lat and lon.

In most cases, $\mathrm{tf}=$ ingeoquad(lat,lon,latlim, lonlim) will return true, but tf may be false for points on the edges of the quadrangle, due to round off. tf will also be false for elements of lat that fall outside the interval [-90 90] and elements of lon that are not finite.

## Examples

## Bounding Quadrangle Including Tokyo and Honolulu

In this case the output quadrangle straddles the 180-degree meridian, hence the elements of lonlim are in descending numerical order, although they are ordered from west to east.

Read a set of points and then create a bounding box around the points.

```
cities = shaperead('worldcities.shp','Selector', ...
 {@(name) any(strcmp(name,{'Tokyo','Honolulu'})),'Name'}, ...
 'UseGeoCoords',true);
[latlim,lonlim] = geoquadpt([cities.Lat],[cities.Lon])
latlim =
 21.3178 35.7082
lonlim =
```

    139.6401-157.8291
    
## Input Arguments

## lat - Point latitudes

vector | matrix | N-D array
Point latitudes, specified as a vector, matrix, or N-D array, in units of degrees.
Data Types: single | double

## Lon - Point longitudes

vector | matrix | N-D array

Point longitudes, specified as a vector, matrix, or N-D array, in units of degrees.
Data Types: single|double

## Output Arguments

## latlim - Latitude limits

1-by-2 vector
Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [southern_limit northern_limit], in units of degrees. The elements are in ascending order, and both lie in the closed interval [-90 90].

## Lonlim - Longitude limits

1-by-2 vector
Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector of the form [western_limit eastern_limit], in units of degrees. The limits are wrapped to the interval [-180 180]. They are not necessarily in numerical ascending order.

## See Also

bufgeoquad | geoquadline | outlinegeoquad |ingeoquad
Introduced in R2012b

## georasterinfo

Information about geospatial raster data file

## Syntax

info = georasterinfo(filename)

## Description

info = georasterinfo(filename) returns a RasterInfo object for the geographic or projected raster data file specified by filename. Supported file formats include Esri Binary Grid, Esri GridFloat, GeoTIFF, and DTED. For a full list of supported formats, see "Supported Formats and Extensions" on page 1-604.

## Examples

## Get Information About Geospatial Raster Data

Get information about a geospatial raster data file by creating a RasterInfo object.

```
info = georasterinfo('boston.tif')
info =
 RasterInfo with properties:
```

Filename: "C:\Users\jbenham\OneDrive - MathWorks\Documents\MATLAB\ExampleMa
FileModifiedDate: 13-May-2011 22:28:45
FileSize: 38729900
FileFormat: "GeoTIFF"
RasterSize: [2881 4481]
NumBands: 3
NativeFormat: "uint8"
MissingDataIndicator: []
Categories: []
ColorType: "truecolor"
Colormap: []
RasterReference: [1×1 map.rasterref. MapCellsReference]
CoordinateReferenceSystem: [1×1 projcrs]
Metadata: [1×1 struct]

Access individual properties of the RasterInfo object using dot notation.
info.NativeFormat
ans =
"uint8"

## Get DTED Metadata

Get information about a DTED file by creating a RasterInfo object. Get metadata specific to DTED files by accessing the Metadata property of the RasterInfo object.

```
info = georasterinfo('n39_w106_3arc_v2.dt1');
md = info.Metadata
md = struct with fields:
 AREA OR POINT: "Point"
 DTED CompilationDate: "0002"
 DTTED DataEdition: "02"
 DTED DigitizingSystem: "SRTM
 DTED HorizontalAccuracy: "0013"
 DTED HorizontalDatum: "WGS84"
 DTED-MaintenanceDate: "0000"
 DTED_MaintenanceDescription: "0000"
 DTED_MatchMergeDate: "0000"
 DTED MatchMergeVersion: "A"
 D\overline{TED NimaDesignator: "DTED1"}
 DTED_OriginLatitude: "0390000N"
 DTED_OriginLongitude: "1060000W"
 DTED PartīalCellIndicator: "00"
 DTED Producer: "USCNIMA "
 DTED_RelHorizontalAccuracy: "NA
 DTED_RelVerticalAccuracy: "0006"
 D\overline{TED SecurityCode DSI: "U"}
 DTED_SecurityCode_UHL: "U
 DTED UniqueRef_DSI: "G19 107 "
 DTED UniqueRef UHL: "G19 107
 DTED VerticālAccuracy_ACC: "0006"
 DTED_VerticalAccuracy_UHL: "0006"
 DTED VerticalDatum: "E96"
```

Find the coordinates of the lower-left corner of the data by accessing the DTED_OriginLatitude and DTED_OriginLongitude fields of the metadata structure. The coordinates are stored as strings. Convert the strings to angles.

```
latS = md.DTED_OriginLatitude;
lonS = md.DTED_OriginLongitude;
latA = str2ang\e(latS)
latA = 39
lonA = str2angle(lonS)
lonA = -106
```

The DTED file used in this example is courtesy of the US Geological Survey.

## Input Arguments

filename - Name of raster data file
character vector | string scalar

Name of the raster data file, specified as a character vector or string scalar. The form of filename depends on the location of your file.

- If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the file, such as 'myFile.dem'.
- If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or relative path name, such as 'C:\myfolder\myFile.tif' or 'dataDir\myFile.dat'.

For a list of supported file formats, see "Supported Formats and Extensions" on page 1-604.
Data Types: char|string

## More About

## Supported Formats and Extensions

The readgeoraster and georasterinfo functions support these file formats and extensions. In some cases, you can read supported file formats using extensions other than the ones listed.

File Format	Extension
GeoTIFF	. tif or .tiff
Esri Binary Grid	. adf
Esri ASCII Grid	. asc or .grd
Esri GridFloat	. flt
DTED	. dt0, .dt1, or .dt2
SDTS	. .DDF
USGS DEM	. dem
ER Mapper ERS	. ers
ENVI	. dat
ERDAS IMAGINE	. img
Vertical Mapper Numeric Grid	. grd
Vertical Mapper Classified Grid	. grc
SRTM Height	. hgt

Some file formats consist of a data file and multiple supporting files. For example, Esri GridFloat files may have supporting header files (. hdr). When you read a data file with supporting files using readgeoraster or georasterinfo, specify the extension of the data file.

File formats may be referred to using different names. For example, the Esri GridFloat format may also be referred to as Esri . hdr Labelled or ITT ESRI . hdr RAW Raster. The Esri Binary Grid format may also be referred to as ArcGrid Binary, Esri ArcGIS Binary Grid, or Esri ArcInfo Grid.

## See Also

## Functions

readgeoraster

## Objects

RasterInfo

## Topics

"Find Geospatial Raster Data"

Introduced in R2020a

## georasterref

(Not recommended) Create geographic raster reference object

Note The georasterref function is not recommended, except when creating a raster reference object from a world file matrix. To specify options using name-value arguments, use the georefcells or georefpostings function instead. For more information, see "Compatibility Considerations".

## Syntax

$R=$ georasterref( $W$, rasterSize)
$R=$ georasterref( $W$, rasterSize, rasterInterpretation)
$R=$ georasterref(Name, Value)

## Description

$R=$ georasterref( $W$, rasterSize) creates a reference object for a raster of quadrangular cells referenced to geographic coordinates using the world file matrix $W$ and raster size rasterSize.
$R=$ georasterref( $W$, rasterSize, rasterInterpretation) specifies the geometric nature of the raster. When the raster contains posting point samples referenced to geographic coordinates, specify rasterInterpretation as "postings". The default for rasterInterpretation is "cells", which specifies a raster of quadrangular cells.
$R=$ georasterref(Name, Value) specifies options using name-value arguments.

## Examples

## Create Geographic Reference Object from World File Matrix

Create a reference object for a global raster of cells with size 180-by-360, latitude extents of 1 degree, and longitude extents of 1 degree. Orient the raster using a convention typical for imagery, where image rows run from west to east and image columns run from north to south.

Specify the world file matrix using these values:

Value	Explanation
1	The rows of the raster start from the west and   each cell is one degree in longitude.
-179.5	The longitude of the first cell center.
-1	The columns of the raster start from the north   and each cell is one degree in latitude.
89.5	The latitude of the first cell center.

```
W = [1 0 -179.5; 0 -1 89.5];
```

Create the reference object.

```
R = georasterref(W,[180 360],"cells")
R =
 GeographicCellsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [180 360]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInLatitude: 1
 CellExtentInLongitude: 1
 RasterExtentInLatitude: 180
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [0.5 360.5]
 YIntrinsicLimits: [0.5 180.5]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```


## Input Arguments

## W - World file matrix

2-by-3 numeric array
World file matrix, specified as a 2-by-3 numeric array of the form [lonspacing 0 lon; 0 latspacing lat], where:

- lonspacing determines the RowsStartFrom and the CellExtentInLongitude or SampleSpacingInLongitude properties of R.
- When lonspacing is positive, RowsStartFrom is 'west'. When lonspacing is negative, RowsStartFrom is 'east'.
- CellExtentInLongitude or SampleSpacingInLongitude is abs(lonspacing).
- latspacing determines the ColumnsStartFrom and the CellExtentInLatitude or SampleSpacingInLatitude properties of R.
- When latspacing is positive, ColumnsStartFrom is 'south'. When latspacing is negative, ColumnsStartFrom is 'north'.
- CellExtentInLatitude or SampleSpacingInLatitude is abs(latspacing).
- lat and lon are the latitude and longitude coordinates of the first cell center or posting point, respectively. For a spatially referenced raster A, the first cell center or posting point is the spatial location associated with A(1,1,:).
- The 0 values indicate a rectilinear relationship between the intrinsic and geographic coordinates.

A world file matrix defines a transformation that maps intrinsic coordinates to geographic coordinates.
rasterSize - Number of rows and columns
two-element vector

Number of rows and columns of the raster, specified as a two-element vector of the form [m n], where $m$ is the number of rows and $n$ is the number of columns.

For convenience, you can specify this argument as a vector with more than two elements, such as the size of an RGB image ( $m$-by- $n$-by-3). The georasterref function uses only the first two elements of the size vector.
rasterInterpretation - Geometric nature of raster
"cells" (default)|"postings"
Geometric nature of the raster, specified as one of these options:

- "cells" - The raster is a grid of quadrangular cells. The boundary of the raster is made up of the outermost boundaries of the outermost cells.
- "postings" - The raster is a grid of posting point samples. The boundary of the raster is made up of sampling points along the edge of the raster.

For more information about cells and posting points, see "Spatially Reference Imported Rasters".
The corresponding property of the reference object, RasterInterpretation, is read-only after you create the object.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: georasterref("LatitudeLimits",[-90 90],"LongitudeLimits",[-180 180]) creates a geographic cells reference object with latitudes in the range [-90, 90] degrees and longitudes in the range $[-180,180]$ degrees.

LatitudeLimits - Latitude limits
[0.5 2.5] (default)| two-element vector
Latitude limits of the geographic quadrangle that bounds the georeferenced raster, specified as a two-element vector of the form [southern_limit northern_limit].

## LongitudeLimits - Longitude limits

[0.5 2.5] (default) | two-element vector
Longitude limits of the geographic quadrangle that bounds the georeferenced raster, specified as a two-element vector of the form [western_limit eastern_limit].

## RasterSize - Number of rows and columns

[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster, specified as a two-element vector of the form [m n], where $m$ is the number of rows and $n$ is the number of columns.

For convenience, you can specify RasterSize as a vector with more than two elements, such as the size of an RGB image ( $m$-by-n-by-3). The georasterref function uses only the first two elements of the size vector.

## RasterInterpretation - Geometric nature of raster

"cells" (default) | "postings"
Geometric nature of the raster, specified as one of these options:

- "cells" - The raster is a grid of quadrangular cells. The boundary of the raster is made up of the outermost boundaries of the outermost cells.
- "postings" - The raster is a grid of posting point samples. The boundary of the raster is made up of sampling points along the edge of the raster.

For more information about cells and posting points, see "Spatially Reference Imported Rasters".
The corresponding property of the raster reference object is read-only after you create the object.
Data Types: char | string
ColumnsStartFrom - Edge from which column indexing starts
"south" (default)|"north"
Edge from which column indexing starts, specified as "south" or "north".
Data Types: char|string

## RowsStartFrom - Edge from which row indexing starts

"west" (default)|"east"
Edge from which row indexing starts, specified as "west" or "east".
Data Types: char | string

## Output Arguments

## R - Geographic raster reference object

GeographicCellsReference object | GeographicPostingsReference object
Geographic raster reference object, returned as a GeographicCellsReference or GeographicPostingsReference object. The value of R depends on the value of the rasterInterpretation argument or RasterInterpretation name-value argument.

rasterInterpretation or   RasterInterpretation	$\mathbf{R}$
"cells"	GeographicCellsReference object
"postings"	GeographicPostingsReference object

## Compatibility Considerations

## georasterref is not recommended

Not recommended starting in R2015b
The georasterref function is not recommended, except when creating a reference object from a world file matrix. To specify options using name-value arguments, use the georefcells or georefpostings function instead.

- Create a reference object for a grid of quadrangular cells referenced to geographic latitude and longitude coordinates by using the georefcells function.
- Create a reference object for a grid of posting point samples referenced to geographic coordinates by using the georefpostings function.


## See Also

## Functions

worldfileread | georefcells | georefpostings|maprasterref|worldFileMatrix

## Topics

"Spatially Reference Imported Rasters"

## Introduced in R2011a

## georefpostings

Reference raster postings to geographic coordinates

## Syntax

R = georefpostings()
$R=$ georefpostings(latlim,lonlim, rasterSize)
$R=$ georefpostings(latlim,lonlim,latspacing,lonspacing)
$R=$ georefpostings(latlim,lonlim, $\qquad$ ,Name, Value)

## Description

$R=$ georefpostings() returns a default referencing object for a raster of regularly posted samples in geographic coordinates.
$R=$ georefpostings(latlim,lonlim, rasterSize) constructs a referencing object for a raster spanning the specified limits in latitude and longitude, with the numbers of rows and columns specified by rasterSize.

R = georefpostings(latlim,lonlim,latspacing,lonspacing) allows the geographic sample spacings to be set precisely. The geographic limits will be adjusted slightly, if necessary, to ensure an integer number of samples in each dimension.

R = georefpostings(latlim,lonlim, $\qquad$ ,Name, Value) allows the directions of the columns and rows to be specified via name-value pairs.

## Examples

## Construct Geographic Referencing Object for Global Raster

Define latitude and longitude limits and the dimensions of the raster.

```
latlim = [-90 90];
lonlim = [-180 180];
rasterSize = [181 361];
```

Create the referencing object specifying the raster size.

```
R = georefpostings(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
R =
 GeographicPostingsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [181 361]
 RasterInterpretation: 'postings'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 SampleSpacingInLatitude: 1
```

```
SampleSpacingInLongitude: 1
 RasterExtentInLatitude: 180
RasterExtentInLongitude: 360
 XIntrinsicLimits: [1 361]
 YIntrinsicLimits: [1 181]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```

Obtain the same result by specifying the sample spacing.

```
spacing = 1;
R = georefpostings(latlim,lonlim,spacing,spacing,'ColumnsStartFrom','north')
R =
 GeographicPostingsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [181 361]
 RasterInterpretation: 'postings'
 ColumnsStartFrom: 'north
 RowsStartFrom: 'west'
 SampleSpacingInLatitude: 1
 SampleSpacingInLongitude: 1
 RasterExtentInLatitude: 180
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [1 361]
 YIntrinsicLimits: [1 181]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```


## Input Arguments

## latlim - Latitude limits in degrees

[0.5 2.5] (default)|1-by-2 numeric vector
Latitude limits in degrees, specified as a 1-by-2 numeric vector. The number of rows in the resulting raster is specified by rasterSize.
Example: latlim = [-90 90];
lonlim - Longitude limits in degrees
[0.5 2.5] (default)| 1-by-2 numeric vector
Longitude limits in degrees, specified as a 1-by-2 numeric vector. The number of columns in the resulting raster is specified by rasterSize.

Example: lonlim = [-180 180];

## rasterSize - Size of the raster

[2 2] (default)| 1-by-2 numeric vector
Size of the raster, specified as a 1-by-2 numeric vector.
Example: rasterSize $=$ [180 360];

## latspacing - Vertical spacing of posting

1 (default) | numeric scalar
Vertical spacing of posting, specified as a numeric scalar. The value of latspacing determines the SampleSpacingInLatitude property of R.
Example: latspacing $=1.5$

## lonspacing - Horizontal spacing of postings

1 (default) | numeric scalar
Horizontal spacing of postings, specified as a numeric scalar. The value of lonspacing determines the SampleSpacingInLongitude property of $R$.

Example: lonspacing = 1.5

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: R =
georefpostings(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
```


## ColumnsStartFrom - Edge from which column indexing starts 'south' (default)|'north'

Edge from which column indexing starts, specified as either 'north' or 'south'.
Example: R =
georefpostings(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
Data Types: char|string

## RowsStartFrom - Edge from which row indexing starts <br> 'west' (default) | 'east'

Edge from which column indexing starts, specified as either 'east' or 'west'.
Example: R = georefpostings(latlim,lonlim,rasterSize,'RowsStartFrom','east')
Data Types: char|string

## Output Arguments

## R - Object that references raster postings to geographic coordinates

GeographicPostingsReference raster reference object

Object that references raster postings to geographic coordinates, returned as a GeographicPostingsReference raster reference object.

## Tips

- To construct a geographic raster reference object from a world file matrix, use the georasterref function.

See Also<br>georefcells|GeographicPostingsReference|maprefpostings<br>Introduced in R2015b

## georefcells

Reference raster cells to geographic coordinates

## Syntax

```
R = georefcells()
R = georefcells(latlim,lonlim,rasterSize)
R = georefcells(latlim,lonlim,latcellextent,loncellextent)
R = georefcells(latlim,lonlim,
```

$\qquad$

``` ,Name, Value)
```


## Description

$\mathrm{R}=$ georefcells() returns a default referencing object for a regular raster of cells in geographic coordinates.

R = georefcells(latlim,lonlim, rasterSize) constructs a referencing object for a raster of cells spanning the specified limits in latitude and longitude, with the numbers of rows and columns specified by rasterSize.

R = georefcells(latlim,lonlim,latcellextent,loncellextent) allows the geographic cell extents to be set precisely. If necessary, georefcells adjusts the geographic limits slightly to ensure an integer number of cells in each dimension.

R = georefcells(latlim,lonlim, $\qquad$ ,Name, Value) allows the directions of the columns and rows to be specified via name-value pairs.

## Examples

## Construct Referencing Object for Global Raster

Construct a referencing object for a global raster comprising a grid of 180-by-360 one-degree cells, with rows that start at longitude -180, and with the first cell located in the northwest corner.

```
latlim = [-90 90];
lonlim = [-180 180];
rasterSize = [180 360];
```

Create a raster referencing object by specifying the raster size.

```
R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
R =
 GeographicCellsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [180 360]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
```

```
 CellExtentInLatitude: 1
 CellExtentInLongitude: 1
RasterExtentInLatitude: 180
RasterExtentInLongitude: 360
 XIntrinsicLimits: [0.5 360.5]
 YIntrinsicLimits: [0.5 180.5]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```

Obtain the same result by specifying cell extents.

```
extent = 1;
R = georefcells(latlim,lonlim,extent,extent,'ColumnsStartFrom','north')
R =
 GeographicCellsReference with properties:
 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [180 360]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInLatitude: 1
 CellExtentInLongitude: 1
 RasterExtentInLatitude: 180
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [0.5 360.5]
 YIntrinsicLimits: [0.5 180.5]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```


## Input Arguments

## latlim - Latitude limits in degrees

[0.5 2.5] (default)|1-by-2 numeric vector
Latitude limits in degrees, specified as a 1-by-2 numeric vector. The number of rows in the resulting raster is specified by rasterSize.

Example: latlim $=$ [-90 90];

## lonlim - Longitude limits in degrees

[0.5 2.5] (default)| 1-by-2 numeric vector
Longitude limits in degrees, specified as a 1-by-2 numeric vector. The number of columns in the resulting raster is specified by rasterSize.

Example: lonlim $=$ [-180 180];

## rasterSize - Size of the raster

[2 2] (default)| 1-by-2 numeric vector
Size of the raster, specified as a 1-by-2 numeric vector.
Example: rasterSize = [180 360];

## latcellextent - Height of cells

1 (default) | numeric scalar
Height of cells, specified as a numeric scalar. The value of latcellextent determines the CellextentInLatitude property of R.

Example: latcellextent = 1.5

## loncellextent - Width of cells

1 (default) | numeric scalar
Width of cells, specified as a numeric scalar. The value of loncellextent determines the CellextentInLongitude property of R.

## Example: latcellextent = 1.5

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')

## ColumnsStartFrom - Edge from which column indexing starts

 'south' (default)|'north'Edge from which column indexing starts, specified as either 'north' or 'south'.
Example: R = georefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
Data Types: char|string
RowsStartFrom - Edge from which row indexing starts
'west' (default)|'east'
Edge from which column indexing starts, specified as either 'east' or 'west'.
Example: R = georefcells(latlim,lonlim,rasterSize,'RowsStartFrom','east')
Data Types: char | string

## Output Arguments

## R - Object that references raster cells to geographic coordinates <br> GeographicCellsReference raster reference object

Object that references raster cells to geographic coordinates, returned as a GeographicCellsReference raster reference object.

## Tips

- To construct a geographic raster reference object from a world file matrix, use the georasterref function.


## See Also <br> georefpostings|GeographicCellsReference |maprefcells <br> Introduced in R2015b

## georesize

Resize geographic raster

## Syntax

```
[B,RB] = georesize(A,RA,scale)
[B,RB] = georesize(A,RA,latscale,lonscale)
[B,RB] = georesize(___,method)
[B,RB] = georesize(___,'Antialiasing',TF)
```


## Description

$[B, R B]=$ georesize (A, RA, scale) returns the raster $B$ that is scale times the size of the raster A. RA is a geographic raster reference object that specifies the location and extent of data in $A$. georesize returns the raster reference object RB that is associated with the returned raster B. By default, georesize uses cubic interpolation.
georesize preserves the limits of the raster. If the scale specified divides evenly into the numbers of cells in each dimension, or the number of samples in each dimension minus 1, the limits of the output are the same as the input. Otherwise, georesize adjusts the output limits by a fraction of the cell extents or sample spacing values.
$[B, R B]=$ georesize $(A, R A, l a t s c a l e$, lonscale $)$ returns the raster $B$ that is latscale times the size of $A$ in column (north-south) direction and lonscale times the size of $A$ in the row (eastwest) direction.

$$
[B, R B]=\text { georesize (__ } \text {,method) returns a resized raster where method specifies the }
$$ interpolation method.

$[B, R B]=$ georesize (__ ,'Antialiasing',TF) specifies whether to perform antialiasing when shrinking a raster. The default depends on the type of interpolation. For nearest-neighbor interpolation, the default value is false. For all other interpolation methods, the default is true.

## Examples

## Resize Geographic Raster

Import a sample geographic raster and geographic cells reference object.
$[Z, R]=$ readgeoraster('raster_sample2.tif');
Resize the raster using georesize. Double the length and width of the raster by specifying the scale as 2 . Use nearest neighbor interpolation by specifying the interpolation method as 'nearest'.
[Z2,R2] = georesize(Z,R,2,'nearest');
You can also resize the input raster by specifying different scales for the north-south and east-west directions.

```
[Z3,R3] = georesize(Z,R,3,2,'nearest');
R3.RasterSize
ans = 1\times2
```

    \(6 \quad 4\)
    Verify the raster has been resized by comparing the size of the original raster with the size of the updated rasters.
R.RasterSize
ans $=1 \times 2$
22

R2.RasterSize
ans $=1 \times 2$
$4 \quad 4$

R3.RasterSize
ans $=1 \times 2$
$6 \quad 4$

If the rasters are small, you can compare them directly.
Z
$Z=2 \times 2$
$1 \quad 2$
34

Z2
$Z 2=4 \times 4$

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Z3
$\mathrm{Z3}=6 \times 4$

1	1	2	2
1	1	2	2
1	1	2	2
3	3	4	4


3	3	4	4
3	3	4	4

## Resize Geographic Raster Data Set

Load a raster data set showing land elevations and bathymetry for the region around the Korean peninsula, at a resolution of 12 cells per degree. The data includes a raster image, korea5c, and an associated geographic raster reference object, korea5cR.
load korea5c
View the raster data set, using geoshow, specifying the associated raster reference object.
geoshow(korea5c, korea5cR,'DisplayType','texturemap')


Resize the raster to be a quarter of its original size.
[resizedKorea,resizedKoreaR] = georesize(korea5c,korea5cR,0.25);
View the resized raster. Note that geoshow preserves the original limits of the map in the display so that, at first glance, the resized raster appears to be the same size as the original. A closer look reveals that the size of pixels in the resized raster are larger than the pixels in the original.
figure
geoshow(resizedKorea,resizedKoreaR,'DisplayType','texturemap')


## Input Arguments

## A - Raster to be resized

numeric or logical array
Raster to be resized, specified as a numeric or logical array. If A has more than two dimensions, such as with a color raster in RGB format, georesize only resizes the first two dimensions.
Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16|uint32|uint64 | logical

## RA - Information about location and extent of raster

raster reference object
Information about location and extent of raster, specified as a raster reference object. To convert a referencing vector or referencing matrix into a raster reference object, use the refvecToGeoRasterReference or refmatToGeoRasterReference.

## scale - Amount of resizing

numeric scalar
Amount of resizing, specified as numeric scalar. If scale is in the range [0 1], B is smaller than $A$. If scale is greater than $1, B$ is larger than $A$.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

## latscale - Amount of resizing in north-south direction

numeric scalar
Amount of resizing in north-south direction, specified as numeric scalar. If latscale is in the range [0 1], $B$ is smaller than $A$. If latscale is greater than $1, B$ is larger than $A$.

```
Data Types: single | double | int8| int16 | int32 | int64 | uint8|uint16|uint32 | uint64
```


## lonscale - Amount of resizing in east-west direction

numeric scalar
Amount of resizing in east-west direction, specified as numeric scalar. If lonscale is in the range [0 $1], B$ is smaller than $A$. If lonscale is greater than $1, B$ is larger than $A$.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64
method - Interpolation method
'cubic' (default)|'nearest'|'bilinear'
Interpolation method, specified as one of the following values:

Value	Description
'nearest'	Nearest-neighbor interpolation
'bilinear'	Bilinear interpolation
'cubic'	Cubic interpolation

## Data Types: char | string

## Output Arguments

## B - Resized raster

numeric or logical array
Resized raster, returned as a numeric or logical array.

## RB - Information about location and extent of raster

geographic raster reference object
Information about location and extent of the raster, returned as a geographic raster reference object.

## Tips

- Use georesize with raster data in latitude and longitude coordinates. To work with projected raster data, in $x$ - and $y$-coordinates, use mapresize.


## See Also <br> geointerp|georefcells|georefpostings|mapresize <br> Introduced in R2019a

## geoshape

Geographic shape vector

## Description

A geoshape vector is an object that represents geographic vector features with either point, line, or polygon topology. The features consist of latitude and longitude coordinates and associated attributes.

Attributes that vary spatially are termed Vertex properties. These elements of the geoshape vector are coupled such that the length of the latitude and longitude coordinate property values are always equal in length to any additional dynamic Vertex properties.

Attributes that only pertain to the overall feature (point, line, polygon) are termed Feature properties. Feature properties are not linked to the autosizing mechanism of the Vertex properties. Both property types can be added to a geoshape vector during construction or by using standard dot (.) notation after construction.

To create a geographic point, line, or polygon shape for use with a geospatial table, create a geopointshape, geolineshape, or geopolyshape object instead.

## Creation

## Syntax

```
s = geoshape()
s = geoshape(latitude,longitude)
s = geoshape(latitude,longitude,Name,Value)
s = geoshape(structArray)
s = geoshape(latitude,longitude,structArray)
```


## Description

$s=$ geoshape( ) constructs an empty geoshape vector, $s$, with these default property settings.
s =
0x1 geoshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
Latitude: []
Longitude: []
s is always a column vector.
$s=$ geoshape(latitude,longitude) sets the Latitude and Longitude properties of geoshape vector s.
$s=$ geoshape(latitude, longitude, Name, Value) sets the Latitude and Longitude properties, then adds dynamic properties to the geoshape vector using Name, Value argument pairs. You can specify several name-value pair arguments in any order as
Name1, Value1, . . . , NameN, ValueN.
$s=$ geoshape(structArray) constructs a geoshape vector from the fields of the structure array, structArray.

- If structArray contains the field Lat, and does not contain the field Latitude, then the Latitude property values are set equal to the Lat field values. Similar behavior occurs when structArray contains the field Lon and does not contain the field Longitude.
- If structArray contains both Lat and Latitude fields, then the Latitude property values are set equal to the Latitude field values. Also, a Lat dynamic property is created and its values are set equal to the Lat field values. Similar behavior occurs for Lon and Longitude fields when both are present in structArray.
- Other structArray fields are assigned to $s$ and become dynamic properties. Field values in structArray that are not numeric values, string scalars, string arrays, character vectors, logical, or cell arrays of numeric values, logical, or character vectors are ignored. You can specify vectors within cell arrays as either row or column vectors.
$s$ = geoshape(latitude,longitude,structArray) sets the Latitude and Longitude properties, and sets dynamic properties from the field values of structArray.
- If structArray contains the fields Lat, Latitude, Lon or Longitude, then those field values are ignored since the latitude and longitude input vectors set the Latitude and Longitude property values.


## Properties

The geoshape class is a general class that represents various geographic features. This class permits features to have more than one vertex and can thus represent lines and polygons in addition to multipoints. For more about the property types in geoshape, see "Collection Properties" on page 1637, "Vertex Properties" on page 1-637, and "Feature Properties" on page 1-637.

Dynamic properties are new features and vertices that are added to a geoshape vector. You can attach dynamic properties to a geoshape vector during construction using a Name, Value argument, or after construction using dot (. ) notation. This is similar to adding new fields to a structure. For an example of adding dynamic Feature properties, see "Construct a Geoshape Vector with Dynamic Properties" on page 1-627.

## Geometry - Shape of every feature in the geoshape vector

'line' (default)|'point'|'polygon'
Shape of every feature in the geoshape vector, specified as 'line', 'point', or 'polygon'. Geometry is a Collection property so there can be only one value per object instance and its purpose is purely informational. The three allowable values for Geometry do not change class behavior. The class does not validate line or polygon topologies.
Data Types: char \| string

## Latitude - Latitude coordinates

numeric row or column vector
Latitude coordinates, specified as a numeric row or column vector. Latitude is stored as a row vector. Latitude is a Vertex property.

Data Types: double | single

## Longitude - Longitude coordinates

numeric row or column vector
Longitude coordinates, specified as a row or column vector. Longitude is stored as a row vector. Longitude is a Vertex property.

## Data Types: double | single

## Metadata - Information for every feature

scalar structure
Information for every feature, specified as a scalar structure. You can add any data type to the structure. Metadata is a Collection property, so only one instance per object is allowed.

- If 'Metadata' is provided as a dynamic property name in the constructor, and the corresponding value is a scalar structure, then the Value is copied to the Metadata property. Otherwise, an error is issued.
- If a Metadata field is provided by structArray, and both Metadata and structArray are scalar structures, then the Metadata field value is copied to the Metadata property value. If structArray is a scalar but the Metadata field is not a structure, then an error is issued. If structArray is not scalar, then the Metadata field is ignored.


## Data Types: struct

## Object Functions

append	Append features to geographic or planar vector
cat	Concatenate geographic or planar vector
disp	Display geographic or planar vector
fieldnames	Return dynamic property names of geographic or planar vector
isempty	Determine if geographic or planar vector is empty
isfield	Determine if dynamic property exists in geographic or planar vector
isprop	Determine if property exists in geographic or planar vector
length	Return number of elements in geographic or planar vector
properties	Return property names of geographic or planar vector
rmfield	Remove dynamic property from geographic or planar vector
rmprop	Remove property from geographic or planar vector
size	Return size of geographic or planar vector
struct	Convert geographic or planar vector to scalar structure
vertcat	Vertically concatenate geographic or planar vectors

## Examples

## Construct a Default Geoshape Vector, Then Add Properties

Construct an empty geoshape vector.

```
s = geoshape()
S =
 0x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: []
 Longitude: []
```

Set the Latitude and Longitude property values using dot notation.

```
s.Latitude = 0:45:90;
s.Longitude = [10 10 10];
```

Display the updated geoshape vector.

```
s
s =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: [0 45 90]
 Longitude: [10 10 10]
```


## Construct Geoshape Vector Specifying Latitude and Longitude Values

Create a geoshape vector specifying latitude and longitude values as input arguments.

```
s = geoshape([[42 43 45],[[10 11 15])
S =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: [42 43 45]
 Longitude: [l0 11 15]
```


## Construct a Geoshape Vector with Dynamic Properties

Create a geoshape vector using a Name-Value pair to define a new Feature property. This example defines a property called 'Temperature' and assigns it the value 89.

```
point = geoshape(42, -72, 'Temperature', 89)
point =
 lxl geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: 42
 Longitude: -72
 Feature properties:
 Temperature: 89
```

To add dynamic properties to a geoshape vector after it has been constructed, use standard dot notation. Add a dynamic property called 'TemperatureUnits' with the value 'Fahrenheit'.
point.TemperatureUnits = 'Fahrenheit'
point =
lx1 geoshape vector with properties:
Collection properties: Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
Latitude: 42
Longitude: -72
Feature properties:
Temperature: 89
TemperatureUnits: 'Fahrenheit'

To modify properties, use standard dot notation. Update the temperature, and change 'Geometry ' to 'point'.

```
point.Temperature = 86;
point.Geometry = 'point'
point =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [lx1 struct]
 Vertex properties:
 Latitude: 42
 Longitude: -72
 Feature properties:
 Temperature: 86
 TemperatureUnits: 'Fahrenheit'
```


## Construct a Geoshape Vector from a Structure Array

This example highlights the two ways by which a geoshape vector with the same features can be created. The first way uses a structure array in the constructor for a geoshape vector. The second way adds fields of the structure array to a geoshape vector after construction.

First, read data into a structure array. The array in this example contains 128 elements. Each element defines a river as a line using multiple location vertices.

```
structArray = shaperead('worldrivers.shp', 'UseGeoCoords', true);
```

Display the first element in structArray. Note that the Lat and Lon vectors are terminated with a NaN delimiter, which separates the Vertex feature data in the geoshape class.

```
structArray(1)
ans = struct with fields:
 Geometry: 'Line'
 BoundingBox: [2x2 double]
 Lon: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN]
 Lat: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN]
 Name: 'Lena'
```


## Method 1: Provide the structure as an argument to the constructor that builds the geoshape vector.

Create a geoshape vector, providing the structure array as an argument to the constructor.

```
shape1 = geoshape(structArray)
shape1 =
 128x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (128 features concatenated with }127\mathrm{ delimiters)
 Latitude: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN NaN 72.2894 ...]
 Longitude: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN NaN ...]
 Feature properties:
 Name: {1x128 cell}
```

Note that the BoundingBox field in structArray does not get assigned to a property in shape1 because the field value is not a supported type.

## Method 2: Add features to a geoshape vector after construction.

Create an empty geoshape vector.

```
shape2 = geoshape;
```

Add the Vertex properties Latitude and Longitude from each entry in the structure array using dot notation. Add a dynamic Feature property, RiverName, the name of the river from each entry in structArray. Since the default value of the Geometry Collection property is 'line' there is no need to set it explicitly in this example.

```
shape2.Latitude = {structArray.Lat};
shape2.Longitude = {structArray.Lon};
shape2.RiverName = {structArray.Name}
shape2 =
 128x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (128 features concatenated with }127\mathrm{ delimiters)
 Latitude: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN NaN 72.2894]
 Longitude: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN NaN ...]
 Feature properties:
 RiverName: {1x128 cell}
```


## Construct a Geoshape Vector Using Cell Arrays

First, read data into a structure array. The array in this example contains 128 elements. Each element defines a river as a line using multiple location vertices.

```
structArray = shaperead('worldrivers.shp', 'UseGeoCoords', true)
structArray=128\times1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat
 Name
```

Create latitude and longitude vectors. For illustrative purposes, the vectors do not correspond to the elements of structArray.

```
lat = {[0:10:40], [1:5]};
lon = {[-60:30:60], [0:2:8]};
```

Construct a geoshape vector using the latitude and longitude vectors and the structure array.

```
s = geoshape(lat,lon,structArray);
```

Display the first three elements of $s$. Features are separated with a NaN delimiter.

```
s(1:3)
```

```
ans =
 3x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (3 features concatenated with 2 delimiters)
 Latitude: [0 10 20 30 40 NaN 1 2 3 4 5 NaN 0]
 Longitude: [-60 -30 0 30 60 NaN 0 2 4 6 8 NaN 0]
```

Feature properties:
Name: \{'Lena' 'Lena' 'Mackenzie'\}

Observe that geoshape uses the arguments lat and lon to populate the Latitude and Longitude properties, even though structArray provides Lat and Lon field values. Also, since lat and lon have fewer elements than features in structArray, the Latitude and Longitude properties expand in size using a value of 0 .

## Use Indexing to Append a Single Point and a Shape to a Geoshape Vector

Create a geoshape vector containing a single feature of the locations of world cities.

```
S = shaperead('worldcities.shp', 'UseGeoCoords', true);
cities = geoshape([S.Lat], [S.Lon], 'Name', {{S.Name}});
cities.Geometry = 'point';
```

Append Paderborn Germany to the geoshape vector.

```
lat = 51.715254;
lon = 8.75213;
cities(1).Latitude(end+1) = lat;
cities(1).Longitude(end) = lon;
cities(1).Name{end} = 'Paderborn'
cities =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
Vertex properties:
 Latitude: [1x319 double]
 Longitude: [1x319 double]
 Name: {1\times319 cell}
```

The length of each vertex property grows by one when Latitude(end+1) is set. The remaining properties are indexed with end.

You can display the last point by constructing a geopoint vector.

```
paderborn = geopoint(cities.Latitude(end), cities.Longitude(end), ...
 'Name', cities.Name{end})
paderborn =
 1x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: 51.7153
 Longitude: 8.7521
 Name: 'Paderborn'
```

Create a geoshape vector with two new features containing the cities in the northern and southern hemispheres. Add a Location dynamic Feature property to distinguish the different classifications.

```
northern = cities(1).Latitude >= 0;
southern = cities(1).Latitude < 0;
index = {northern; southern};
location = {'Northern Hemisphere', 'Southern Hemisphere'};
hemispheres = geoshape();
for k = 1:length(index)
 hemispheres = append(hemispheres, ...
 cities.Latitude(index{k}), cities.Longitude(index{k}), ...
 'Name', {cities.Name(index{k})}, 'Location', location{k});
end
hemispheres.Geometry = 'point'
hemispheres =
 2x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Vertex properties:
 (2 features concatenated with 1 delimiter)
 Latitude: [1x320 double]
 Longitude: [1x320 double]
 Name: {1x320 cell}
 Feature properties:
 Location: {'Northern Hemisphere' 'Southern Hemisphere'}
```

Plot the northern cities in red and the southern cities in blue.

```
hemispheres.Color = {'red', 'blue'};
figure;worldmap('world')
geoshow('landareas.shp')
for k=1:2
 geoshow(hemispheres(k).Latitude, hemispheres(k).Longitude, ...
 'DisplayType', hemispheres.Geometry, ...
 'MarkerEdgeColor', hemispheres(k).Color)
end
```



## Use Indexing to Sort and Modify Dynamic Features

Construct a geoshape vector and sort its dynamic properties.

```
shape = geoshape(shaperead('tsunamis.shp', 'UseGeoCoords', true));
shape.Geometry = 'point';
shape = shape(:, sort(fieldnames(shape)))
shape =
 162x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Vertex properties:
 (162 features concatenated with 161 delimiters)
 Latitude: [1\times323 double]
 Longitude: [1\times323 double]
 Feature properties:
 Cause: {1x162 cell}
 Cause Code: [1\times162 double]
 Country: {1x162 cell}
 Day: [1x162 double]
 Desc Deaths: [1x162 double]
```

```
 Eq_Mag: [1x162 double]
 Hour: [1x162 double]
 Iida Mag: [1x162 double]
 Intensity: [1x162 double]
 Location: {1x162 cell}
Max Height: [1x162 double]
 Minute: [1\times162 double]
 Month: [1x162 double]
Num Deaths: [1x162 double]
 Second: [1x162 double]
 Val Code: [1x162 double]
 Valídity: {1x162 cell}
 Year: [1x162 double
```

Modify the geoshape vector to contain only the dynamic properties, Year, Month, Day, Hour, Minute.

```
shape = shape(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})
shape =
 162x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Vertex properties:
 (162 features concatenated with }161\mathrm{ delimiters)
 Latitude: [1x323 double]
 Longitude: [1x323 double]
 Feature properties:
 Year: [1x162 double]
 Month: [1x162 double]
 Day: [1x162 double]
 Hour: [1x162 double]
 Minute: [1x162 double]
```

Display the first five elements.

```
shape(1:5)
```

ans $=$
5x1 geoshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
(5 features concatenated with 4 delimiters)
Latitude: [-3.8000 NaN 19.5000 NaN -9.0200 NaN 42. 1500 NaN 19.1000]
Longitude: [128.3000 NaN -156 NaN 157.9500 NaN 143.8500 NaN -155]
Feature properties:
Year: [1950 195119511952 1952]
Month: $\left[\begin{array}{llll}10 & 8 & 12 & 3\end{array}\right]$
Day: [8 2122 4 17]

Hour: [3 10 NaN 1 3]
Minute: [23 57 NaN 22 58]

## Construct a Geoshape Vector from Multiple Objects

Read multiple GPS track log data from a file. trk1 and trk2 are geopoint objects.

```
trk1 = gpxread('sample_tracks.gpx')
trk1 =
 1851x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [42.2995 42.2995 42.2994 42.2994 42.2994 42.2994 42.2994 ...]
 Longitude: [-71.3502 -71.3504 -71.3504 -71.3504 -71.3504 -71.3504 ...]
 Elevation: [90.0206 90.0206 90.0206 90.5013 90.0206 90.0206 90.0206 ...]
 Time: {1x1851 cell}
trk2 = gpxread('sample_tracks.gpx', 'Index', 2);
```

To construct a geoshape vector with multiple features, place the coordinates into cell arrays.

```
lat = {trk1.Latitude, trk2.Latitude};
lon = {trk1.Longitude, trk2.Longitude};
```

Place the elevation and time values into cell arrays.

```
elevation = {trk1.Elevation, trk2.Elevation};
time = {trk1.Time, trk2.Time};
```

Construct a geoshape vector containing two track log features that include Elevation and Time as dynamic Vertex properties.

```
tracks = geoshape(lat, lon, 'Elevation', elevation, 'Time', time)
tracks =
 2x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (2 features concatenated with 1 delimiter)
 Latitude: [42.2995 42.2995 42.2994 42.2994 42.2994 42.2994 42.2994 ...]
 Longitude: [-71.3502 -71.3504 -71.3504 -71.3504 -71.3504 -71.3504 ...]
 Elevation: [90.0206 90.0206 90.0206 90.5013 90.0206 90.0206 90.0206 ...]
 Time: {1x2591 cell}
```

Each Latitude and Longitude coordinate pair has associated Elevation and Time values.

To construct a geoshape vector containing a dynamic Feature property, use an array that is the same length as the coordinate cell array. For example, add a MaximumElevation dynamic Feature property.

```
tracks.MaximumElevation = [max(trk1.Elevation) max(trk2.Elevation)]
tracks =
 2x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (2 features concatenated with 1 delimiter)
 Latitude: [42.2995 42.2995 42.2994 42.2994 42.2994 42.2994 42.2994 ...]
 Longitude: [-71.3502 -71.3504 -71.3504 -71.3504 -71.3504 -71.3504 ...]
 Elevation: [90.0206 90.0206 90.0206 90.5013 90.0206 90.0206 90.0206 ...]
 Time: {1x2591 cell}
 Feature properties:
 MaximumElevation: [92.4240 76.1000]
```

The Feature property value has only two numeric values, one for each feature.

## Store Latitude and Longitude Values in Geoshape Vector

Load coastline data from a MAT-file.

```
load coastlines
```

Create an $n$-by-2 array of coastline latitude and longitude values.

```
pts = [coastlat coastlon];
```

Create a geoshape object and store the latitude and longitude data. If you store latitude and longitude coordinate values in an $n$-by- 2 array, geoshape assigns the Latitude property values to the first column and the Longitude property values to the second column.

```
shape = geoshape();
shape(1) = pts
shape =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: [-83.8300 -84.3300 -84.5000 -84.6700 -84.9200 -85.4200 ...]
 Longitude: [-180 -178 -174 -170 -166.0000 -163 -158 -152 -146 -147 ...]
```

Note that Latitude and Longitude are stored are row vectors in the geoshape vector.
Now, create a 2-by-m array of coastline latitude and longitude values. Note the semicolon inside the brackets.

```
pts2 = [coastlat; coastlon];
```

Create a geoshape object and store the latitude and longitude data. If you store latitude and longitude coordinate values in a 2-by-m array, geoshape assigns the Latitude property values to the first row and the Longitude property values to the second row.

```
shape2 = geoshape();
shape2(1) = pts2
shape2 =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 Latitude: [-83.8300 -84.3300 -84.5000 -84.6700 -84.9200 -85.4200 ...]
 Longitude: [-83.8300 -84.3300 -84.5000 -84.6700 -84.9200 -85.4200 ...]
```


## More About

## Collection Properties

Collection properties contain only one value per class instance. In contrast, the Feature and Vertex property types have attribute values associated with each feature or with each vertex in a set that defines a feature. Geometry and Metadata are the only two Collection properties.

## Vertex Properties

Vertex properties provide a scalar number or a character vector for each vertex in a geoshape object. Vertex properties are suitable for attributes that vary spatially from point to point (vertex to vertex) along a line. Examples of such spatially varying attributes could be elevation, speed, temperature, or time. Latitude and Longitude are vertex properties since they contain a scalar number for each vertex in a geoshape vector.

Attribute values are associated with each vertex during construction or by using dot notation after construction. This process is similar to adding dynamic fields to a structure. Dynamic Vertex property values of an individual feature match its Latitude and Longitude values in length.

## Feature Properties

Feature properties provide one value (a scalar number, scalar string, or character vector) for each feature in a geoshape vector. They are suitable for properties, such as name, owner, serial number, or age, that describe a given feature (an element of a geoshape vector) as a whole. Like Vertex properties, Feature properties can be added during construction or by using dot notation after construction.

## Tips

- The geoshape function separates features using NaN values. If you display a feature by using a scalar to index into the geoshape vector, such as $\mathrm{s}(1)$, then NaN values that separate the features do not display.
- If Latitude, Longitude, or a dynamic property is set with more values than features in the geoshape vector, then all other properties expand in size using 0 for numeric values and an empty character vector (' ${ }^{\prime}$ ) for cell values.
- If a dynamic property is set with fewer values than the number of features, then this dynamic property expands to match the size of the other properties, by inserting a 0 if the value is numeric or an empty character vector (' ' ), if the value is a cell array.
- If the Latitude or Longitude property of the geoshape vector is set with fewer values than contained in the object, then all other properties shrink in size.
- If either Latitude or Longitude are set to [ ], then both coordinate properties are set to [ ] and all dynamic properties are removed.
- If a dynamic property is set to [ ], then it is removed from the object.
- The geoshape vector can be indexed like any MATLAB vector. You can access any element of the vector to obtain a specific feature. The following examples demonstrate this behavior:
"Use Indexing to Append a Single Point and a Shape to a Geoshape Vector" on page 1-631
"Use Indexing to Sort and Modify Dynamic Features" on page 1-633
"Construct a Geoshape Vector from Multiple Objects" on page 1-635


## See Also

## Functions

gpxread | shaperead

## Objects

geopoint | mappoint | mapshape

## Topics

"Create and Display Polygons"

## Introduced in R2012a

## geoshow

Display map latitude and longitude data

## Syntax

```
geoshow(lat,lon)
geoshow(S)
geoshow(lat,lon,Z)
geoshow(Z,R)
geoshow(lat,lon,I)
geoshow(lat,lon,X,cmap)
geoshow(I,R)
geoshow(X,cmap,R)
geoshow(filename)
geoshow(___, Name,Value)
geoshow(ax,()
h = geoshow(___)
```


## Description

geoshow(lat, lon) projects and displays the latitude and longitude vectors lat and lon using the projection stored in the current set of map axes. If there are no current map axes, then lat and lon are projected using a default Plate Carrée projection on a set of regular axes.

Note To display data on a set of map axes, create a map using the axesm, worldmap, or usamap functions before calling geoshow.

By default, geoshow displays lat and lon as lines. You can optionally display the vector data as points, multipoints, or polygons by using the DisplayType name-value pair argument.
geoshow(S) displays the vector geographic features stored in S as points, multipoints, lines, multilines, polygons, or multipolygons according to the geometry of S .

You can optionally specify symbolization rules using the SymbolSpec name-value pair argument.
geoshow(lat,lon,Z) projects and displays the geolocated data grid, Z. In this syntax, lat and lon are M-by-N latitude-longitude arrays. Z is an M -by-N array of class double. You can optionally display the data as a surface, mesh, texture map, or contour by using the DisplayType name-value pair argument.
geoshow ( $Z, R$ ) projects and displays a regular data grid, $Z$, with referencing object $R$. You can optionally display the data as a surface, mesh, texture map, or contour by using the DisplayType name-value pair argument. If DisplayType is 'texturemap', then geoshow constructs a surface with ZData values set to 0 .
geoshow(lat,lon,I) and
geoshow(lat, lon, X, cmap) projects and displays a geolocated image as a texture map on a zeroelevation surface. The geolocated image I can be a truecolor, grayscale, or binary image. X is an indexed image with colormap cmap. Examples of geolocated images include a color composite from a satellite swath or an image originally referenced to a different coordinate system.
geoshow(I,R) and
geoshow ( $\mathrm{X}, \mathrm{cmap}, \mathrm{R}$ ) project and display an image georeferenced to latitude-longitude through the referencing object $R$. The image is shown as a texture map on a zero-elevation surface.
geoshow(filename) projects and displays data from the file specified according to the type of file format.
geoshow( $\qquad$ ,Name, Value) specifies parameters and corresponding values that modify the type of display or set MATLAB graphics properties. You can use name, value pairs to set:

- Name, Value arguments
- Any MATLAB Graphics line, patch, and surface properties
- Any Mapping Toolbox contour properties

Parameter names can be abbreviated, and case does not matter.
geoshow(ax, $\qquad$ ) sets the parent axes to ax.
h = geoshow( $\qquad$ ) returns a handle to a MATLAB graphics object.

## Examples

## Display Regular Data Grid as Texture Map

Load elevation data and a geographic cells reference object for the Korean peninsula. Create a set of map axes for the Korean peninsula using worldmap.

```
load korea5c
worldmap(korea5c,korea5cR)
```

Display the elevation data as a texture map. Apply a colormap appropriate for elevation data using demcmap.
geoshow(korea5c, korea5cR,'DisplayType','texturemap') demcmap(korea5c)


## Display Polygons on Map Projection

Import a shapefile containing worldwide land areas as a geospatial table. The shapefile represents the land areas using polygons.

```
landAreas = readgeotable("landareas.shp");
```

Create a subtable that contains the polygon representing Africa, Europe, and Asia. Get information about the polygon by querying the Shape variable of the table.

```
row = landAreas.Name == "Africa and Eurasia";
landAreasSubset = landAreas(row,:);
landAreasSubset.Shape
ans =
 geopolyshape with properties:
 NumRegions: 2
 NumHoles: 22
 Geometry: "polygon"
 CoordinateSystemType: "geographic"
 GeographicCRS: [1x1 geocrs]
```

Display the polygon on a world map.
worldmap([-45 80],[-25 195]);
geoshow(landAreasSubset)


## Define Face Colors and Set Default Face Colors

Import a shapefile containing USA state polygons as a geospatial table. Set up an empty map axes with projection and limits suitable for displaying all 50 states.

```
states = readgeotable("usastatehi.shp");
figure
worldmap("na")
```

Create a symbol specification that sets the color of the Alaska and Hawaii polygons to red.
symspec = makesymbolspec("Polygon", ...
\{'Name','Alaska','FaceColor','red'\}, ...
\{'Name','Hawaii','FaceColor','red'\});
Display all the state polygons. Set the default face color to blue and the default edge color to black.
geoshow(states,"SymbolSpec",symspec, ...
"DefaultFaceColor","blue", ...
"DefaultEdgeColor","black");


## Create Map and Display NaNs as Transparent

Load elevation data and a geographic cells reference object for the Korean peninsula. Insert a band of null values into the elevation data.
load korea5c
korea5c(80:100,:) = NaN;
Create a set of map axes for the Korean peninsula using worldmap. Then, display the elevation data as a surface with transparent null values.

```
worldmap(korea5c, korea5cR)
geoshow(korea5c, korea5cR,'DisplayType','surface')
demcmap(korea5c)
```



## Display EGM96 Geoid Heights Masking Out Land Areas

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then, display the geoid heights as a surface using an Eckert projection. Ensure the surface appears under the land mask by setting the 'CData' name-value pair to the geoid height data and the 'ZData' name-value pair to a matrix of zeros. Display the frame and grid of the map using framem and gridm.

```
[N,R] = egm96geoid;
axesm eckert4
Z = zeros(R.RasterSize);
geoshow(N,R,'DisplayType','surface','CData',N,'ZData',Z)
framem
gridm
```

Create a colorbar and add a text description. Then, mask out all the land.

```
cb = colorbar('southoutside');
cb.Label.String = 'EGM96 Geoid Height in Meters';
geoshow('landareas.shp','FaceColor','black')
```



## Display EGM96 Geoid Heights as 3-D Surface

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then, display the geoid heights as a surface using an Eckert projection.
[ $N, R$ ] = egm96geoid;
axesm eckert4
geoshow(N,R,'DisplayType','surface')


Add light and material. Then, view the map as a 3-D surface.

```
light
material(0.6*[1 1 1])
axis normal
view(3)
```



## Display Moon Albedo Using Orthographic Projection

Load moon albedo data and a geographic cells reference object.
load moonalb20c
Then, display the data. To do this, create a map axes object and specify its projection as orthographic.
Display the data in the map axes as a texture map using the geoshow function. Then, change the colormap to grayscale and remove the axis lines.

```
axesm ortho
geoshow(moonalb20c,moonalb20cR,'DisplayType','texturemap')
colormap gray
axis off
```



## Input Arguments

## lat, lon - Latitude or longitude data

numeric vector | $M$-by- $N$ numeric array
Latitude or longitude data, specified as a numeric vector or an $M$-by- $N$ numeric matrix.

- lat and lon are vectors when used with the syntax geoshow(lat,lon).
- lat and lon are 2-D arrays when used with the geoshow(lat,lon, Z) syntax, the geoshow(lat,lon, I) syntax, or the geoshow(lat, lon, X, cmap) syntax. If lat and lon are matrices, they represent coordinate arrays or a geolocation array in geographic coordinates, and must be the same size as $Z, I$, or $X$. If $I$ is an RGB image, lat and lon must be matrices that match the first two dimensions of the image.
lat and lon may contain embedded NaNs to delimit individual lines or polygon parts.


## S - Geographic features

geospatial table \| geopoint vector \| geoshape vector \| geographic structure array
Geographic features, specified as one of the following:

- A geospatial table. The Shape variable of the table must contain geopointshape, geolineshape, or geopolyshape objects. The geoshow function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A geopoint vector.
- A geoshape vector.
- A geographic structure array (geostruct) with Lat and Lon coordinate fields.

The geoshow function assumes the coordinates are geographic coordinates and projects them to map coordinates.

If you specify a mappoint vector, a mapshape vector, or a map structure array (mapstruct) with $X$ and $Y$ coordinate fields, then the geoshow function display the vertices as pre-projected map coordinates and issues a warning. If you specify a geospatial table containing mappointshape, maplineshape, or mapolyshape objects, then the geoshow function throws an error. In these cases, use the mapshow function instead.

## Z - Data grid

$M$-by- $N$ numeric array
Data grid, specified as an $M$-by- $N$ numeric array that may contain $N a N$ values. $Z$ is either a georeferenced data grid, or a regular data grid associated with a geographic reference R.

## R - Geographic reference

geographic raster reference object | vector | matrix
Geographic reference, specified as one of the following. For more information about referencing vectors and matrices, see "Georeferenced Raster Data".
$\left.\begin{array}{|l|l|}\hline \text { Type } & \text { Description } \\ \hline \begin{array}{l}\text { Geographic raster reference } \\ \text { object }\end{array} & \begin{array}{l}\text { GeographicCellsReference or } \\ \text { GeographicPostingsReference geographic raster reference } \\ \text { object that relates the subscripts of Z to geographic coordinates. } \\ \text { The RasterSize property must be consistent with the size of } \\ \text { the data grid, size (Z). } \\ \text { If R is a GeographicPostingsReference object, then the } \\ \text { 'image' and 'texturemap ' values of DisplayType are not } \\ \text { accepted. }\end{array} \\ \hline \text { Vector } & \begin{array}{l}1 \text {-by-3 numeric vector with elements: } \\ \text { [cells/degree northern_latitude_limit western_longitude }\end{array} \\ \hline \text { Matrix } & \begin{array}{l}\text { 3-by-2 numeric matrix that transforms raster row and column } \\ \text { indices to or from geographic coordinates according to: }\end{array} \\ \text { [lon lat] = [row col 1] * R } \\ \text { R defines a (non-rotational, non-skewed) relationship in which } \\ \text { each column of the data grid falls along a meridian and each row } \\ \text { falls along a parallel. Nearest-neighbor interpolation is used by } \\ \text { default. NaN is returned for points outside the grid limits or for } \\ \text { which lat or lon contain NaN. All angles are in units of degrees. }\end{array}\right\}$

## I - Truecolor, grayscale, or binary image

$M$-by- $N$-by-3 array | $M$-by- $N$ array

Truecolor, grayscale, or binary image, specified as an $M$-by- $N$-by- 3 array for truecolor images, or an $M$-by- $N$ array for grayscale or binary images. lat and lon must be $M$-by- $N$ arrays. If specified, 'DisplayType' must be set to 'image'.

## X - Indexed image

$M$-by- $N$ array
Indexed image with color map defined by cmap, specified as an $M$-by- $N$ array. lat and lon must be $M$-by- $N$ arrays. If specified, 'DisplayType' must be set to 'image'.

## cmap - Color map

$c$-by-3 matrix
Color map of indexed image $X$, specified as an $c$-by- 3 numeric matrix. There are $c$ colors in the color map, each represented by a red, green, and blue pixel value.

## filename - File name

character vector | string scalar
File name, specified as a string scalar or character vector. geoshow automatically sets the DisplayType parameter according to the format of the data.

Format	DisplayType
Shape file	'point ' , 'multipoint ', 'line ', or 'polygon '
GeoTIFF	'image '
TIFF/JPEG/PNG with a world file	'image '
ARC ASCII GRID	'surface ' (can be overridden)
SDTS raster	'surface ' (can be overridden)

Data Types: char \| string

## ax - Parent axes

axes object
Parent axes, specified as an axes object.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DisplayType','point'

## SymbolSpec - Symbolization rules

## structure

Symbolization rules to be used for displaying vector data, specified as the comma-separated pair consisting of 'SymbolSpec' and a structure returned by makesymbolspec. It is used only for vector data stored in geographic data structures. In cases where both SymbolSpec and one or more graphics properties are specified, the graphics properties override any settings in the symbolspec structure.

To change the default symbolization rule for a Name, Value pair in the SymbolSpec structure, prefix the word 'Default' to the graphics property name.

## DisplayType - Display type

'point'|'multipoint'|'line'|'polygon'|'image'|'surface'|'mesh'|
'texturemap'|'contour'
Type of graphic display for the data, specified as the comma-separated pair consisting of 'DisplayType' and one of the following values.

Data Type	Display Type	Type of Property
Vector	'point '	line marker
	'multipoint '	line marker
	'line'	line
	'polygon'	patch
Image	'image'	surface
Grid	'surface '	surface
	'mesh'	surface
	'texturemap '	surface
	'contour'	contour

Valid values of DisplayType depend on the format of the map data. For example, if the map data is a geolocated image or georeferenced image, then the only valid value of DisplayType is 'image'. Different display types support different geographic data class types:

Display Type	Supported Class Types
Image	logical, uint8, uint16, and double
Surface	single and double
Texture map	All numeric types and logical

## Output Arguments

## h - Parent axes

handle object | modified patch object
Parent axes, returned as a handle to a MATLAB graphics object or, in the case of polygons, a modified patch object. If a geostruct or shapefile name is input, geoshow returns the handle to an hggroup object with one child per feature in the geostruct or shapefile, excluding any features that are completely trimmed away. In the case of a polygon geostruct or shapefile, each child is a modified patch object; otherwise it is a line object.

## Tips

- When calling shaperead to read files that contain coordinates in latitude and longitude, be sure to specify the shaperead argument pair 'UseGeoCoords' , true. If you do not include this argument, shaperead will create a mapstruct, with coordinate fields labelled $X$ and $Y$ instead of Lon and Lat. In such cases, geoshow assumes that the geostruct is in fact a mapstruct containing
projected coordinates, warns, and calls mapshow to display the geostruct data without projecting it.
- If you do not want geoshow to draw on top of an existing map, create a new figure or subplot before calling it.
- When you display vector data in a map axes using geoshow, you should not subsequently change the map projection using setm. You can, however, change the projection with setm for raster data. For more information, see "Change Map Projections Using geoshow".
- If you display a polygon, do not set 'EdgeColor' to either 'flat' or 'interp'. This combination may result in a warning.
- When projecting data onto a map axes, geoshow uses the projection stored with the map axes. When displaying on a regular axes, it constructs a default Plate Carrée projection with a scale factor of $180 /$ pi, enabling direct readout of coordinates in degrees.
- When you pass two points to the geoshow function, the function projects the locations of each point on the map and displays a straight line that connects them, regardless of the map projection or the distance between the points. To display a projected geodesic or rhumbline curve between two points, first insert intermediate points using the track2 function.
- geoshow can generally be substituted for displaym. However, there are limitations where display of specific objects is concerned. See the remarks under updategeostruct for further information.
- When you display raster data in a map using geoshow, columns near the eastern or western edge may fail to display. This is seldom noticeable, except when the raster is very coarse relative to the displayed area. To include additional columns in the display, it might help to:
- Resize the grid to a finer mesh.
- Make sure the cell boundaries and map limits align.
- Expand the map limits.


## See Also

## Functions

axesm|makesymbolspec | mapshow | updategeostruct
Objects
GeographicCellsReference | GeographicPostingsReference
Topics
"Create and Display Polygons"
Introduced before R2006a

## geotable2table

Convert geospatial table to table

## Syntax

T = geotable2table(GT)
$\mathrm{T}=$ geotable2table(GT, varnames)

## Description

$\mathrm{T}=$ geotable2table(GT) converts the geospatial table GT to a table. The function replaces the objects in the Shape variable of GT with well-known text (WKT) string representations of geometry. The geospatial table and the table have the same dimensions.

T = geotable2table(GT, varnames) replaces the Shape variable with variables that have names specified by varnames.

## Examples

## Convert Geospatial Table to Table

Convert a geospatial table to a table, then write the data to an Excel® spreadsheet file.
Import a shapefile containing the coordinates of world cities as a geospatial table.

```
GT = readgeotable("worldcities.shp");
```

Find the coordinate reference system type. The coordinate reference system type helps you determine appropriate variable names for the table.

```
GT.Shape.CoordinateSystemType
ans =
"geographic"
```

Convert the geospatial table to a table. Replace the Shape variable with two variables containing coordinates by specifying the second argument as a two-element vector. The coordinate system is geographic, so use the variable names "Latitude" and "Longitude".

T = geotable2table(GT,["Latitude" "Longitude"]);
Write the table to an Excel spreadsheet file.
writetable(T,"worldcities.xlsx")

## View WKT String Representations of Geometry

Import a shapefile containing a road network in Boston, MA, as a geospatial table. The Shape variable of the geospatial table contains maplineshape objects.

```
GT = readgeotable("boston_roads.shp");
class(GT.Shape)
ans =
'maplineshape'
```

Convert the geospatial table to a table. The geotable2table function replaces the objects in the Shape variable with WKT string representations of geometry.

```
T = geotable2table(GT);
```

View the WKT string for the road called C STREET.

```
wkt = T.Shape(T.STREETNAME == "C STREET")
wkt =
"LINESTRING (237527.171875 899661.1875,237343.875 899443.0625)"
```


## Input Arguments

## GT - Geospatial table

geospatial table
Geospatial table. A geospatial table is a table or timetable object with a Shape variable that contains geopointshape, geolineshape, geopolyshape, mappointshape, maplineshape, or mappolyshape objects. The Shape variable must be the first variable.

For more information about geospatial tables, see "Create Geospatial Tables".
Data Types: table

## varnames - Table variable names

string scalar | two-element string vector
Table variable names used to replace the Shape variable of the geospatial table, specified as a string scalar or two-element string vector.

- To replace the shape objects in the Shape variable with WKT string representations of geometry, specify varnames as a string scalar, such as "WKTStrings". Unlike shape objects, WKT string representations of geometry do not contain information about the coordinate reference system.
- To replace the Shape variable with two table variables containing latitude and longitude coordinates or $x$ - and $y$-coordinates, specify varnames as a two-element string vector, such as ["Latitude" "Longitude"].

The geotable2table function does not project or unproject coordinates. For more information about projecting or unprojecting coordinates, see projfwd or projinv.
Data Types: string

## Output Arguments

## T - Output table

table object | timetable object
Output table, returned as a table or timetable object.

- When you specify varnames as a string scalar, the output table contains WKT string representations of geometry.
- When you specify varnames as a two-element string vector, the output table contains latitudelongitude or $x$ - $y$ coordinates. If a table row represents an individual point, then the coordinates are returned as numeric scalars. Otherwise, the coordinates are returned as cell arrays of numeric vectors.

Data Types: table

## See Also

## Functions

isgeotable|readgeotable| table2geotable|table2timetable|polyjoin

## Introduced in R2021b

# map.geotiff.RPCCoefficientTag 

Create a Rational Polynomial Coefficients Tag object

## Syntax

rpctag = map.geotiff.RPCCoefficientTag rpctag $=$ map.geotiff. RPCCoefficientTag(tiffTagValue)

## Description

rpctag $=$ map.geotiff.RPCCoefficientTag creates a default RPCCoefficientTag object. rpctag $=$ map.geotiff.RPCCoefficientTag(tiffTagValue) creates an RPCCoefficientTag object and sets the property values to the corresponding values in the 92element vector specified in tiffTagValue.

## Examples

## Create RPCCoefficientTag Object with Default Properties

Call the RPCCoefficientTag class constructor with no arguments.

```
rpctag = map.geotiff.RPCCoefficientTag
rpctag =
 RPCCoefficientTag with properties:
 BiasErrorInMeters: -1
 RandomErrorInMeters: -1
 LineOffset: 0
 SampleOffset: 0
 GeodeticLatitudeOffset: 0
 GeodeticLongitudeOffset: 0
 GeodeticHeightOffset: 0
 LineScale: 1
 SampleScale: 1
 GeodeticLatitudeScale: 1
 GeodeticLongitudeScale: 1
 GeodeticHeightScale: 1
 LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```


## Write Raw RPC Coefficient Metadata to GeoTIFF File

This example shows how to write RPC coefficient metadata to a TIFF file. In a real workflow, you would create the RPC coefficient metadata according to the TIFF extension specification. This
example does not show the specifics of how to create valid RPC metadata. To simulate raw RPC metadata, the example creates a sample TIFF file with RPC metadata and then uses imfinfo to read this RPC metadata in raw, unprocessed form from the file. The example then writes this raw RPC metadata to a file using the geotiffwrite function.

## Create Raw RPC Coefficient Metadata

To simulate raw RPC metadata, create a simple test file and write some RPC metadata to the file. For this test file, create a toy image and a referencing object associated with the image.

```
myimage = zeros(180,360);
latlim = [-90 90];
lonlim = [-180 180];
R = georefcells(latlim,lonlim,size(myimage));
```

Create an RPCCoefficientTag metadata object and set some of the fields. The toolbox uses the RPCCoefficientTag object to represent RPC metadata in human readable form.

```
rpctag = map.geotiff.RPCCoefficientTag;
rpctag.LineOffset = 1;
rpctag.Sample0ffset = 1;
rpctag.LineScale = 2;
rpctag.SampleScale = 2;
rpctag.GeodeticHeightScale = 500;
```

Write the image, the associated referencing object, and the RPCCoefficientTag object to a file.

```
geotiffwrite('myfile',myimage,R,'RPCCoefficientTag',rpctag)
```


## Read Raw RPC Coefficient Metadata

Read the RPC coefficient metadata from the test file using the imfinfo function. When it encounters unfamiliar metadata, imfinfo returns the data, unprocessed, in the UnknownTags field. Note that the UnknownTags field contains an array of 92 doubles. This is the raw RPC coefficient metadata, read from the file in unprocessed form.

```
info = imfinfo('myfile.tif');
info.UnknownTags
ans = struct with fields:
 ID: 50844
 Offset: 10676
 Value: [-1 -1 1 1 0 0 0 2 2 1 1 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...]
```


## Write Raw RPC Metadata to a File

Write the raw RPC metadata to a file. First, extract the RPC coefficient metadata from the info structure.

```
value = info.UnknownTags.Value;
```

Then, construct an RPCCoefficientTag object, passing the raw RPC metadata (array of 92 doubles) as an argument.

```
rpcdata = map.geotiff.RPCCoefficientTag(value)
rpcdata =
 RPCCoefficientTag with properties:
```

```
 BiasErrorInMeters: -1
 RandomErrorInMeters: -1
 LineOffset: 1
 SampleOffset: 1
 GeodeticLatitudeOffset: 0
 GeodeticLongitudeOffset: 0
 GeodeticHeightOffset: 0
 LineScale: 2
 SampleScale: 2
 GeodeticLatitudeScale: 1
 GeodeticLongitudeScale: 1
 GeodeticHeightScale: 500
 LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```

Pass the RPCCoefficientTag object to the geotiffwrite function and write the RPC metadata to a file.

```
geotiffwrite('myfile2',myimage,R,'RPCCoefficientTag',rpcdata)
```

To verify that the data was written to the file, read the RPC metadata from the TIFF file using geotiffinfo. Compare the returned RPC metadata with the metadata written to the test file.

```
ginfo = geotiffinfo('myfile2');
ginfo.GeoTIFFTags.RPCCoefficientTag
ans =
 RPCCoefficientTag with properties:
 BiasErrorInMeters: -1
 RandomErrorInMeters: -1
 LineOffset: 1
 SampleOffset: 1
 GeodeticLatitudeOffset: 0
 GeodeticLongitudeOffset: 0
 GeodeticHeight0ffset: 0
 LineScale: 2
 SampleScale: 2
 GeodeticLatitudeScale: 1
 GeodeticLongitudeScale: 1
 GeodeticHeightScale: 500
 LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```


## Input Arguments

## tiffTagValue - Value of RPCCoefficientTag properties

92-element vector
Value of RPCCoefficientTag properties, specified as a 92 -element vector.

Data Types: double

## See Also

RPCCoefficientTag|geotiffinfo|geotiffwrite|Tiff
Introduced in R2015b

## geotiff2mstruct

Convert GeoTIFF information to map projection structure

## Syntax

mstruct $=$ geotiff2mstruct(proj)

## Description

mstruct $=$ geotiff2mstruct (proj) converts the GeoTIFF projection structure, proj, to the map projection structure, mstruct. The unit of length of the mstruct projection is meter.

The GeotifF projection structure, proj, must reference a projected coordinate system, as indicated by a value of 'ModelTypeProjected' in the ModelType field. If ModelType has the value 'ModelTypeGeographic ' then it doesn't make sense to convert to a map projection structure and an error is issued.

## Examples

Verify that unprojecting coordinates using a GeoTIFF projection structure gives the same result as unprojecting them using a map projection structure.

To do this, first get the GeoTIFF projection structure of an image. Convert the corner map coordinates to latitude and longitude by calling projinv and specifying the GeoTIFF projection structure.

```
proj = geotiffinfo('boston.tif');
x = proj.CornerCoords.X;
y = proj.CornerCoords.Y;
[latProj,lonProj] = projinv(proj,x,y);
```

Get a map projection structure from the GeoTIFF projection structure using the geotiff2mstruct function. The length unit for map projection structures is meter, but the map coordinates are in survey feet. Therefore, convert the corner map coordinates from survey feet to meters. Then, unproject the corner coordinates by calling projinv and specifying the map projection structure.

```
mstruct = geotiff2mstruct(proj);
xsf = unitsratio('meter','sf') * x;
ysf = unitsratio('meter','sf') * y;
[latMstruct,lonMstruct] = projinv(mstruct,xsf,ysf);
```

Verify the values are within a tolerance of each other.

```
abs(latProj - latMstruct) <= 1e-7
abs(lonProj - lonMstruct) <= 1e-7
ans =
 1 1 1 1
```

1	1	1	1

## See Also

axesm|defaultm|geotiffinfo|projfwd|projinv|projlist

Introduced before R2006a

## geotiffinfo

Information about GeoTIFF file

## Syntax

```
info = geotiffinfo(filename)
info = geotiffinfo(url)
```


## Description

info = geotiffinfo(filename) returns a structure whose fields contain image properties and cartographic information about a GeoTIFF file.
info = geotiffinfo(url) reads the GeoTIFF image from a URL.

## Examples

## Return Information about GeoTIFF File

Return information about a GeoTIFF file as a structure by using the geotiffinfo function.

```
info = geotiffinfo('boston.tif')
info = struct with fields:
 Filename: 'C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\3\tpc3189889\map-ex98657947\bosto
 FileModDate: '13-May-2011 22:28:45'
 FileSize: 38729900
 Format: 'tif'
 FormatVersion: []
 Height: 2881
 Width: 4481
 BitDepth: 8
 ColorType: 'truecolor'
 ModelType: 'ModelTypeProjected'
 PCS: 'NAD83 / Massachusetts Mainland'
 Projection: 'SPCS83 Massachusetts Mainland zone (meters)'
 MapSys: 'STATE_PLANE_83'
 Zone: 2001
 CTProjection: 'CT_LambertConfConic_2SP'
 ProjParm: [7x1 double]
 ProjParmId: {7x1 cell}
 GCS: 'NAD83'
 Datum: 'North American Datum 1983'
 Ellipsoid: 'GRS 1980'
 SemiMajor: 6378137
 SemiMinor: 6.3568e+06
 PM: 'Greenwich'
 PMLongToGreenwich: 0
 UOMLength: 'US survey foot'
 UOMLengthInMeters: 0.3048
 UOMAngle: 'degree'
```

```
UOMAngleInDegrees: 1
 TiePoints: [1x1 struct]
 PixelScale: [3\times1 double]
 SpatialRef: [1x1 map.rasterref.MapCellsReference]
 RefMatrix: [3x2 double]
 BoundingBox: [2x2 double]
 CornerCoords: [1x1 struct]
 GeoTIFFCodes: [1x1 struct]
 GeoTIFFTags: [1x1 struct]
ImageDescription: '"GeoEye"'
```


## Find Coordinate Reference System for Geotiff File

Find the projected coordinate reference system (CRS) for the boston.tif file.
Read information about the file as a structure array. Then, query the ProjectedCRS property of the raster reference object within the SpatialRef field of the structure array.

```
info = geotiffinfo("boston.tif");
crs = info.SpatialRef.ProjectedCRS
crs =
 projcrs with properties:
 Name: "NAD83 / Massachusetts Mainland"
 GeographicCRS: [1x1 geocrs]
 ProjectionMethod: "Lambert Conic Conformal (2SP)"
 LengthUnit: "U.S. survey foot"
 ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```

If your file is referenced to a geographic CRS, then query the GeographicCRS property instead of the ProjectedCRS property.

## Input Arguments

## filename - Name of GeotIFF file

character vector
Name of the GeoTIFF file, specified as a character vector. Include the folder name in filename or place the file in the current folder or in a folder on the MATLAB path. If the named file includes the extension .TIF or .TIFF (either upper- or lowercase), you can omit the extension from filename.

If the named file contains multiple GeoTIFF images, info is a structure array with one element for each image in the file. For example, info(3) would contain information about the third image in the file. If multiple images exist in the file, it is assumed that each image has the same cartographic information and image width and height.

## url - Internet URL

character vector
Internet URL, specified as a character vector. The URL must include the protocol type (e.g., "http://").

## Output Arguments

## info - Image properties and cartographic information about a GeoTIFF file structure

Image properties and cartographic information about a GeoTIFF file, returned as a structure containing the following fields.

Field	Description
Filename	Name of the file or URL
FileModDate	Modification date of the file
FileSize	Integer indicating the size of the file in bytes.
Format	File format (always 'tiff')
FormatVersion	File format version
Height	Integer indicating the height of the image in pixels
Width	Integer indicating the width of the image in pixels
BitDepth	Integer indicating the number of bits per pixel
ColorType	Type of image: 'truecolor' for a true-color (RGB) image, ' grayscale'   for a grayscale image, or 'indexed' for an indexed image.
ModelType	Type of coordinate system used to georeference the image:
	'ModelTypeProjected ', 'ModelTypeGeographic',
PCS	'ModelTypeGeocentric', or ' '
Projected coordinate system	


Field	Description
ProjParmId	N-by-1 cell array listing the projection parameter identifier for each
	corresponding numerical element of Proj Parm:
	- 'ProjNatOriginLatGeoKey'
	- 'ProjNatOriginLongGeoKey'
	- 'ProjFalseEastingGeoKey '



RefMatrix

BoundingBox

Description
Structure containing the image tiepoints. The structure contains these fields:

Field Name	Description
ImagePoints	Structure containing row and   column coordinates of each image   tiepoint. The ImagePoints   structure contains these fields:

- Row - double array of size 1-byN
- Col - double array of size 1-byN
WorldPoints
Structure containing the $x$ and $y$
world coordinates of the tiepoints. The WorldPoints structure contains these fields:
- $X$ - double array of size 1-by-N
- Y - double array of size 1-by-N

3-by-1 double array that specifies the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ pixel scale values.
Value depends on the value of the ModelType field:

- 'ModelTypeProjected' - SpatialRef is a MapCellsReference or MapPostingsReference object.
- 'ModelTypeGeographic' - SpatialRef is a GeographicCellsReference or GeographicPostingsReference object, unless the geometric transformation is affine, in which case it is empty ([]).
- 'ModelTypeGeocentric' - SpatialRef is empty ([]).
- Empty ([]) - geotiffinfo issues a warning and SpatialRef is a map raster reference object.

If the spatial referencing is ambiguously defined by the GeoTIFF file, then SpatialRef is empty ([]).

3-by-2 double referencing matrix that must be unambiguously defined by the GeoTIFF file. Otherwise it is empty ([]).
2-by-2 double array that specifies the minimum (row 1 ) and maximum (row 2) values for each dimension of the image data in the GeoTIFF file.
Field
CornerCoords
GeoTIFFCodes Structure containing raw numeric values for those GeoTIFF fields that are encoded numerically in the file. These raw values, converted to a character vectors elsewhere in the info structure, are provided here for reference.

- Model
- PCS
- GCS
- UOMLength
- UOMAngle
- Datum
- PM
- Ellipsoid
- ProjCode
- Projection
- CTProjection
- ProjParmId
- MapSys

Each is scalar, except for ProjParmId, which is a column vector.

## Field

GeoTIFFTags

## Description

Structure containing field names that match the GeoTIFF tags in the file. At least one GeoTIFF tag must be present in the file or an error is issued. The following fields may be included:

Field	Value
ModelPixelScaleTag	1-by-3 double
ModelTiepointTag	1-by-6 double
ModelTransformationTag	1-by-16 double
GeoKeyDirectoryTag	scalar structure
GeoAsciiParamsTag	character vector
GeoDoubleParamsTag	1-by-N double
RPCCoefficientTag	scalar RPCCoefficientTag

The GeoKeyDirectoryTag contains field names that match the names of the "GeoKeys". For more information about the "GeoKeys" refer to the GeoTIFF specification.

The RPCCoefficientTag contains properties with names corresponding to the tag elements listed in the RPCs in GeoTIFF technical note at: http:// geotiff.maptools.org/rpc_prop.html
ImageDescription Description of the image. If no description is included in the file, the field is omitted.

## See Also

## Functions

georasterinfo|readgeoraster|geotiffwrite|projinv|projfwd

## Objects

RPCCoefficientTag

Introduced before R2006a

## geotiffread

(Not recommended) Read GeoTIFF file

Note geotiffread is not recommended, except when reading a GeoTIFF file from a URL or when reading multiple images from the same file. In other situations, use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[A,R] = geotiffread(filename)
[X,cmap,R] = geotiffread(filename)
[A,refmat,bbox] = geotiffread(filename)
[X, cmap, refmat,bbox] = geotiffread(filename)
[___] = geotiffread(url)
[___] = geotiffread( ___ idx)

## Description

$[A, R]=$ geotiffread(filename) reads a georeferenced grayscale, RGB, or multispectral image or data grid from the GeoTIFF file specified by filename into $A$ and creates a spatial referencing object, R.
$[X$, cmap,$R]=$ geotiffread(filename) reads an indexed image into $X$ and the associated colormap into cmap, and creates a spatial referencing object, R .
[A, refmat, bbox] = geotiffread(filename) reads a georeferenced grayscale, RGB, or multispectral image or data grid into $A$, the corresponding referencing matrix into refmat, and the bounding box into bbox.
[X,cmap, refmat,bbox] = geotiffread(filename) reads an indexed image into $X$, the associated colormap into cmap, the referencing matrix into refmat, and the bounding box into bbox. The referencing matrix must be unambiguously defined by the GeoTIFF file, otherwise it and the bounding box are returned empty.
[ ___ ] = geotiffread(url) reads the GeoTIFF image from a URL.
[___] = geotiffread(___ ,idx) reads one image from a multi-image GeoTIFF file or URL.

## Examples

## Read and Display the Boston GeoTIFF Image

```
[boston,R] = geotiffread('boston.tif');
figure
mapshow(boston,R);
axis image off
```


boston.tif copyright © GeoEye ${ }^{\mathrm{TM}}$, all rights reserved.

## Input Arguments

filename - Name of GeotIFF file
character vector | string scalar
Name of the GeoTIFF file, specified as a string scalar or character vector. Include the folder name in filename or place the file in the current folder or in a folder on the MATLAB path. If the named file includes the extension .TIF or .TIFF (either upper- or lowercase), you can omit the extension from filename.

## idx - Index of image in GeotIFF file

1 (default) | positive integer
Index of image in GeoTIFF file, specified as a positive integer. For example, if idx is 3 , geotiffread reads the third image in the file. By default, idx indexes to the first image in the file.

## url - Internet URL

character vector | scalar string
Internet URL, specified as a string scalar or character vector. The URL must include the protocol type (e.g., "https://").

## Output Arguments

## A - Georeferenced image or data grid

$M$-by- $N$ numeric matrix | $M$-by- $N$-by- $P$ numeric array
Georeferenced image or data grid, returned as one of the following:

- An $M$-by- $N$ numeric matrix when the file contains a grayscale image or data grid
- An $M$-by- $N$-by- $P$ numeric array when the file contains a color image, multispectral image, hyperspectral image, or data grid

The class of A depends on the storage class of the pixel data in the file, which is related to the BitsPerSample property as returned by the imfinfo function.

## R - Spatial referencing object

geographic raster reference object | map raster reference object
Spatial referencing object, returned as one of the following.

- A geographic raster reference object of type GeographicCellsReference or GeographicPostingsReference. This object is returned when the image or data grid is referenced to a geographic coordinate system.
- A map raster reference object of type MapCellsReference or MapPostingsReference. This object is returned when the image or data grid is referenced to a projected coordinate system.


## X - Indexed image

$M$-by- $N$ numeric matrix
Indexed image, returned as an $M$-by- $N$ numeric matrix.

## cmap - Color map

$c$-by-3 numeric matrix
Color map associated with indexed image $X$, specified as an $c$-by- 3 numeric matrix. There are $c$ colors in the color map, each represented by a red, green, and blue pixel value. Colormap values are rescaled into the range [0,1].

## refmat - Referencing matrix

## 3-by-2 numeric matrix | [ ]

Referencing matrix, returned as 3-by-2 numeric matrix that transforms raster row and column indices to or from geographic coordinates according to:
[lon lat] = [row col 1] * refmat
refmat defines a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. refmat must be unambiguously defined by the GeoTIFF file, otherwise it and the bounding box, bbox, are returned empty.

## Data Types: double

## bbox - Bounding box

2-by-2 numeric matrix | [ ]
Bounding box, returned as a 2-by-2 numeric matrix that specifies the minimum (row 1 ) and maximum (row 2) values for each dimension of the image data in the GeoTIFF file. bbox is returned empty if refmat is ambiguously defined by the GeoTIFF file.
Data Types: double

## Tips

- geotiffread imports pixel data using the TIFF-reading capabilities of the MATLAB function imread and likewise shares any limitations of imread. Consult the imread documentation for information on TIFF image support.


## Compatibility Considerations

## geotiffread is not recommended

Not recommended starting in R2020a
geotiffread is not recommended, except when reading a GeoTIFF file from a URL or when reading multiple images from the same file. In other situations, use readgeoraster instead. There are no plans to remove geotiffread.

Unlike geotiffread, which returns a referencing matrix in some cases, the readgeoraster function returns a raster reference object. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop functions.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize functions.

This table shows some typical usages of geotiffread and how to update your code to use readgeoraster instead. Unlike geotiffread, the readgeoraster function requires you to specify a file extension. For example, use $[Z, R]=$ readgeoraster('boston.tif').

Not Recommended	Recommended
[A,R] = geotiffread(filename);	[A,R] = readgeoraster(filename);
[X, cmap,R] = geotiffread(filename);	[X,R, cmap] = readgeoraster(filename);
[A, refmat, bbox] = geotiffread(filename);	```[A,R] = readgeoraster(filename); xlimits = R.XWorldLimits; ylimits = R.YWorldLimits; bbox = [xlimits' ylimits'];```

## See Also

geoshow| geotiffinfo|geotiffwrite|imread|mapshow|readgeoraster
Introduced before R2006a

## geotiffwrite

Write GeoTIFF file

## Syntax

geotiffwrite(filename, $A, R$ )
geotiffwrite(filename, $\mathrm{X}, \mathrm{cmap}, \mathrm{R}$ )
geotiffwrite( $\qquad$ , Name, Value)

## Description

geotiffwrite(filename, $A, R$ ) writes a georeferenced image or data grid, $A$, spatially referenced by R, into an output file, filename.
geotiffwrite(filename, $X$, cmap,$R$ ) writes the indexed image in $X$ and its associated colormap, cmap, to filename. X is spatially referenced by R .
geotiffwrite( $\qquad$ ,Name, Value) writes an image or data grid with one or more Name, Value pair arguments that control various characteristics of the output file.

## Examples

## Write Image from JPEG File to GeotIFF File

Read JPEG image from file.

```
basename = 'boston_ovr';
imagefile = [basename '.jpg'];
RGB = imread(imagefile);
```

Derive world file name from image file name, read the world file, and construct a spatial referencing object.

```
worldfile = getworldfilename(imagefile);
R = worldfileread(worldfile, 'geographic', size(RGB));
```

Write image data and referencing data to GeoTIFF file.

```
filename = [basename '.tif'];
geotiffwrite(filename, RGB, R)
```

Construct an empty map axes and display the map.
figure
usamap(RGB, R)
geoshow(filename)


## Convert Classic TIFF to Tiled BigTIFF

Convert a georeferenced classic TIFF file to a tiled BigTIFF file by extracting information from the classic TIFF file. First, import a classic TIFF image of Boston and a map cells reference object. Get metadata from the file using geotiffinfo.

```
infilename = 'boston.tif';
[A,R] = readgeoraster(infilename);
info = geotiffinfo(infilename);
```

Specify tags to include in the tiled BigTIFF file. To do this, extract the GeoKey directory tag from the metadata. Then, create tags specifying the length and width of the tiles.

```
geoTags = info.GeoTIFFTags.GeoKeyDirectoryTag;
tiffTags = struct('TileLength',1024,'TileWidth',1024);
```

Write the data to a new GeoTIFF file. Specify the file format as BigTIFF using the 'TiffType' namevalue pair. Include tags by specifying the 'GeoKeyDirectoryTag' and 'TiffTags ' name-value pairs.

```
outfilename = 'boston_bigtiff.tif';
geotiffwrite(outfilename,A,R,'TiffType','bigtiff', ...
 'GeoKeyDirectoryTag',geoTags, ...
 'TiffTags',tiffTags)
```

Verify you have written the BigTIFF file by reading the file and querying the tags.

```
biginfo = geotiffinfo(outfilename);
biginfo.GeoTIFFTags.GeoKeyDirectoryTag
ans = struct with fields:
 GTModelTypeGeoKey: 1
 GTRasterTypeGeoKey: 1
 ProjectedCSTypeGeoKey: 26986
 PCSCitationGeoKey: 'State Plane Zone 2001 NAD = 83'
 ProjLinearUnitsGeoKey: 9003
t = Tiff(outfilename);
getTag(t,'TileLength')
ans = 1024
getTag(t,'TileWidth')
ans = 1024
close(t)
```


## Write WMS Image to GeoTIFF File

Read data from WMS server.

```
nasaLayers = wmsfind('nasa','SearchField','serverurl');
layerName = 'bluemarbleng';
layer = refine(nasaLayers, layerName,'SearchField','layername', ...
 'MatchType','exact');
[A, R] = wmsread(layer(1));
```

Write data to GeoTIFF file.

```
filename = [layerName '.tif'];
```

geotiffwrite(filename, $A, R$ )

View data in file.
figure
worldmap world
geoshow(filename)


## Write Concord Orthophotos to Single GeotIFF File

Read the two adjacent orthophotos and combine them.
X_west $=$ imread('concord_ortho_w.tif');
X_east $=$ imread('concord_ortho_e.tif');
$X^{-}=$[X_west X_east];
Construct referencing objects for the orthophotos and for their combination.

```
R_west = worldfileread('concord_ortho_w.tfw', 'planar', size(X_west));
R_east = worldfileread('concord_ortho_e.tfw', 'planar', size(X_east));
R = R_west;
R.XLimWorld = [R_west.XLimWorld(1) R_east.XLimWorld(2)];
R.RasterSize = sīze(X);
```

Write the combined image to a GeoTIFF file. Use the code number, 26986, indicating the PCS_NAD83_Massachusetts Projected Coordinate System.

```
coordRefSysCode = 26986;
```

filename = 'concord_ortho.tif';
geotiffwrite(filename, X, R, 'CoordRefSysCode', coordRefSysCode);

Display the map.
figure
mapshow(filename)


## Write Subset of GeoTIFF File to New GeoTIFF File

Import a GeoTIFF image and map cells reference object for an area around Boston using readgeoraster.
[A,RA] = readgeoraster('boston.tif');
Crop the data to the limits specified by $x$ limits and ylimits using mapcrop.
xlimits = [764318 767678];
ylimits $=$ [2951122 2954482];
[ $\mathrm{B}, \mathrm{RB}$ ] $=$ mapcrop( $\mathrm{A}, \mathrm{RA}, x$ limits,ylimits) ;
Get information about the GeoTIFF image using geotiffinfo. Extract the GeoKey directory tag from the information.
info = geotiffinfo('boston.tif');
key $=$ info.GeoTIFFTags.GeoKeyDirectoryTag;
Write the cropped data and GeoKey directory tag to a file. Verify the cropped data has been written to a file by displaying it.

```
filename = 'boston_subimage.tif';
geotiffwrite(filename, B,RB,'GeoKeyDirectoryTag',key)
figure
mapshow(filename)
```



## Write Elevation Data to GeoTIFF File

Write elevation data for an area around South Boulder Peak in Colorado to a GeoTIFF file. First, import the elevation data and a geographic postings reference object.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');
```

Specify GeoKey directory tag information for the GeoTIFF file as a structure. Indicate the data is in a geographic coordinate system by specifying the GTModelTypeGeoKey field as 2 . Indicate that the reference object uses postings (rather than cells) by specifying the GTRasterTypeGeoKey field as 2. Indicate the data is referenced to a geographic coordinate reference system by specifying the GeographicTypeGeoKey field as 4326.
key.GTModelTypeGeoKey = 2;
key.GTRasterTypeGeoKey = 2;
key.GeographicTypeGeoKey = 4326;
Write the data and GeoKey directory tag to a file.

```
filename = 'southboulder.tif';
geotiffwrite(filename,Z,R,'GeoKeyDirectoryTag',key)
```

Verify the data has been written to a file by displaying it on a map.
usamap([39 40],[-106-105])
g = geoshow(filename,'DisplayType','mesh');
demcmap(g.CData)


The elevation data used in this example is courtesy of the US Geological Survey.

## Write TIFF File Containing RPC Metadata

Create a sample TIFF file with RPC metadata. To do this, create an array of zeros and an associated reference object.

```
A = zeros(180,360);
latlim = [-90 90];
lonlim = [-180 180];
RA = georefcells(latlim,lonlim,size(A));
```

Then, create an RPCCoefficientTag metadata object and set some fields with typical values. The RPCCoefficientTag object represents RPC metadata in a readable form.

```
rpctag = map.geotiff.RPCCoefficientTag;
```

rpctag.LineOffset = 1;

```
rpctag.Sample0ffset = 1;
rpctag.LineScale = 2;
rpctag.SampleScale = 2;
rpctag.GeodeticHeightScale = 500;
```

Write the image, the associated referencing object, and the RPCCoefficientTag object to a file.
geotiffwrite('myfile', A, RA, 'RPCCoefficientTag', rpctag)

## Write Raw RPC Coefficient Metadata to GeoTIFF File

This example shows how to write RPC coefficient metadata to a TIFF file. In a real workflow, you would create the RPC coefficient metadata according to the TIFF extension specification. This example does not show the specifics of how to create valid RPC metadata. To simulate raw RPC metadata, the example creates a sample TIFF file with RPC metadata and then uses imfinfo to read this RPC metadata in raw, unprocessed form from the file. The example then writes this raw RPC metadata to a file using the geotiffwrite function.

## Create Raw RPC Coefficient Metadata

To simulate raw RPC metadata, create a simple test file and write some RPC metadata to the file. For this test file, create a toy image and a referencing object associated with the image.

```
myimage = zeros(180,360);
latlim = [-90 90];
lonlim = [-180 180];
R = georefcells(latlim,lonlim,size(myimage));
```

Create an RPCCoefficientTag metadata object and set some of the fields. The toolbox uses the RPCCoefficientTag object to represent RPC metadata in human readable form.

```
rpctag = map.geotiff.RPCCoefficientTag;
rpctag.LineOffset = 1;
rpctag.Sample0ffset = 1;
rpctag.LineScale = 2;
rpctag.SampleScale = 2;
rpctag.GeodeticHeightScale = 500;
```

Write the image, the associated referencing object, and the RPCCoefficientTag object to a file.

```
geotiffwrite('myfile',myimage,R,'RPCCoefficientTag',rpctag)
```


## Read Raw RPC Coefficient Metadata

Read the RPC coefficient metadata from the test file using the imfinfo function. When it encounters unfamiliar metadata, imfinfo returns the data, unprocessed, in the UnknownTags field. Note that the UnknownTags field contains an array of 92 doubles. This is the raw RPC coefficient metadata, read from the file in unprocessed form.

```
info = imfinfo('myfile.tif');
info.UnknownTags
ans = struct with fields:
 ID: 50844
 Offset: 10676
```

```
Value: [-1 - 1 1 1 0 0 0 2 2 1 1 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```


## Write Raw RPC Metadata to a File

Write the raw RPC metadata to a file. First, extract the RPC coefficient metadata from the info structure.

```
value = info.UnknownTags.Value;
```

Then, construct an RPCCoefficientTag object, passing the raw RPC metadata (array of 92 doubles) as an argument.

```
rpcdata = map.geotiff.RPCCoefficientTag(value)
rpcdata =
 RPCCoefficientTag with properties:
 BiasErrorInMeters: -1
 RandomErrorInMeters: -1
 Line0ffset: 1
 Sample0ffset: 1
 GeodeticLatitudeOffset: 0
 GeodeticLongitudeOffset: 0
 GeodeticHeightOffset: 0
 LineScale: 2
 SampleScale: 2
 GeodeticLatitudeScale: 1
 GeodeticLongitudeScale: 1
 GeodeticHeightScale: 500
 LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```

Pass the RPCCoefficientTag object to the geotiffwrite function and write the RPC metadata to a file.

```
geotiffwrite('myfile2',myimage,R,'RPCCoefficientTag',rpcdata)
```

To verify that the data was written to the file, read the RPC metadata from the TIFF file using geotiffinfo. Compare the returned RPC metadata with the metadata written to the test file.

```
ginfo = geotiffinfo('myfile2');
ginfo.GeoTIFFTags.RPCCoefficientTag
ans =
 RPCCoefficientTag with properties:
 BiasErrorInMeters: -1
 RandomErrorInMeters: -1
 Line0ffset: 1
 SampleOffset: 1
 GeodeticLatitudeOffset: 0
 GeodeticLongitudeOffset: 0
 GeodeticHeightOffset: 0
 LineScale: 2
```

```
 SampleScale: 2
 GeodeticLatitudeScale: 1
 GeodeticLongitudeScale: 1
 GeodeticHeightScale: 500
 LineNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 LineDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00]
 SampleNumeratorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
SampleDenominatorCoefficients: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```


## Input Arguments

## filename - Name and location of output file

character vector | string scalar
Name and location of output file, specified as a string scalar or character vector. If your filename includes an extension, it must be '.tif ' or '. TIF '. If the input, $A$, is at least 160 -by- 160 in size, the output file is a tiled GeoTIFF file. Otherwise, geotiffwrite organizes the output file as rows-perstrip.
Data Types: char | string

## A - Georeferenced image or data grid

$M$-by- $N$ numeric matrix | $M$-by- $N$-by- $P$ numeric array
Georeferenced image or data grid, specified as one of the following:

- An $M$-by- $N$ numeric matrix representing a grayscale image or data grid
- An $M$-by- $N$-by- $P$ numeric array representing a color image, multispectral image, hyperspectral image, or data grid

The coordinates of A are geographic and in the 'WGS 84 ' coordinate system, unless you specify 'GeoKeyDirectoryTag' or 'CoordRefSysCode' and indicate a different coordinate system.

```
Data Types: double| single | uint8| uint16|uint32 | uint64 | int8| int16| int32|int64 | logical
```


## R - Spatial referencing information

geographic raster reference object | map raster reference object | referencing matrix | referencing vector

Spatial referencing information, specified as a geographic raster reference object of type GeographicCellsReference or GeographicPostingsReference, a map raster reference object of type MapCellsReference or MapPostingsReference, a referencing matrix, or a referencing vector.

If you are working with image coordinates in a projected coordinate system and $R$ is a map raster reference object or a referencing matrix, specify 'GeoKeyDirectoryTag' or 'CoordRefSysCode' accordingly.

The geotiffwrite function does not use information contained in the GeographicCRS property of geographic raster reference objects or the ProjectedCRS property of map raster reference objects.

## X - Indexed image

$M$-by- $N$ numeric matrix

Indexed image data, specified as an $M$-by- $N$ numeric matrix.
Data Types: uint8 | uint16
cmap - Color map
c-by-3 numeric matrix
Color map associated with indexed image $X$, specified as an $c$-by- 3 numeric matrix. There are $c$ colors in the color map, each represented by a red, green, and blue pixel value.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CoordRefSysCode',26986

## CoordRefSysCode - Coordinate reference system code

4326 (default) | positive integer | string scalar | character vector
Coordinate reference system code for the coordinates of the data, specified as the comma-separated pair consisting of 'CoordRefSysCode' and a positive integer, string scalar, or character vector. You can specify coordinates in either a geographic or a projected coordinate system. If you specify the coordinate system with a string scalar or character vector, include the 'EPSG: ' prefix. To find code numbers, see the EPSG registry or the GeoTIFF specification in the "Tips" on page 1-689 section.

If you specify both the GeoKeyDirectoryTag and the CoordRefSysCode, the coordinate system code in CoordRefSysCode takes precedence over the coordinate system key found in the GeoKeyDirectoryTag. If one value specifies a geographic coordinate system and the other value specifies a projected coordinate system, you receive an error.

If you do not specify a value for this argument, the default value is 4326 , indicating that the coordinates are geographic and in the 'WGS 84 ' geographic coordinate system.
Example: 26986
Example: 'EPSG:26986'

## GeoKeyDirectoryTag - GeoKey directory tag

structure
GeoKey directory tag, specified as the comma-separated pair consisting of 'GeoKeyDirectoryTag' and a structure that specifies the GeoTIFF coordinate reference system and meta-information. The structure contains field names that match the GeoKey names in the GeoTIFF specification. The field names are case insensitive. The structure can be obtained from the GeoTIFF information structure, returned by geotiffinfo, in the field, GeoTIFFTags. GeoKeyDirectoryTag.
if you specify the GTRasterTypeGeoKey field, geotiffwrite ignores it. The value for this GeoKey is derived from R. If you set certain fields of the GeoKeyDirectoryTag to inconsistent settings, you receive an error message. For instance, if $R$ is a geographic raster reference object or a refvec, and you specify a ProjectedCSTypeGeoKey field or you set the GTModelTypeGeoKey field to 1 (projected coordinate system), you receive an error. Likewise, if $R$ is a map raster reference object and you do not specify a ProjectedCSTypeGeoKey field or a CoordRefSysCode, or the GTModelTypeGeoKey field is set to 2 (geographic coordinate system), you receive an error message.

## RPCCoefficientTag - Rational Polynomial Coefficients (RPC) tag <br> RPCCoefficientTag object

Values for the optional RPC TIFF tag, specified as the comma-separated pair consisting of 'RPCCoefficientTag' and an RPCCoefficientTag object.

TiffTags - TIFF tags
structure
Values for the TIFF tags in the output file, specified as the comma-separated pair consisting of 'TiffTags ' and a structure. The field names of the structure match the TIFF tag names supported by the Tiff class. The field names are case insensitive.

You cannot set most TIFF tags using the structure input.

## TiffTags Exceptions




The function sets several TIFF tags. The field names corresponding to the TIFF tag, their corresponding field values set by the function, their permissible values (if different from the Tiff class), and their data type are noted in the following table.

## Automatic TIFF Tags

Field Name	Description
Compression	Type of image compression. The default is 'PackBits '. Other permissible values are 'LZW', 'Deflate', and 'none'.   Numeric values, Tiff.Compression.LZW,   Tiff.Compression.PackBits,   Tiff.Compression.Deflate, or   Tiff. Compression. None can also be used.
PhotometricInterpretation	Type of photometric interpretation. The field name can be shortened to Photometric. The value is set based on the input image characteristic, using the following algorithm: If A is [ $M-$ by-N-by-3] and is class type uint8 or uint16, then the value is 'RGB'. For all other sizes and data types, the value is 'MinIsBlack'. If the X, CMAP syntax is supplied, the value is 'Palette'. If the value is set to 'RGB' and $A$ is not [M-by-N-by-3], an error is issued. Permissible values are 'MinIsBlack', 'RGB', 'Palette', 'Separated'. The numeric values, Tiff.Photometric.MinIsBlack, Tiff. Photometric. RGB, Tiff. Photometric.Palette, Tiff. Photometric.Separated can also be used.
Software	Software maker of the file. The value is set to the value 'MATLAB, Mapping Toolbox, The MathWorks, Inc.'. To remove the value, set the tag to the empty string or character vector (' ' ).
RowsPerStrip	A scalar positive integer-valued number specifying the desired rows per strip in the output file. If the size of $A$ is less than [160-by-160], geotiffwrite sets RowsPerStrip to 1. If you specify RowsPerStrip and TileWidth, with or without TileLength, geotiffwrite issues an error.
TileWidth	A scalar positive integer-valued number and a multiple of 16 specifying the width of the tiles. TileWidth is set if the size of $A$ is greater than [160-by-160]. If so, the value is such that a maximum of [10-by-10] tiles are created. If you specify both RowsPerStrip and TileWidth, geotiffwrite issues an error.
TileLength	A scalar positive integer-valued number and a multiple of 16 specifying the length of the tiles. TileLength is set if the size of A is greater than [ $160-$ by -160]. If so, the value is such that a maximum of [10-by-10] tiles are created. If you specify both RowsPerStrip and TileLength, geotiffwrite issues an error.

## TiffType - Type of TIFF file

## 'classictiff' (default) |'bigtiff'

Type of TIFF file, specified as the comma-separated pair consisting of 'TiffType' and either 'classictiff' or 'bigtiff'. The 'classictiff' value creates a Classic TIFF file. The 'bigtiff' value creates a BigTIFF file. In BigTIFF format, files can be larger than 4 GB.

While using the 'bigtiff' format enables you to create files larger than 4 GB , the data you want to write must fit in memory.

## Tips

- If you are working with image coordinates in a projected coordinate system and $R$ is a map raster reference object or a referencing matrix, set the GeoKeyDirectoryTag or CoordRefSysCode argument, accordingly.
- Check the GeoTIFF specification for values of the following parameters:
- 'CoordRefSysCode ' value for geographic coordinate systems
- 'CoordRefSysCode ' value for projected coordinate systems
- GeoKey field names for the 'GeoKeyDirectoryTag '


## See Also

geotiffinfo|readgeoraster|imread|imwrite|RPCCoefficientTag|Tiff
Introduced before R2006a

## getCapabilities

Get capabilities document from server

## Syntax

capabilities = getCapabilities(server)

## Description

capabilities = getCapabilities(server) retrieves the capabilities document from the Web map service server, server, and updates the RequestURL property of the server.

## Examples

## Get Capabilities Document From Server

Search the WMS Database for layers from the NASA SVS Image Server. Create a WebMapServer object from one of the layers. Get the capabilities document from the server.

```
nasa = wmsfind('NASA SVS Image','SearchField','servertitle');
serverURL = nasa(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = getCapabilities(server);
```


## Input Arguments

## server - Web map server

WebMapServer object
Web map server, specified as a WebMapServer object.

## Output Arguments

## capabilities - Capabilities document

WMSCapabilities object
Capabilities document, returned as a WMSCapabilities object.

## Tips

The getCapabilities method accesses the Internet to retrieve the document. Periodically, the WMS server is unavailable. Retrieving the document can take several minutes.

## See Also

disp | WebMapServer|WMSCapabilities

Introduced before R2006a

## getm

Map object properties

## Syntax

```
mat = getm(h)
mat = getm(h,MapPropertyName)
getm('MapProjection')
getm('axes')
getm('units')
```


## Description

mat $=\operatorname{getm}(\mathrm{h})$ returns the map structure of the map axes specified by its handle. If the handle of a child of the map axes is specified, only its properties are returned.
mat $=$ getm( h, MapPropertyName) returns the specified property value.
getm('MapProjection') lists all available projections.
getm('axes') lists the map axes properties by property name.
getm('units') lists the available units.

## Examples

Create a default map axes and query a property value:

```
axesm('mercator','AngleUnits','degrees')
getm(gca,'MapParallels')
ans =
 0
```


## See Also

axesm | setm | Map Axes Properties

Introduced before R2006a

## getMap

Get raster map from server

## Syntax

A = getMap(server,mapRequestURL)

## Description

A = getMap(server, mapRequestURL) dynamically renders and retrieves a color or grayscale, geographically referenced, raster map from the Web map services server, server, and stores it in A. Parameters in the URL, mapRequestURL, define the map. The getMap function also updates the RequestURL property of the server with mapRequestURL.

Most of the time, you can read a WMS map using wms read function instead of the getMap function. Use the getMap function when:

- Working with non-EPSG:4326 reference systems
- Creating an animation of a specific geographic area over time
- Retrieving multiple layers from a WMS server


## Examples

## Read Map From WMS Server

Read a map from the NASA Earth Observations WMS server.
Search the WMS Database for the Blue Marble global mosaic layer from the NASA Earth Observations WMS server.

```
neowms = wmsfind('neo.*gov','SearchField','serverurl');
layer = refine(neowms,'bluemarbleng','MatchType','exact');
```

Read the map from the server.

```
server = WebMapServer(layer.ServerURL);
mapRequest = WMSMapRequest(layer,server);
A = getMap(server,mapRequest.RequestURL);
R = mapRequest.RasterReference;
```

Display the map.

```
figure
worldmap world
geoshow(A,R)
setm(gca,'MLabelParallel',-90,'MLabelLocation',90)
title(layer.LayerTitle)
```



## Input Arguments

## server - Web map server

WebMapServer object
Web map server, specified as a WebMapServer object.
mapRequestURL - URL
character vector
URL, specified as a character vector. Parameters in the URL define the map.
You can get a URL from:

- The output of wms read
- The RequestURL property of a WMSMapRequest object
- An Internet search


## Output Arguments

## A - Rendered map

color or grayscale image
Rendered map, returned as a color or grayscale image.

## Tips

getMap accesses the Internet to retrieve the map. Periodically, the WMS server is unavailable. Retrieving the map can take several minutes.

## See Also

WMSMapRequest | WebMapServer

## Introduced before R2006a

## getseeds

(To be removed) Interactively assign seeds for data grid encoding

Note The getseeds function will be removed in a future release.

## Syntax

[row, col, val] = getseeds(map,R,nseeds)
[row, col, val] = getseeds(map,R,nseeds,seedval)
mat = getseeds(...)

## Description

[row, col, val] = getseeds(map,R,nseeds) allows user to identify geographical objects while customizing a raster map. It prompts the user for mouse click positions of objects and assigns them a code value. The user is prompted for the value to seed at each location. The outputs are the row and column of the seed location and the value assigned at that location. $R$ is either a 1 -by- 3 vector containing elements:
[cells/degree northern_latitude_limit western_longitude_limit]
or a 3-by-2 referencing matrix that transforms raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.
[row, col, val] = getseeds(map, R, nseeds, seedval) assigns the value seedval to each location supplied. If seedval is a scalar then the same value is assigned at each location. Otherwise, if seedval is a vector it must be length (nseeds) and each entry is assigned to the corresponding location. getseeds operates on the current axes (gca).
mat $=$ getseeds(...) returns a single output matrix where mat $=[$ row col val].

## Examples

Load elevation raster data and a geographic cells reference object. Create a map axes object. Then, call getseeds and interactively select three points.

```
load topo60c
axesm('gortho','grid','on')
seedmat = getseeds(topo60c,topo60cR,3);
```

When you have selected three points, you are prompted for their values. The regular data grid need not be displayed to execute getseeds on it.

## See Also

encodem

Introduced before R2006a

## getworldfilename

Derive world file name from image file name

## Syntax

worldfilename = getworldfilename(imagefilename)

## Description

worldfilename = getworldfilename(imagefilename) returns the name of the corresponding world file derived from the name of an image file.

The world file and the image file have the same base name. If imagefilename follows the " .3 " convention, then you create the world file extension by removing the middle letter and appending the letter ' w '.

If imagefilename has an extension that does not follow the ". 3 " convention, then a ' $w$ ' is appended to the full image name to construct the world file name.

If imagefilename has no extension, then '. wld' is appended to construct a world file name.

## Examples

Given the following image file names, worldfilename would return these world file names:

Image File Name	World File Name
myimage.tif	myimage.tfw
myimage.jpeg	myimage.jpegw
myimage	myimage.wld

## See Also

mapshow|worldfileread|worldfilewrite
Introduced before R2006a

## globedem

(To be removed) Read Global Land One-km Base Elevation (GLOBE) data

Note globedem will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z,refvec] = globedem(filename,scalefactor)
[Z,refvec] = globedem(filename,scalefactor,latlim,lonlim)
[Z,refvec] = globedem(foldername,scalefactor,latlim,lonlim)

## Description

[Z,refvec] = globedem(filename, scalefactor) reads the GLOBE DEM files and returns the result as a regular data grid. The filename is given as a string scalar or character vector that does not include an extension. globedem first reads the Esri header file found in the subfolder '/esri/ hdr/' and then the binary data file name. If the files are not found on the MATLAB path, they can be selected interactively. scalefactor is an integer that when equal to 1 gives the data at its full resolution. When scalefactor is an integer $n$ larger than 1, every nth point is returned. The map data is returned as an array of elevations and associated three-element referencing vector. Elevations are given in meters above mean sea level, using WGS 84 as a horizontal datum.
[Z,refvec] = globedem(filename,scalefactor,latlim,lonlim) allows a subset of the map data to be read. The limits of the desired data are specified as vectors of latitude and longitude in degrees. The elements of latlim and lonlim must be in ascending order.
[Z, refvec] = globedem(foldername,scalefactor,latlim,lonlim) reads and concatenates data from multiple files within a GLOBE folder tree. The foldername input is a string scalar or character vector with the name of the folder that contains both the uncompressed data files and the Esri header files.

## Background

GLOBE, the Global Land One-km Base Elevation data, was compiled by the National Geophysical Data Center from more than 10 different sources of gridded elevation data. GLOBE can be considered a higher resolution successor to TerrainBase. The data set consists of 16 tiles, each covering 50 by 90 degrees. Tiles require as much as 60 MB of storage. Uncompressed tiles take between 100 and 130 MB.

## Examples

Determine the file that contains the area around Cape Cod. (This example assumes you have already downloaded some GLOBE data tiles.)

```
latlim = [41 42.5]; lonlim = [-73 -69.9];
globedems(latlim,lonlim)
```

```
ans =
 'f10g'
```

Extract every 20th point from the tile covering the northeastern United States and eastern Canada. If you specify an empty file name (' ' ), globedem presents a file browser that you use to first select the header file and then select the data file interactively.

```
[Z,refvec] = globedem('',20);
size(Z)
ans =
 300 540
```

Extract a subset of the data for Massachusetts at the full resolution.

```
latlim = [41 42.5]; lonlim = [-73 -69.9];
[Z,refvec] = globedem('f10g',1,latlim,lonlim);
size(Z)
ans =
 1 8 1 3 7 3
```

Replace the NaNs in the ocean with -1 to color them blue.

```
Z(isnan(Z)) = -1;
```

Extract some data for southern Louisiana in an area that straddles two tiles. Provide the name of the folder containing the data files, and let globedem determine which files are required, read from the files, and concatenate the data into a single regular data grid.

```
latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)
ans =
 'e10g'
 'f10g'
[Z,refvec] =
globedem('d:\externalData\globe\elev',1,latlim,lonlim);
size(Z)
ans =
 325.00 315.00
```


## Tips

The $g$ lobedem function reads data from GLOBE Version 1.0. The data is for elevations only. Elevations are given in meters above mean sea level using WGS 84 as a horizontal datum. Areas with no data, such as the oceans, are coded with NaNs.

The data set and documentation are available over the Internet.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

## Compatibility Considerations

## globedem will be removed

Warns starting in R2021b
Raster reading functions that return referencing vectors will be removed, including globedem. Instead, use readgeoraster, which returns a geographic raster reference object. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and GeographicPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors as input also accept reference objects.

This table shows some typical usages of globedem and how to update your code to use readgeoraster instead. Unlike globedem, which requires the . hdr header file to be in the /esri/ hdr/subfolder, the readgeoraster function requires the data file and header file to be in the same folder. The readgeoraster function also requires you to specify a file extension.

Will Be Removed	Recommended
[Z,refvec] = globedem(filename,samplefactor	```[Z,R] = readgeoraster(filename,'CoordinateS [Z,R] = georesize(Z,R,1/samplefactor);```
[Z,refvec] = globedem(filename, samplefactor	$\begin{aligned} & {[\text { Za,R]im, Zeadg̈mbraster(filename, 'CoordinateS }} \\ & {[Z, R]=\text { geocrop(Z,R,latlim,lonlim); }} \\ & [Z, R]=\text { georesize(Z,R, } 1 / \text { scalefactor }) ; \\ & \hline \end{aligned}$

The readgeoraster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use $[Z, R]=$ readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## References

See Web site for the National Oceanic and Atmospheric Administration, National Geophysical Data Center

## See Also

demdataui| readgeoraster|georasterinfo

Introduced before R2006a

## globedems

GLOBE data file names for latitude-longitude quadrangle

## Syntax

tileNames = globedems(latlim,lonlim)
tileNames = globedems(lat,lon)

## Description

tileNames = globedems(latlim, lonlim) returns a cell array of the tile names covering the geographic region for GLOBEDEM digital elevation maps. The region is specified by two-element vectors of latitude and longitude limits in units of degrees.
tileNames $=$ globedems(lat,lon) returns a cell array of the tile names covering the geographic region for GLOBEDEM digital elevation maps. The region is specified by scalar latitude and longitude points, in units of degrees.

## Background

GLOBE, the Global Land One-km Base Elevation data, was compiled by the National Geophysical Data Center from more than 10 different sources of gridded elevation data. The data set consists of 16 tiles, each covering 50 by 90 degrees. Determining which tiles are needed to cover a particular region generally requires consulting an index map. This function takes the place of such a reference by returning the file names for a given geographic region.

## Examples

Which tiles are needed for southern Louisiana?

```
latlim =[28.61 31.31];
lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)
ans =
 'e10g'
 'f10g'
```


## Tips

The globedems function reads data from the format GLOBE Version 1.0.

## See Also

readgeoraster

## Introduced before R2006a

## gpxread

Read GPX file

## Syntax

P = gpxread(filename)
P = gpxread(URL)
S = gpxread( __, 'Index', V)
$\ldots \quad=\operatorname{gpxread}(\ldots \quad$, Name, Value)

## Description

P = gpxread(filename) reads point data from the GPS Exchange Format (GPX) file, filename, and returns an $n$-by- 1 geopoint vector, P , where $n$ is the number of waypoints, or points that define a route or track.
gpxread searches the file first for waypoints, then routes, and then tracks, and it returns the first type of data it finds. The Metadata field of P identifies the feature type ('waypoint', 'track', or 'route') and any additional metadata associated with waypoint, route, or track. If the file contains multiple tracks or routes, P contains the points that define the first track or route in the file. If gpxread cannot find any features in the file, it returns an empty geopoint vector.
$P=$ gpxread (URL) reads the GPX data from a URL. The URL must include the protocol type (for example, http://).
$\mathrm{S}=\mathrm{gpxread}(\ldots, \quad$, Index', V$)$ returns data from the GPX file in a geoshape vector, rather than a geopoint vector, only if the file contains track or route data and you specify the value of 'Index' as a vector, V . Use this syntax when you want to work with the data as a line, rather than as a collection of points.
$=$ gpxread ( $\qquad$ ,Name, Value) reads data from a GPX file with additional options, specified by one or more Name, Value pair arguments, that control various characteristics of the import. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' ' ) and is case insensitive. You can specify several name-value pair arguments in any order.

## Examples

## Read Waypoints and Display Them Over Image

Read and display waypoints from the boston_placenames.gpx file and overlay the points onto the boston.tif image.

First, import the waypoints and GeoTIFF file.
$p=$ gpxread('boston_placenames.gpx');
$[A, R]=$ readgeoraster('boston.tif');

Get the projection structure of the GeoTIFF image. Convert the length unit of the $X$ and $Y$ limits to meters for use with the projection structure.

```
proj = geotiffinfo('boston.tif');
mstruct = geotiff2mstruct(proj);
R.XWorldLimits = R.XWorldLimits * proj.UOMLengthInMeters;
R.YWorldLimits = R.YWorldLimits * proj.UOMLengthInMeters;
```

Display the map.

```
axesm(mstruct)
```

mapshow(A,R)


Display the names and positions of each point.

```
for k=1:length(p)
 textm(p(k).Latitude, p(k).Longitude, p(k).Name, ...
 'Color','k','BackgroundColor',[0.9 0.9 0],...
 'Interpreter','none');
end
geoshow(p)
xlim(R.XWorldLimits)
ylim(R.YWorldLimits)
```



## Read and Display a Route

Read and display a route from Boston Logan International Airport to MathWorks in Natick, MA.
Read the route information from the GPX file.
route = gpxread('sample_route.gpx');
Compute latlim and lonlim with a 0.05 buffer.
[latlim, lonlim] = geoquadline(route.Latitude, route.Longitude);
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05);
Display the route.

```
fig = figure;
pos = fig.Position;
fig.Position = [300 300 1.25*pos(3) 1.25*pos(4)];
ax = usamap(latlim, lonlim);
setm(ax, 'MLabelParallel', 43.5)
geoshow(route.Latitude, route.Longitude)
```



Extract the elements of route that include descriptions of turns, mark and color code each turn on the map, and construct a legend that displays the descriptions. Reverse the order, so that the legend displays the first turn at the top and the last at the bottom.

```
turns = route(~cellfun(@isempty, route.Description));
turns = turns(end:-1:1);
n = length(turns);
colors = cool(n);
for k=1:n
 geoshow(turns(k).Latitude, turns(k).Longitude, ...
 'DisplayType','point','MarkerEdgeColor',colors(k,:),...
 'Tag','turn','DisplayName',turns(k).Description)
end
legend(findobj(ax,'Tag','turn'),'Location','South0utside')
```



```
+ Head southeast
+ Keep left at the fork, follow signs for I-90 W/l-93 S/Williams Tunnel/Mass Pike and merge onto I-90 W
 Partial toll road
 + Take exit }13\mathrm{ to merge onto MA-30 E/Cochituate Rd toward Natick
 Partial toll road
+ Turn right onto Speen St
+ Merge onto MA-9 E/Worcester St via the ramp on the left to Boston
+ Slight right onto Apple Hill Dr
+ Turn left toward Apple Hill Dr
+ Take the 1st right onto Apple Hill Dr
 Destination will be on the right
+ The MathWorks, Inc., Natick, MA.
```


## Read and Display Multiple Track Logs on Web Map

Read track log from a GPX file and display overlaid on a web map.
Read the track logs from a GPX file. gpxread returns the data in a geoshape object.

```
tracks = gpxread('sample_tracks','Index', 1:2);
```

Display the track logs on a web map with a different color for each track log.

```
webmap('openstreetmap')
colors = {'cyan', 'red'};
wmline(tracks, 'Color', colors)
```



Zoom the web map to view the first track near the MathWorks campus in Natick.
[latlim, lonlim] = geoquadline(tracks(1).Latitude,tracks(1).Longitude); wmlimits(latlim,lonlim)


## Read and Display Waypoints and Track Log on Web Map

Read waypoints and track log from the sample_mixed.gpx file.

```
wpt = gpxread('sample_mixed');
trk = gpxread('sample_mixed','FeatureType','track');
```

Display the waypoints and the track $\log$ on a web map.
webmap('worldimagery')
wmline(trk,'OverlayName','Track Logs');


Add web markers to mark the positions of each way point.

```
wmmarker(wpt,'FeatureName',wpt.Name,'OverlayName','Waypoints')
```



## Display Elevation and Time-Area Maps

This example shows how to display elevation and time area maps and calculate distance using track logs.

Read the track log from the sample_mixed.gpx file.
trk = gpxread('sample_mixed.gpx','FeatureType','track');
Simplify the format of the time value strings by removing the fractional seconds and time zone offset. Convert the strings to a datetime array.

```
timeStr = strrep(trk.Time,'.000Z','');
```

t = datetime(timeStr);

Display an area plot of the time and elevation values.

```
figure
area(t,trk.Elevation)
xtickformat('HH:mm:ss')
xlabel('time (hours:minutes:seconds)')
ylabel('elevation (meters)')
title('Elevation Area Plot');
```

Elevation Area Plot


Calculate and display ground track distance. Convert distance in meters to distance in U.S. survey miles.

```
e = wgs84Ellipsoid;
lat = trk.Latitude;
lon = trk.Longitude;
d = distance(lat(1:end-1), lon(1:end-1), lat(2:end), lon(2:end), e);
d = d * unitsratio('sm', 'meter');
```

Display the cumulative ground track distance and elapsed time.

```
elapsedTime = t - t(1);
figure
line(elapsedTime(2:end),cumsum(d))
ylabel('cumulative ground track distance (statute mile)')
xlabel('elapsed time (hours:minutes:seconds)')
title({'Cumulative Ground Track Distance in Miles', ...
 ['Total Distance in Miles: ' num2str(sum(d))]});
```

Cumulative Ground Track Distance in Miles
Total Distance in Miles: 46.0637


## Input Arguments

## filename - Name of GPX file to open

character vector | string scalar
Name of GPX file to open, specified as a string scalar or character vector. If the file is not in the current folder or in a folder on the MATLAB path, you must specify the folder path. If the file name includes the extension ' .gpx' (either uppercase or lowercase), you can omit the extension from filename.

Example: 'boston_placenames'
Data Types: char | string

## URL - Internet location containing GPX data URL

Internet location containing GPX data, specified as a URL. The URL must include protocol type (for example, https://).
Data Types: char | string

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FeatureType','track'

## FeatureType - Type of feature to read from file

'auto' (default)|'track'|'route'| 'waypoint'
Type of feature to read from file, specified as one of the following: 'track', 'route', 'waypoint ', or 'auto '. If gpxread cannot find the specified feature in the file, it returns an empty geopoint vector.

Example: 'FeatureType', 'waypoint'
Data Types: char|string

## Index - Index of waypoint, track, or route data in file

scalar or vector of positive integers
Index of waypoint, track, or route data in file, specified as a scalar or vector of positive integers.

- If the value is a scalar, gpxread returns the specified waypoint, route, or track as a geopoint vector. If the scalar value is greater than the total number of elements found in the file, gpxread returns an empty geopoint vector.
- If the value is a vector, and the file contains waypoints, gpxread returns those waypoints specified by the vector. If the file contains routes or tracks (and does not contain waypoints), gpxread returns the specified routes or track logs in a geoshape vector. gpxread sets the Geometry field of the geoshape vector to 'line'.
Example: 'Index', [1:2] would read up to two routes or tracks, if the file contained routes or tracks, in a geoshape vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16| uint32 | uint64


## Output Arguments

## P - Waypoint, track, or route data <br> $n$-by-1 geopoint vector

Waypoint, track, or route data, returned as an $n$-by- 1 geopoint vector, where $n$ is the number of points.

For a track log or route with multiple segments, gpxread concatenates the coordinates of the segments with NaN separators. NaN denotes numeric elements not found in the file. The empty character vector (' ' ) is used to denote text elements not found in the file.

## S - Track or route data

n-by-1 geoshape vector
Track or route data, returned as an $n$-by- 1 geopoint vector

## More About

## waypoint

A point of interest, or named feature on a map.

## track

An ordered list of waypoints that describe a path.

## route

An ordered list of waypoints representing a series of turn points leading to a destination.

## Tips

- Excluding extensions, GPX version 1.1 is fully supported. If any other version is detected, a warning is issued. However, in most cases, version 1.0 GPX files can be read successfully unless they contain certain metadata tags. For more information, see the GPX 1.1 Schema Documentation.

See Also<br>geopoint | geoshape \| readgeotable \| shaperead<br>Introduced in R2012a

## gradientm

Gradient, slope, and aspect of data grid

## Syntax

```
[aspect,slope,gradN,gradE] = gradientm(F,R)
[aspect,slope,gradN,gradE] = gradientm(F,R,spheroid)
[aspect,slope,gradN,gradE] = gradientm(lat,lon,F)
[aspect,slope,gradN,gradE] = gradientm(lat,lon,F,spheroid)
[aspect,slope,gradN,gradE] = gradientm(lat,lon,F,spheroid,angleUnit)
```


## Description

## Regular Data Grids

[aspect,slope,gradN,gradE] = gradientm(F,R) returns the aspect angle, slope angle, and north and east components of the gradient for a regular data grid $F$ with respect to a geographic reference R. By default, gradientm locates the latitude and longitude coordinates referenced by R using the spheroid contained in the Spheroid property of the geocrs object in the GeographicCRS property of $R$. If the GeographicCRS property of $R$ is empty, then geopeaks uses GRS80.
[aspect,slope,gradN, gradE] = gradientm(F,R,spheroid) uses the specified reference spheroid instead of the spheroid contained in the Spheroid property of the geocrs object in the GeographicCRS property of R or the spheroid GRS80.

## Geolocated Data Grids

[aspect, slope, gradN, gradE] = gradientm(lat,lon,F) returns the same values for a geolocated data grid F with respect to the latitude-longitude mesh defined by lat and lon. By default, latitude and longitude are in degrees. The default reference spheroid is GRS80.
[aspect,slope,gradN, gradE] = gradientm(lat,lon,F,spheroid) uses the specified reference spheroid instead of GRS80.
[aspect,slope,gradN, gradE] = gradientm(lat,lon,F,spheroid,angleUnit) specifies the units for latitude and longitude as 'degrees' (the default) or 'radians'.

## Examples

## Calculate and Display Gradient, Slope, and Aspect of Elevation Data

Generate sample elevation data for the region around a mountain summit using a geographic postings reference object and the geopeaks function. To do this, first create a reference object for the region by specifying the latitude and longitude limits and the size of the elevation data grid. Next, generate elevation data for the region using geopeaks.

```
latlim = [10 45];
lonlim = [60 100];
size = [100 100];
```

```
R = georefpostings(latlim,lonlim,size);
```

$F=$ geopeaks(R);

Compute the aspect angles, slope angles, and gradient components of the data.

```
[aspect,slope,gradN,gradE] = gradientm(F,R);
```

Visualize the results by plotting the data. First, plot the elevation data using an equidistant cylindrical projection. To do this, create a set of map axes and specify the projection using axesm. Plot the data as a surface using geoshow, and adjust the aspect ratio of the axes using daspect. Display a 3-D view of the axes using view.

```
figure
axesm('eqdcylin');
geoshow(F,R,'DisplayType','surface')
daspect([1 1 5])
title('Elevation Data')
colorbar
view(3)
```

Elevation Data


Then, plot the gradient components using the same projection. Note that both the north and east component values are zero at the summit.

```
figure
axesm('eqdcylin')
geoshow(gradN,R,'DisplayType','surface')
title('North Components of Gradient')
colorbar
```

North Components of Gradient

figure
axesm('eqdcylin')
geoshow(gradE,R,'DisplayType','surface')
title('East Components of Gradient')
colorbar

East Components of Gradient


Plot the slope angles. Note that the value of the slope angle is zero at the summit.
figure
axesm('eqdcylin')
geoshow(slope, R,'DisplayType','surface')
title('Slope Angles')
colorbar

Slope Angles


Plot the aspect angles. An aspect angle describes the direction the mountain slope faces as an azimuth measured clockwise from north.

```
figure
axesm('eqdcylin')
geoshow(aspect,R,'DisplayType','surface')
title('Aspect Angles')
colorbar
```

Aspect Angles


## Input Arguments

## F - Data grid

numeric matrix
Data grid, specified as a numeric matrix with at least two rows and two columns. The data grid may contain NaN values. F is either a regular data grid associated with a geographic raster reference object, or a georeferenced data grid with respect to a latitude-longitude mesh.

If $F$ is a regular data grid and $R$ is a reference object, then size ( $F$ ) must be the same as R. RasterSize. If $F$ is a geolocated data grid, then size(F) must be the same as size(lat) and size(lon).

Data Types: single | double

## R-Geographic reference

GeographicCellsReference object | GeographicPostingsReference object | 3-by-2 matrix | 1-by-3 vector

Geographic reference that contains geospatial referencing information for F, specified as one of these values:

- GeographicCellsReference or GeographicPostingsReference object, where R.RasterSize is the same as size(F).
- 3-by-2 numeric matrix that associates the row and column indices of a data grid with geographic coordinates, such that [lon lat] = [row col 1] * R. The matrix must define a nonrotational and nonskewed relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.
- 1-by-3 numeric vector with elements [s nlat wlon], where $s$ is the number of data grid samples per degree, nlat is the northernmost latitude of the data grid in degrees, and wlon is the westernmost longitude in degrees.

For more information about referencing vectors and matrices, see "Georeferenced Raster Data".

## spheroid - Reference spheroid

'GRS80' (default) | referenceEllipsoid object | oblateSpheroid object | referenceSphere object | vector

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, referenceSphere object, or vector of the form [semimajorAxis eccentricity].

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid(wgs84Ellipsoid);

## lat - Latitudes

numeric matrix
Latitudes, specified as a numeric matrix with at least two rows and two columns. By default, specify latitudes in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
lat must be the same size as lon and $F$.
Data Types: single | double

## lon - Longitudes

numeric matrix
Longitudes, specified as a numeric matrix with at least two rows and two columns. By default, specify longitudes in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
lon must be the same size as lat and F.
Data Types: single | double
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

## Output Arguments

## aspect - Aspect angles

matrix
Aspect angles, returned as a matrix of the same size as $F$. An aspect angle is the direction in which $F$ decreases most rapidly, expressed as an azimuth measured clockwise from north.

By default, aspect angles are in degrees. To return values in radians, specify lat and lon in radians and angleUnit as 'radians'.

If both components of the gradient are zero, then the aspect angle is returned as NaN .
Data Types: double

## slope - Slope angles

matrix
Slope angles, returned as a matrix of the same size as F. For the slope angles to have physical meaning, the data grid must specify elevation, and its distance unit must match the length unit of the reference spheroid. Otherwise, a slope angle is the arctangent of the magnitude of the gradient.

By default, slope angles are in degrees. To return values in radians, specify lat and lon in radians and angleUnit as 'radians'.

Data Types: double
gradN - North components of gradient
matrix
North components of the gradient, returned as a matrix of the same size as F . The north component of a gradient is the change in $R$ per unit of distance in the north direction, where the distance unit matches the length unit of the reference spheroid.
Data Types: double

## gradE - East components of gradient

matrix
East components of the gradient, returned as a matrix of the same size as $F$. The east component of a gradient is the change in $R$ per unit of distance in the east direction, where the distance unit matches the length unit of the reference spheroid.
Data Types: double

## See Also

## Functions

gradient | geoshow | axesm

## Objects

GeographicPostingsReference | GeographicCellsReference
Topics
"Geolocated Data Grids"
Introduced before R2006a

## grepfields

(Removed) Identify matching fields in fixed record length files

Note The grepfields function has been removed. Use the textscan function instead.

## Syntax

grepfields(filename, searchstring)
grepfields(filename, searchstring, casesens)
grepfields(filename, searchstring, casesens, startcol)
grepfields(filename, searchstring, casesens, startfield,fields)
grepfields(filename, searchstring, casesens,startfield,fields, machineformat)
indx = grepfields(...)

## Description

grepfields(filename, searchstring) displays lines in the file that begin with the search character vector. The file must have fixed-length records with line endings.
grepfields(filename,searchstring, casesens), with casesens 'matchcase', specifies a case-sensitive search. If omitted or 'none', the search character vector matches regardless of the case.
grepfields(filename, searchstring, casesens, startcol) searches starting with the specified column. startcol is an integer between 1 and the bytes per record in the file. In this calling form, the file is regarded as a text file with line endings.
grepfields(filename, searchstring, casesens,startfield,fields) searches within the specified field. startfield is an integer between 1 and the number of fields per record. The format of the file is described by the fields structure. In this calling form, the file can be binary and lack line endings. The search is within startfield, which must be a character field.
grepfields(filename, searchstring, casesens,startfield,fields, machineformat) opens the file with the specified machine format. machineformat must be recognized by fopen.
indx $=$ grepfields(...) returns the record numbers of matched records instead of displaying them on screen.

## Examples

Write a binary file and read it:

```
fid = fopen('testbin','wb');
for i = 1:3
 fwrite(fid,['character' num2str(i)],'char');
 fwrite(fid,i,'int8');
 fwrite(fid,[i i],'int16');
 fwrite(fid,i,'integer*4');
 fwrite(fid,i,'real*8');
```

```
end
fclose(fid);
fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64';fs(5).name = 'field 5';
```

Find the record matching the character vector 'character2'. The record contains binary data, which cannot be properly displayed.

```
grepfields('testbin','character2','none',1,fs)
character2? ? ? ?@
indx = grepfields('testbin','character2','none',1,fs)
indx =
 2
```

Read the formatted file containing the following:

```
character data 1 1 2 3 le6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6

fs(1).length = 16;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 3;fs(2).type = '%3d';fs(2).name = 'field 2';
fs(3).length = 1;fs(3).type = '%4g';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = '%5D'; fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'char';fs(5).name = '';
```

Find the records that match at the beginning of the line.

```
grepfields('testfilel','character')
character data 1 1 2 3 le6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6
grepfields('testfile1','character data 2')
character data 2 11 22 33 2e6 20D6
```

Find the records that match, starting the search in column 11.

```
grepfields('testfilel','data 2','none',11)
character data 2 11 22 33 2e6 20D6
```

Search record number 1.

```
grepfields('testfile1','character data 2','none',1,fs)
character data 2 11 22 33 2e6 20D6
```


## Limitations

Searches are limited to fields containing character data.

## See Also

textscan | fopen

Introduced before R2006a

## gridm

Toggle and control display of graticule lines

## Syntax

```
gridm
gridm('on')
gridm('off')
gridm('reset')
gridm(linespec)
gridm(MapAxesPropertyName, PropertyValue,...)
h = gridm(...)
```


## Description

gridm toggles the display of a latitude-longitude graticule. The choice of meridians and parallels, as well as their graphics properties, depends on the property settings of the map axes.
gridm('on' ) creates the graticule, if it does not yet exist, and makes it visible.
gridm('off') makes the graticule invisible.
gridm('reset') redraws the graticule using the current map axes properties.
gridm(linespec) uses any valid linespec to control the graphics properties of the lines in the graticule.
gridm(MapAxesPropertyName, PropertyValue, ...) sets the appropriate graticule properties to the desired values. For a description of these property names and values, see "Properties That Control the Grid" on page 1-0 section of the axesm property reference page.
$\mathrm{h}=\operatorname{gridm}(\ldots)$ returns the handles of the graticule lines. If both parallels and meridians exist, then $h$ is a two-element vector: $h(1)$ is the handle to the line comprising the parallels, and $h(2)$ is the handle to the line comprising the meridians.

## Tips

- You can also create or alter map grid properties using the axesm or setm functions.
- By default the Clipping property is set to ' off' ' Override this setting with the following code:

```
hgrat = gridm('on');
set(hgrat,'Clipping','on')
```


## See Also

axesm| setm
Introduced before R2006a

## grid2image

Display regular data grid as image

## Syntax

grid2image(Z,R)
grid2image(Z,R,PropertyName, PropertyValue,....)
h = grid2image(...)

## Description

grid2image ( $Z, R$ ) displays a regular data grid $Z$ as an image. The image is displayed in unprojected form, with longitude as $x$ and latitude as $y$, producing considerable distortion away from the Equator. Z can be $M$-by- $N$ or $M$-by- $N$-by-3, and can contain double, uint8, or uint16 data. The grid is georeferenced to latitude-longitude by R , which can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z) and its RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.
grid2image(Z,R,PropertyName,PropertyValue, ...) uses the specified image properties to display the map. See the image function reference page for a list of properties that can be changed.
$\mathrm{h}=\mathrm{grid} 2 \mathrm{image}(\ldots)$ returns the handle of the image object displayed.

## Examples

Load elevation raster data and a geographic cells reference object. Then, display the data as an image.

```
load topo60c
figure
grid2image(topo60c,topo60cR)
```



## See Also

image|mapshow|meshm|surfacem|surfm

Introduced before R2006a

## grn2eqa

Convert from Greenwich to equal area coordinates

## Syntax

```
[x,y] = grn2eqa(lat,lon)
[x,y] = grn2eqa(lat,lon,origin)
[x,y] = grn2eqa(lat,lon,origin,ellipsoid)
[x,y] = grn2eqa(lat,lon,origin,units)
mat = grn2eqa(lat,lon,origin...)
```


## Description

$[x, y]=$ grn2eqa(lat,lon) converts the Greenwich coordinates lat and lon to the equal-area coordinate points x and y .
$[x, y]=g r n 2 e q a(l a t$, lon, origin) specifies the location in the Greenwich system of the $x-y$ origin ( 0,0 ). The two-element vector origin must be of the form [latitude, longitude]. The default places the origin at the Greenwich coordinates ( $0^{\mathrm{O}}, 0^{\mathrm{o}}$ ).
$[x, y]=$ grn2eqa(lat, lon,origin, ellipsoid) specifies the ellipsoidal model of the figure of the Earth using ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The ellipsoid is spherical by default.
$[x, y]=$ grn2eqa(lat,lon,origin, units) specifies the units for the inputs, where units is any valid angle units value. The default value is 'degrees'.
mat $=$ grn2eqa(lat, lon,origin...) packs the outputs into a single variable.
The grn2eqa function converts data from Greenwich-based latitude-longitude coordinates to equalarea $x-y$ coordinates. The opposite conversion can be performed with eqa2grn.

## Examples

```
lats = [56 34]; longs = [-140 23];
[x,y] = grn2eqa(lats,longs)
x =
 -2.4435 0.4014
y =
 0.8290 0.5592
```


## See Also

eqa2grn|hista
Introduced before R2006a

## gshhs

Read Global Self-Consistent Hierarchical High-Resolution Geography

## Syntax

```
S = gshhs(filename)
S = gshhs(filename, latlim, lonlim)
indexfilename = gshhs(filename, 'createindex')
```


## Description

S = gshhs(filename) reads GSHHG (formerly GSHHS) vector data for the entire world from filename. GSHHG files must have names of the form gshhs_x.b, wdb_borders_x.b, or wdb_rivers_x.b, where $x$ is one of the letters $c, l, i, h$ or $\bar{f}$, corresponding to increasing resolution (and file size). The result returned in S is a polygon or line geographic data structure array (a geostruct, with 'Lat' and 'Lon' coordinate fields).

S = gshhs(filename, latlim, lonlim) reads a subset of the vector data from filename. The limits of the desired data are specified as two-element vectors of latitude, latlim, and longitude, lonlim, in degrees. The elements of latlim and lonlim must be in ascending order. Longitude limits range from [-180 195]. If latlim is empty, the latitude limits are [-90 90]. If lonlim is empty, the longitude limits are [-180 195].
indexfilename = gshhs(filename, 'createindex') creates an index file for faster data access when requesting a subset of a larger dataset. The index file has the same name as the GSHHG data file, but with the extension ' i ', instead of ' b ' and is written in the same folder as filename. The name of the index file is returned, but no coastline data are read. A call using this option should be followed by an additional call to gshhs to import actual data. On that and subsequent calls, gshhs detects the presence of the index file and uses it to access records by location much faster than it would without an index.

## Output Structure

The output structure $S$ contains the following fields. All latitude and longitude values are in degrees.

Field Name	Field Contents
'Geometry'	'Line ' or ' Polygon '
'BoundingBox'	[minLon minLat ; maxLon maxLat]
'Lon'	Coordinate vector
'Lat'	Coordinate vector
'South'	Southern latitude boundary
'North'	Northern latitude boundary
'West'	Western longitude boundary
'East'	Eastern longitude boundary
'Area '	Area of polygon in square kilometers


Field Name	Field Contents
'Level'	Scalar value ranging from 1 to 4, indicates level   in topological hierarchy
'LevelString'	'land ', 'lake', 'island_in_lake',   'pond_in_island_in_lake',or ' '
'NumPoints '	Number of points in the polygon
' FormatVersion'	Format version of data file. Positive integer for   versions 3 and later; empty for versions 1 and 2.
'Source'	Source of data: 'WDBII' or 'WVS'
'CrossesGreenwich'	Scalar flag: true if the polygon crosses the prime   meridian; false otherwise
'GSHHS_ID '	Unique polygon scalar id number, starting at 0

For releases 2.0 and higher (FormatVersion 7 and higher), the following additional fields are included in the output structure:

Field Name	Field Contents
'RiverLake'	Scalar flag: true if the polygon is the fat part of a major river and the   Level value is set to 2; false otherwise.
'AreaFull'	Area of original full-resolution polygon in units $\frac{1}{10} \mathrm{~km}^{2}$.
'Container'	ID of container polygon that encloses this polygon. Set to -1 to indicate   none.
'Ancestor'	ID of ancestor polygon in the full resolution set that was the source of   this polygon. Set to -1 to indicate none.

For Release 2.2 and higher (FormatVersion 9 and higher) the following additional field is included in the output structure:

Field Name	Field Contents
'CrossesDateline'	Scalar flag: true if the polygon crosses the dateline; false otherwise.

## Background

The Global Self-Consistent Hierarchical High-Resolution Geography (formerly the Global SelfConsistent Hierarchical High-Resolution Shoreline) was created by Paul Wessel of the University of Hawaii and Walter H.F. Smith of the NOAA Geosciences Lab. At the full resolution, the data requires 85 MB uncompressed, but lower resolution versions are also provided. This database includes coastlines, major rivers, and lakes. The GSHHG data in various resolutions is available over the Internet from the National Oceanic and Atmospheric Administration, National Geophysical Data Center website.

Version 3 (Release 1.3) of the gshhs_c.b (coarse) data set ships with the toolbox in the matlabroot/examples/map/data folder. For details, type

```
type gshhs_c.txt
```

at the MATLAB command prompt. The gshhs function has been qualified on GSHHG releases 1.1 through 2.3.6 (version 15). It should also be able to read newer versions, if they adhere to the same header format as releases 2.0 and 2.1.

## Examples

## Read Entire Coarse Data Set and Display Levels

Read the entire coarse data set. You can use similar code to read intermediate, full resolution, or high resolution GSHHG data sets.

```
filename = gunzip('gshhs_c.b.gz', tempdir);
shorelines = gshhs(filenäme{1});
delete(filename{1})
```

Display data as a coastline.

```
figure
```

worldmap world
geoshow([shorelines.Lat],[shorelines.Lon])


Display each level using a different color.

```
levels = [shorelines.Level];
land = (levels == 1);
lake = (levels == 2);
```

```
island = (levels == 3);
figure
worldmap world
geoshow(shorelines(land), 'FaceColor',[0 1 0])
geoshow(shorelines(lake), 'FaceColor',[0 0 1])
geoshow(shorelines(island),'FaceColor',[1 1 0])
```



## Read GSHHG Dataset Using an Index

Read the entire coarse data set, creating an index. You can use similar code to read intermediate, fullresolution, or high resolution GSHHG data sets.

```
filename = gunzip('gshhs_c.b.gz', tempdir);
indexname = gshhs(filename{1}, 'createindex');
```

Display Africa as a green polygon. Note that gshhs detects and uses the index file automatically.
figure
worldmap Africa


```
projection = gcm;
latlim = projection.maplatlimit;
lonlim = projection.maplonlimit;
africa = gshhs(filename{1}, latlim, lonlim);
delete(filename{1})
delete(indexname)
```

Sort by descending level to keep smaller level 2 and level 3 features on top.

```
[~,ix] = sort([africa.Level],'descend');
africa = africa(ix);
geoshow(africa, 'FaceColor', 'green')
setm(gca, 'FFaceColor', 'cyan')
```



## Tips

- If you are extracting data within specified geographic limits and using data other than coarse resolution, consider creating an index file first. Also, to speed rendering when mapping very large amounts of data, you might want to plot the data as NaN-clipped lines rather than as patches.
- When you specify latitude-longitude limits, polygons that completely fall outside those limits are excluded, but no trimming of features that partially traverse the region is performed. If you want to eliminate data outside of a rectangular region of interest, you can use maptrimp with the Lat and Lon fields of the geostruct returned by gshhs to clip the data to your region and still maintain polygon topology.
- You can read the WDB rivers and borders datasets but the LevelString field will be empty. The Level values vary from feature to feature but the interpretations of these values are not documented as part of the GSHHG distribution and are therefore not converted to character vectors.


## See Also

geoshow | maptrimp|shaperead | vmap0data|worldmap
Introduced before R2006a

## gtextm

Place text on map using mouse

## Syntax

h = gtextm (text)
h = gtextm(text,PropertyName,PropertyValue,...)

## Description

$\mathrm{h}=\mathrm{gtextm}(\mathrm{text})$ places text, a string scalar or character vector, at the position selected by mouse input. When you call this function, gtextm brings up the current map axes and activates the cursor for mouse-click position entry. gtextm returns a text object.
h = gtextm(text,PropertyName,PropertyValue,...) allows the specification of any properties supported by the MATLAB text function.

## Examples

Create map axes:

```
axesm('sinusoid','FEdgeColor','red')
gtextm('hello world','FontWeight','bold')
```

Click inside the frame and the text appears.

## See Also

axesm|textm
Introduced before R2006a

## gtopo30

(To be removed) Read 30-arc-second global digital elevation data (GTOPO30)

Note gtopo30 will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z,refvec] = gtopo30(tilename)
[Z, refvec] = gtopo30(tilename, samplefactor)
[Z,refvec] = gtopo30(tilename,samplefactor,latlim,lonlim)
[Z,refvec] = gtopo30(foldername, ...)

## Description

[Z,refvec] = gtopo30(tilename) reads the GTOPO30 tile specified by tilename and returns the result as a regular data grid. tilename is a string scalar or character vector which does not include an extension and indicates a GTOPO30 tile in the current folder or on the MATLAB path. If tilename is empty or omitted, a file browser will open for interactive selection of the GTOPO30 header file. The data is returned at full resolution with the latitude and longitude limits determined from the GTOPO30 tile. The data grid, Z , is returned as an array of elevations. Elevations are given in meters above mean sea level using WGS84 as a horizontal datum. refvec is the associated referencing vector.
[Z,refvec] = gtopo30(tilename, samplefactor) reads a subset of the elevation data from tilename. samplefactor is a scalar integer, which when equal to 1 reads the data at its full resolution. When samplefactor is an integer n greater than one, every nth point is read. If samplefactor is omitted or empty, it defaults to 1 .
[Z,refvec] = gtopo30(tilename,samplefactor,latlim,lonlim) reads a subset of the elevation data from tilename using the latitude and longitude limits latlim and lonlim specified in degrees. latlim is a two-element vector of the form:
[southern_limit northern_limit]
Likewise, lonlim has the form:
[western_limit eastern_limit]
If latlim and lonlim are omitted, the coordinate limits are determined from the file. The latitude and longitude limits are snapped outward to define the smallest possible rectangular grid of GTOPO30 cells that fully encloses the area defined by the input limits. Any cells in this grid that fall outside the extent of the tile are filled with NaN .
[Z,refvec] = gtopo30(foldername, ...) is similar to the syntaxes above except that GTOPO30 data are read and concatenated from multiple tiles within a GTOPO30 CD-ROM or folder structure. The foldername input is a string scalar or character vector with the name of the folder which contains the GTOPO30 tile folders or GTOPO30 tiles. Within the tile folders are the uncompressed data files. The foldername for CD-ROMs distributed by the USGS is the device name
of the CD-ROM drive. As with the case with a single tile, any cells in the grid specified by latlim and lonlim are NaN filled if they are not covered by a tile within foldername. samplefactor if omitted or empty defaults to 1 . latlim if omitted or empty defaults to [-90 90]. lonlim if omitted or empty defaults to [-180 180].

For details on locating GTOPO30 data for download over the Internet, see "Find Geospatial Data Online".

## Examples

## Display Data Grid and Overlay State Line Boundary

To run this example, you must download the GTOPO30 data set. For details on locating this data set for download over the Internet, see "Find Geospatial Data Online".

Extract and display full resolution data for the state of Massachusetts. Read the state line polygon boundary and calculate boundary limits.

```
Massachusetts = shaperead('usastatehi','UseGeoCoords',true, ...
 'Selector',{@(name) strcmpi(name,'Massachusetts'),'Name'});
latlim = [min(Massachusetts.Lat(:)) max(Massachusetts.Lat(:))];
lonlim = [min(Massachusetts.Lon(:)) max(Massachusetts.Lon(:))];
```

Read the GTOPO30 data at full resolution.

```
[Z,refvec] = gtopo30('W100N90',1,latlim,lonlim);
```

Display the data grid and overlay the state line boundary.

```
figure
ax = usamap(Z,refvec);
ax.SortMethod = 'ChildOrder';
geoshow(Z,refvec,'DisplayType','surface')
demcmap(Z)
geoshow(Massachusetts,'DisplayType','polygon',...
 'facecolor','none','edgecolor','y')
```



## Compatibility Considerations

## gtopo30 will be removed

Warns starting in R2021b

Raster reading functions that return referencing vectors will be removed, including gtopo30. Instead, use readgeoraster, which returns a raster reference object. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and GeographicPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors as input also accept reference objects.

This table shows some typical usages of gtopo30 and how to update your code to use readgeoraster instead. Unlike gtopo30, the readgeoraster function requires you to specify a file extension. For example, use $[Z, R]=$ readgeoraster('W100N90.dem' ).

Will Be Removed	Recommended
[Z,refvec] = gtopo30(filename);	[Z,R] = readgeoraster(filename);
[Z, refvec] = gtopo30(filename,samplefactor	```[Z,R] = readgeoraster(filename); [Z,R] = georesize(Z,R,1/samplefactor);```
[Z, refvec] = gtopo30(filename, samplefactor	

The readgeoraster function returns data using the native data type embedded in the file. Return a data using a different data type by specifying the 'OutputType' name-value pair. For example, use [Z,R] = readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, you can replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## See Also

gtopo30s | readgeoraster| georasterinfo

## Introduced before R2006a

## gtopo30s

GTOPO30 data file names for latitude-longitude quadrangle

## Syntax

tileNames = gtopo30s(latlim,lonlim)
tileNames = gtopo30s(lat,lon)

## Description

tileNames = gtopo30s(latlim, lonlim) returns a cell array of the tile names covering the geographic region for GTOPO30 digital elevation maps (also referred to as "30-arc second" DEMs). lat lim and lonlim specify the region as two-element vectors of latitude and longitude limits in units of degrees.
tileNames = gtopo30s(lat,lon) returns a cell array of the tile names covering the geographic region for GTOPO30 digital elevation maps. lat and lon specify the region as scalar latitude and longitude points.

## See Also

readgeoraster

## Introduced before R2006a

## handlem

Handles of displayed map objects

## Syntax

```
handlem
handlem('taglist')
handlem('prompt')
h = handlem(object)
h = handlem(tagstr)
h = handlem(___,axesh)
h = handlem(__,axesh,'searchmethod')
h = handlem(handles)
```


## Description

handlem displays a dialog box for selecting objects that have their Tag property set.
handlem('taglist') displays a dialog box for selecting objects that have their Tag property set.
handlem('prompt') displays a dialog box for selecting objects based on the objects listed below.
$\mathrm{h}=$ handlem(object) returns the graphics objects in the current axes specified by the input, object. The options for the object are defined by the following list:

```
'all'
'clabel'
'contour'
'fillcontour'
'frame'
'grid'
'hggroup'
'hidden'
'image'
'light'
'line
```

'map' All objects on the map, excluding the frame and grid
'meridian' Longitude grid lines
'mlabel' Longitude labels
'parallel' Latitude grid lines
'plabel' Latitude labels
'patch' Untagged patch objects
'scaleruler' scaleruler objects

'surface'	Untagged surface objects
''text''	Untagged text objects
'tissot'	Tissot indicatrices
'visible'	Visible objects

$\mathrm{h}=$ handlem(tagstr) returns any graphics objects whose tags match the value of tagstr.
h = handlem( ,axesh) searches within the specified axes.
h = handlem(__, axesh,'searchmethod') controls the method used to match the object input. If omitted, 'exact' is assumed. Search method 'strmatch' searches for matches that start at the beginning of the tag. Search method 'findstr' searches anywhere within the tag for the object.
$\mathrm{h}=$ handlem(handles) returns those graphics objects in the input vector of graphics objects that are still valid.

You can apply the prefix 'all' when defining an object type (text, line, patch, light, surface, or image) to find all objects that meet the type criteria (for example, 'allimage'). Without the 'all' prefix, handlem returns only objects with an empty tag.

## See Also

findobj
Introduced before R2006a

## hidem

Hide specified graphic objects on map axes

## Syntax

hidem
hidem(handle)
hidem(object)

## Description

hidem brings up a dialog box for selecting the objects to hide (set their Visible property to 'off').
hidem (handle) hides the objects specified by a vector of handles.
hidem (object) hides those objects specified by the object, which can be any string scalar or character vector recognized by the handlem function.

See Also<br>clma |clmo| handlem | namem | showm | tagm<br>Introduced before R2006a

## hista

Bin counts for geographic points using equal-area bins

## Syntax

[latbin,lonbin, count] = hista(lat,lon)
[latbin,lonbin, count] = hista(lat,lon, binarea)
[latbin,lonbin, count] = hista(lat,lon, binarea, spheroid)
[latbin, lonbin, count] = hista( __ , angleunits)

## Description

[latbin, lonbin, count] = hista(lat,lon) bins the geographic locations indicated by vectors lat and lon, using equal area binning on a sphere. The default bin area is 100 square kilometers. The latbin and lonbin outputs are column vectors indicating the centers of non-empty bins. count matches latbin and lonbin in size, with each element containing a positive integer equal to the number of occurrences in the corresponding bin.

Binning is performed on a mesh within a quadrangle whose latitude and longitude limits match the extrema of the input locations. The input and output latitudes and longitudes are in units of degrees.
[latbin, lonbin, count] = hista(lat,lon, binarea) uses the bin size specified by the input binarea, which must be in square kilometers
[latbin,lonbin, count] = hista(lat,lon, binarea,spheroid) bins the data on the reference spheroid defined by spheroid. spheroid is a referenceEllipsoid (oblateSpheroid) object, a referenceSphere object, or a vector of the form [semimajor_axis eccentricity]. The eccentricity/flattening of the spheroid is used in determining the latitude extent of the bins. The semimajor axis of the spheroid is used to determine the longitude extent of the bins, but if the length unit of the spheroid is unspecified, the mean radius of the earth in kilometers is used as the equatorial radius.
[latbin,lonbin, count] = hista( $\qquad$ , angleunits) where angleunits defines the angle units of the inputs and outputs, specified as 'degrees ' or 'radians'.

## Examples

## Bin Latitudes and Longitudes

Create some random latitudes.

```
rng(0,'twister')
lats = rand(4)
lats = 4\times4
\begin{tabular}{llll}
0.8147 & 0.6324 & 0.9575 & 0.9572 \\
0.9058 & 0.0975 & 0.9649 & 0.4854 \\
0.1270 & 0.2785 & 0.1576 & 0.8003
\end{tabular}
```

0.9134
0.5469
0.9706
0.1419

Create some random longitudes.
lons $=$ rand (4)
lons $=4 \times 4$

0.4218	0.6557	0.6787	0.6555
0.9157	0.0357	0.7577	0.1712
0.7922	0.8491	0.7431	0.7060
0.9595	0.9340	0.3922	0.0318

Bin the data in 50 -by- 50 km cells ( 2500 sq km ).
[lat,lon, num] = hista(lats,lons,2500);
[lat,lon, num]
ans $=9 \times 3$

0.0932	-0.0208	2.0000
0.5341	0.3235	1.0000
0.9750	0.3235	2.0000
0.0932	0.6678	2.0000
0.5341	0.6678	1.0000
0.9750	0.6678	4.0000
0.0932	1.0122	1.0000
0.5341	1.0122	1.0000
0.9750	1.0122	2.0000

## See Also

eqa2grn|grn2eqa|histr
Introduced before R2006a

## histr

Histogram for geographic points with equirectangular bins

## Syntax

[lat,lon,num,wnum] = histr(lats,lons)
[lat,lon, num,wnum] = histr(lats,lons, units)
[lat,lon, num,wnum] = histr(lats,lons,bindensty)

## Description

[lat,lon, num,wnum] = histr(lats,lons) returns the center coordinates of equal-rectangular bins and the number of observations, num, falling in each based on the geographically distributed input data. Additionally, an area-weighted observation value, wnum, is returned. wnum is the bin's num divided by its normalized area. The largest bin has the same num and wnum; a smaller bin has a larger wnum than num.
[lat,lon, num, wnum] = histr(lats,lons, units) where units specifies the angle unit. The default value is 'degrees '.
[lat,lon, num, wnum] = histr(lats,lons,bindensty) sets the number of bins per angular unit. For example, if units is 'degrees', a bindensty of 10 would be 10 bins per degree of latitude or longitude, resulting in 100 bins per square degree. The default is one cell per angular unit.

The histr function sorts geographic data into equirectangular bins for histogram purposes. Equirectangular in this context means that each bin has the same angular measurement on each side (e.g., $1^{\circ}-$-by- $1^{\circ}$ ). Consequently, the result is not an equal-area histogram. The hista function provides that capability. However, the results of histr can be weighted by their area bias to correct for this, in some sense.

## Examples

## Bin Latitudes and Longitudes with Equirectangular Bins

Create some random latitudes.

```
rng(0,'twister')
lats = rand(4)
lats = 4\times4
 0.8147 0.6324 0.9575 0.9572
 0.9058 0.0975 0.9649 0.4854
 0.1270 0.2785 0.1576 0.8003
 0.9134 0.5469 0.9706 0.1419
```

Create some random longitudes.

```
lons = rand(4)
```

```
lons = 4×4
\begin{tabular}{llll}
0.4218 & 0.6557 & 0.6787 & 0.6555 \\
0.9157 & 0.0357 & 0.7577 & 0.1712 \\
0.7922 & 0.8491 & 0.7431 & 0.7060 \\
0.9595 & 0.9340 & 0.3922 & 0.0318
\end{tabular}
```

Bin the data in 0.5 -by- 0.5 degree cells (two bins per degree). The bins centered at $0.75^{\circ} \mathrm{N}$ are slightly smaller in area than the others. wnum reflects the relative count per normalized unit area
[lat,lon,num,wnum] = histr(lats,lons,2);
[lat,lon, num, wnum]
ans $=4 \times 4$

0.2500	0.2500	3.0000	3.0000
0.7500	0.2500	2.0000	2.0002
0.2500	0.7500	3.0000	3.0000
0.7500	0.7500	8.0000	8.0006

## See Also

filterm|hista
Introduced before R2006a

## imbedm

Encode data points into regular data grid

## Syntax

```
Z = imbedm(lat, lon, value, Z, R)
Z = imbedm(lat, lon, value, Z, R, units)
[Z, indxPointOutsideGrid] = imbedm(...)
```


## Description

Z = imbedm(lat, lon, value, Z, R) resets certain entries of a regular data grid, Z. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] = [row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.

Z = imbedm(lat, lon, value, Z, R, units) specifies the units of the vectors lat and lon, where units is any valid angle units character vector ('degrees ' by default).
[Z, indxPointOutsideGrid] = imbedm(...) returns the indices of lat and lon corresponding to points outside the grid in the variable indxPointOutsideGrid.

## Examples

Create a simple grid map and embed new values in it:
$Z=$ ones $(3,6)$
Z =
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$
refvec $=\left[\begin{array}{lll}1 / 60 & 90 & -180\end{array}\right]$
refvec $=$
0.0167 90.0000-180.0000

```
newgrid = imbedm([23 -23], [45 -45],[5 5],Z,refvec)
newgrid =
 1
 llllll
```


## See Also

geointerp|geographicToDiscrete Introduced before R2006a

## ind2rgb8

Convert indexed image to uint8 RGB image

## Syntax

RGB $=$ ind2rgb8 ( $\mathrm{X}, \mathrm{cmap}$ )

## Description

RGB = ind2rgb8( $X$, cmap) creates an RGB image of class uint8. $X$ must be uint8, uint16, or double, and cmap must be a valid MATLAB colormap.

## Examples

\% Convert the 'concord_ortho_e.tif' image to RGB.
[X, cmap] = imread('concord_ortho_e.tif');
RGB = ind2rgb8(X, cmap);
$R=$ worldfileread('concord_ortho_e.tfw','planar',size(X));
mapshow(RGB, R);

## See Also

ind2rgb
Introduced before R2006a

## ingeoquad

True for points inside or on lat-lon quadrangle

## Syntax

tf = ingeoquad(lat, lon, latlim, lonlim)

## Description

$\mathrm{tf}=$ ingeoquad(lat, lon, latlim, lonlim) returns an array tf that has the same size as lat and lon. $t f(k)$ is true if and only if the point lat $(k)$, lon $(k)$ falls within or on the edge of the geographic quadrangle defined by latlim and lonlim. latlim is a vector of the form [southernlimit northern-limit], and lonlim is a vector of the form [western-limit easternlimit]. All angles are in units of degrees.

## Examples

1 Load elevation data and a geographic cells reference object for the Korean peninsula. Display the data on a world map. Apply a colormap appropriate for elevation data using demcmap.

```
load korea5c
figure('Color','white')
worldmap([20 50],[90 150])
geoshow(korea5c,korea5cR,'DisplayType','texturemap');
demcmap(korea5c)
```

2 Outline the quadrangle containing the elevation data:

```
[outlineLat, outlineLon] = outlinegeoquad(korea5cR.LatitudeLimits, ...
 korea5cR.LongitudeLimits,90,5);
geoshow(outlineLat,outlineLon,'DisplayType','line', ...
 'Color','k')
```

3 Generate a track that crosses the elevation data:

```
[lat,lon] = track2(23,110,48,149,[1 0],'degrees',20);
geoshow(lat,lon,'DisplayType','line')
```

4 Identify and mark points on the track that fall within the quadrangle outlining the elevation data:

```
tf = ingeoquad(lat,lon,korea5cR.LatitudeLimits, ...
 korea5cR.LongitudeLimits);
geoshow(lat(tf),lon(tf),'DisplayType','point')
```



## See Also

inpolygon |intersectgeoquad

## Introduced in R2008a

## intersectgeoquad

Intersection of two latitude-longitude quadrangles

## Syntax

[latlim, lonlim] = intersectgeoquad(latlim1, lonlim1, latlim2, lonlim2)

## Description

[latlim, lonlim] = intersectgeoquad(latlim1, lonlim1, latlim2, lonlim2) computes the intersection of the quadrangle defined by the latitude and longitude limits latlim1 and lonlim1, with the quadrangle defined by the latitude and longitude limits latlim2 and lonlim2. latlim1 and latlim2 are two-element vectors of the form [southern-limit northern-limit]. Likewise, lonlim1 and lonlim2 are two-element vectors of the form [western-limit eastern-limit]. All input and output angles are in units of degrees. The intersection results are given in the output arrays latlim and lonlim. Given an arbitrary pair of input quadrangles, there are three possible results:

1 The quadrangles fail to intersect. In this case, both latlim and lonlim are empty arrays.
2 The intersection consists of a single quadrangle. In this case, lat lim (like lat lim1 and latlim2) is a two-element vector that has the form [southern-limit northern-limit], where southern-limit and northern-limit represent scalar values. lonlim (like lonlim1 and lonlim2), is a two-element vector that has the form [western-limit eastern-limit], with a pair of scalar limits.
3 The intersection consists of a pair of quadrangles. This can happen when longitudes wrap around such that the eastern end of one quadrangle overlaps the western end of the other and vice versa. For example, if lonlim1 $=[-9090]$ and lonlim2 $=[45-45]$, there are two intervals of overlap: [-90-45] and [45 90]. These limits are returned in lonlim in separate rows, forming a 2 -by- 2 array. In our example (assuming that the latitude limits overlap), lonlim would equal [-90-45; 45 90]. It still has the form [western-limit eastern-limit], but western-limit and eastern-limit are 2-by-1 rather than scalar. The two output quadrangles have the same latitude limits, but these are replicated so that latlim is also 2-by-2.

To continue the example, if latlim1 = [0 30] and latlim2 = [20 50], latlim equals [20 30; 20 30]. The form is still [southern-limit northern-limit], but in this case southern-limit and northern-limit are 2-by-1.

## Examples

## Example 1

Nonintersecting quadrangles:

```
[latlim, lonlim] = intersectgeoquad(...
 [-40 -60], [-180 180], [40 60], [-180 180])
latlim =
 []
lonlim =
 []
```


## Example 2

Intersection is a single quadrangle:

```
[latlim, lonlim] = intersectgeoquad(...
 [-40 60], [-120 45], [-60 40], [160 -75])
latlim =
 -40 40
lonlim =
 -120 -75
```


## Example 3

Intersection is a pair of quadrangles:

```
[latlim, lonlim] = intersectgeoquad(...
 [-30 90],[-10 -170],[-90 30],[170 10])
latlim =
 -30 30
 -30 30
lonlim =
 -10 10
 170-170
```


## Example 4

Inputs and output fully encircle the planet:

```
[latlim, lonlim] = intersectgeoquad(...
 [-30 90],[-180 180],[-90 30],[0 360])
latlim =
 -30 30
lonlim =
 -180 180
```


## Example 5

Find and map the intersection of the bounding boxes of adjoining U.S. states:

```
usamap({'Minnesota','Wisconsin'})
S = shaperead('usastatehi','UseGeoCoords',true,'Selector',...
 {@(name) any(strcmp(name,{'Minnesota','Wisconsin'})), 'Name'});
geoshow(S, 'FaceColor', 'y')
textm([S.LabelLat], [S.LabelLon], {S.Name},...
 'HorizontalAlignment', 'center')
latlimMN = S(1).BoundingBox(:,2)'
latlimMN =
 43.4995 49.3844
lonlimMN = S(1).BoundingBox(:,1)'
```

```
lonlimMN =
 -97.2385 -89.5612
latlimWI = S(2).BoundingBox(:,2)'
latlimWI =
 42.4918 47.0773
lonlimWI = S(2).BoundingBox(:,1)'
lonlimWI =
 -92.8892 -86.8059
[latlim lonlim] =
 intersectgeoquad(latlimMN, lonlimMN, latlimWI, lonlimWI)
latlim =
 43.4995 47.0773
lonlim =
 -92.8892 -89.5612
geoshow(latlim([1 2 2 1 1]), lonlim([ll 1 2 2 1]), ...
 'DisplayType','polygon','FaceColor','m')
```



## Tips

latlim1 and latlim2 should normally be given in order of increasing numerical value. No error will result if, for example, latlim1(2) < latlim1(1), but the outputs will both be empty arrays.

No such restriction applies to lonlim1 and lonlim2. The first element is always interpreted as the western limit, even if it exceeds the second element (the eastern limit). Furthermore, intersectgeoquad correctly handles whatever longitude-wrapping convention may have been applied to lonliml and lonlim2.

In terms of output, intersectgeoquad wraps lonlim such that all elements fall in the closed interval [-180 180]. This means that if (one of) the output quadrangle(s) crosses the $180^{\circ}$ meridian, its western limit exceeds its eastern limit. The result would be such that
lonlim(2) < lonlim(1)
if the intersection comprises a single quadrangle or
lonlim(k,2) < lonlim(k,1)
where $k$ equals 1 or 2 if the intersection comprises a pair of quadrangles.
If abs(diff(lonlim1)) or abs(diff(lonlim2)) equals 360, its quadrangle is interpreted as a latitudinal zone that fully encircles the planet, bounded only by one parallel on the south and another parallel on the north. If two such quadrangles intersect, lonlim is set to [-180 180].

If you want to display geographic quadrangles generated by this function or any other which are more than one or two degrees in extent, they may not follow curved meridians and parallels very well. The degree of departure depends on the extent of the quadrangle, the map projection, and the map scale. In such cases, you can interpolate intermediate vertices along quadrangle edges with the outlinegeoquad function.

## See Also

ingeoquad |outlinegeoquad

## Introduced in R2008a

## inputm

Latitudes and longitudes of mouse-click locations

## Syntax

[lat, lon] = inputm
[lat, lon] = inputm(n)
[lat, lon] $=\operatorname{inputm}(n, h)$
[lat, lon, button] = inputm(n)
MAT $=$ imputm(...)

## Description

[lat, lon] = inputm returns the latitudes and longitudes in geographic coordinates of points selected by mouse clicks on a displayed grid. The point selection continues until the return key is pressed.
[lat, lon] = inputm(n) returns $n$ points specified by mouse clicks.
[lat, lon] = $\operatorname{inputm}(n, h)$ prompts for points from the map axes specified by the handle $h$. If omitted, the current axes (gca) is assumed.
[lat, lon, button] = inputm(n) returns a third result, button, that contains a vector of integers specifying which mouse button was used (1,2,3 from left) or ASCII numbers if a key on the keyboard was used.

MAT $=\operatorname{imputm}(\ldots)$ returns a single matrix, where MAT $=[$ lat lon].

## Tips

inputm works much like the standard MATLAB ginput, except that the returned values are latitudes and longitudes extracted from the projection, rather than axes $x-y$ coordinates. If you click outside of the projection bounds (beyond the map frame in the corners of a Robinson projection, for example), no coordinates are returned for that location.
inputm cannot be used with a 3-D display, including those created using globe.

## See Also

gcpmap | ginput

## Introduced before R2006a

## interpm

Densify latitude-longitude sampling in lines or polygons

## Syntax

[latout,lonout] = interpm(lat,lon,maxdiff)
[latout,lonout] = interpm(lat,lon,maxdiff,method)
[latout,lonout] = interpm(lat,lon,maxdiff,method,units)

## Description

[latout,lonout] = interpm(lat,lon,maxdiff) fills in any gaps in latitude (lat) or longitude (lon) data vectors that are greater than a defined tolerance maxdiff apart in either dimension. The angle units of the three inputs need not be specified, but they must be identical. latout and lonout are the new latitude and longitude data vectors, in which any gaps larger than maxdiff in the original vectors have been filled with additional points. The default method of interpolation used by interpm is linear.
[latout,lonout] = interpm(lat,lon,maxdiff,method) interpolates between vector data coordinate points using a specified interpolation method. Valid interpolation methods are ' gc ' for great circle, 'rh' for rhumb line, and ' lin' for linear interpolation.
[latout,lonout] = interpm(lat,lon,maxdiff,method, units) specifies the units used, where units is any valid angle unit. The default is 'degrees'.

## Examples

## Interpolate Vertices Between Known Data Points

Define two vectors containing the latitude and longitude values for a set of vertices. In lat, note that a gap of 2 degrees exists between the values 2 and 4 . Similarly, in lon, a gap of 2 degrees exists between the values 1 and 3 .

```
lat = [1 2 4 5];
lon = [1 3 4 5];
```

Call interpm to fill in any gaps greater than 1 degree in either vector. For example, interpm interpolates and inserts the value 2 into the lon vector to fill the gap between the values 1 and 3 , and inserts the value 1.5 in the lat vector for this new vertex. Similarly, interpm inserts the value 3 into the lat vector to fill the gap between the values 2 and 4 , and inserts the value 3.5 in the lon vector for this new vertex. Now, the separation of adjacent vertices is no greater than maxdiff in either newlat or newlon.

```
maxdiff = 1;
[newlat,newlon] = interpm(lat,lon,maxdiff)
newlat = 6\times1
```

```
 1.5000
 2.0000
 3.0000
 4.0000
 5.0000
newlon = 6×1
 1.0000
 2.0000
 3.0000
 3.5000
 4.0000
 5.0000
```


## See Also

intrplat|intrplon
Introduced before R2006a

## intrinsicToGeographic

Package: map.rasterref
Transform intrinsic to geographic coordinates

## Syntax

[lat,lon] = intrinsicToGeographic(R,xIntrinsic,yIntrinsic)

## Description

[lat,lon] = intrinsicToGeographic(R,xIntrinsic,yIntrinsic) returns the geographic coordinates corresponding to intrinsic coordinates (xIntrinsic, yIntrinsic) in geographic raster R.

## Examples

## Find Geographic Coordinates from Intrinsic Coordinates

Find the geographic coordinates of cells within a raster by specifying a raster reference object and intrinsic coordinates.

First, load a geographic cells reference object for the Korean peninsula. To do this, load the korea5cR variable from the korea5c MAT-file. Then, specify the intrinsic coordinates of the cell in the lower-left corner. For this example, the lower-left corner is also the southwest corner because the ColumnsStartFrom property of the reference object has a value of 'south' and the RowsStartFrom property has a value of 'west'. Integer coordinates such as $(1,1)$ indicate the center of a cell.

```
load korea5c korea5cR
xIntrinsic = 1;
yIntrinsic = 1;
```

Find the geographic coordinates.

```
[lat,lon] = intrinsicToGeographic(korea5cR,xIntrinsic,yIntrinsic)
lat = 30.0417
lon = 115.0417
```

You can reverse the operation by using the geographicToIntrinsic function.

```
[xIntrinsic,yIntrinsic] = geographicToIntrinsic(korea5cR,lat,lon)
xIntrinsic = 1.0000
yIntrinsic = 1.0000
```


## Input Arguments

## R - Geographic raster

GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.

## xIntrinsic - x-coordinates in intrinsic coordinate system

numeric array
$x$-coordinates in intrinsic coordinate system, specified as a numeric array. xIntrinsic coordinates can be outside the bounds of the raster R .
Data Types: single | double
yIntrinsic - y-coordinates in intrinsic coordinate system
numeric array
$y$-coordinates in intrinsic coordinate system, specified as a numeric array. yIntrinsic is the same size as xIntrinsic. yIntrinsic coordinates can be outside the bounds of the raster R.
Data Types: single | double

## Output Arguments

## lat - Latitude coordinates

numeric array
Latitude coordinates, returned as a numeric array. lat is the same size as xIntrinsic.
When a point (xIntrinsic(k), yIntrinsic(k)) is outside the bounds of raster R, lat(k) and lon(k) are extrapolated in the geographic coordinate system. However, for any point that extrapolates to a latitude beyond the poles (latitude outside the range [-90, 90] degrees), lat ( $k$ ) and lon( $k$ ) are set to NaN.
Data Types: double

## Lon - Longitude coordinates

numeric array
Longitude coordinates, returned as a numeric array. lon is the same size as xIntrinsic.
When a point (xIntrinsic(k), yIntrinsic(k)) is outside the bounds of raster R, lat(k) and lon(k) are extrapolated in the geographic coordinate system. However, for any point that extrapolates to a latitude beyond the poles (latitude outside the range [-90, 90] degrees), lat ( $k$ ) and lon $(k)$ are set to NaN .

Data Types: double

## See Also

geographicToIntrinsic|intrinsicXToLongitude |intrinsicYToLatitude | intrinsicToWorld

Introduced in R2013b

## intrinsicToWorld

Package: map.rasterref
Transform intrinsic to planar world coordinates

## Syntax

[xWorld,yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic)

## Description

[xWorld,yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic) returns the planar world coordinates corresponding to intrinsic coordinates (xIntrinsic, yIntrinsic) in map raster R. If a point is outside the bounds of R , then intrinsicToWorld extrapolates the xWorld and yWorld coordinates.

## Examples

## Find World Coordinates from Intrinsic Coordinates

Import a GeoTIFF image [1] on page 1-0 of Boston as an array and a MapCellsReference object. Find the world coordinates of the center of the cell in column 3500 and row 1200 of the array.

```
[Z,R] = readgeoraster('boston.tif');
[xWorld,yWorld] = intrinsicToWorld(R,3500,1200)
xWorld = 7.7580e+05
yWorld = 2.9566e+06
```

You can reverse the operation by using the worldToIntrinsic function.

```
[xIntrinsic,yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld)
xIntrinsic = 3.5000e+03
yIntrinsic = 1.2000e+03
```

[1] The data used in this example includes material copyrighted by GeoEye, all rights reserved.

## Input Arguments

## R - Map raster

MapCellsReference object | MapPostingsReference object
Map raster, specified as a MapCellsReference or MapPostingsReference object.

## xIntrinsic - x-coordinates in intrinsic coordinate system

numeric array
$x$-coordinates in intrinsic coordinate system, specified as a numeric array. xIntrinsic coordinates can be outside the bounds of the raster R.

Data Types: single | double
yIntrinsic - y-coordinates in intrinsic coordinate system
numeric array
$y$-coordinates in intrinsic coordinate system, specified as a numeric array. yIntrinsic is the same size as xIntrinsic. yIntrinsic coordinates can be outside the bounds of the raster R.
Data Types: single |double

## Output Arguments

## xWorld - x-coordinates in the world coordinate system

numeric array
$x$-coordinates in the world coordinate system, specified as a numeric array. xWorld is the same size as xIntrinsic. When xIntrinsic $(k)$ is outside the bounds of R , intrinsicToWorld extrapolates the xWorld coordinate.

Data Types: double
yWorld - $\boldsymbol{y}$-coordinates in the world coordinate system
numeric array
$y$-coordinates in the world coordinate system, specified as a numeric array. yWorld is the same size as xIntrinsic. When yIntrinsic $(k)$ is outside the bounds of R , intrinsicToWorld extrapolates the yWorld coordinate.
Data Types: double

## See Also <br> worldToIntrinsic|intrinsicToGeographic|intrinsicXToLongitude| intrinsicYToLatitude <br> Introduced in R2013b

## intrinsicXToLongitude

Package: map.rasterref
Convert from intrinsic $x$ to longitude coordinates

## Syntax

lon = intrinsicXToLongitude(R,xIntrinsic)

## Description

lon = intrinsicXToLongitude(R,xIntrinsic) returns the longitude of the meridian corresponding to the $x$-coordinate xIntrinsic in the intrinsic coordinate system, based on the relationship defined by geographic raster R.

## Examples

## Find Longitude from Intrinsic $x$-Coordinate

Import a GeoTIFF image [1] on page 1-0 of the Gulf of Mexico as an array and a
GeographicCellsReference object. Find the longitude corresponding to the centers of cells in column 144 of the array.
[Z,R] = readgeoraster('katrina.tif');
lon = intrinsicXToLongitude(R,144)
lon $=-95.7959$
[1] The image used in this example is derived from imagery obtained from the NASA Goddard Scientific Visualization Studio (SVS) Image Server.

## Input Arguments

R - Geographic raster
GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.
xIntrinsic - x-coordinates in intrinsic coordinate system
numeric array
$x$-coordinates in intrinsic coordinate system, specified as a numeric array. xIntrinsic coordinates can be outside the bounds of the raster R .

Data Types: single|double

## Output Arguments

## Lon - Longitude coordinates

numeric array
Longitude coordinates, returned as a numeric array. lon is the same size as xIntrinsic.
When a point has intrinsic $x$-coordinate outside the bounds of raster R , $\operatorname{lon}(k)$ is extrapolated outside the longitude limits. Elements of xIntrinsic with value NaN map to NaN in lon. Longitude values are not wrapped.
Data Types: double

## See Also

intrinsicToGeographic|intrinsicYToLatitude|longitudeToIntrinsicX
Introduced in R2013b

## intrinsicYToLatitude

Package: map. rasterref
Convert from intrinsic $y$ to latitude coordinates

## Syntax

lat $=$ intrinsicYToLatitude(R,yIntrinsic)

## Description

lat $=$ intrinsicYToLatitude( R , yIntrinsic) returns the latitude of the small circle corresponding to the $y$-coordinate yIntrinsic in the intrinsic coordinate system, based on the relationship defined by geographic raster R.

## Examples

## Find Latitude from Intrinsic y-Coordinate

Import elevation data [1] on page 1-0 for a region in Colorado as an array and a GeographicPostingsReference object. Find the latitude corresponding to the posting points in row 91 of the array.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
lat = intrinsicYToLatitude(R,91)
lat = 39.9250
```

[1] The elevation data used in this example is from the U.S. Geological Survey.

## Input Arguments

R - Geographic raster
GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.
yIntrinsic - y-coordinates in intrinsic coordinate system
numeric array
$y$-coordinates in intrinsic coordinate system, specified as a numeric array. yIntrinsic coordinates can be outside the bounds of the raster R.

Data Types: single | double

## Output Arguments

## lat - Latitude coordinates

numeric array
Latitude coordinates, returned as a numeric array. lat is the same size as yIntrinsic.
When a point has intrinsic $y$-coordinate outside the bounds of raster R , lat $(k)$ is extrapolated outside the latitude limits. However, when a point extrapolates to a latitude beyond the poles (latitude outside the range $[-90,90]$ degrees), lat $(k)$ is set to NaN. Elements of yIntrinsic with value NaN map to NaN in lat.
Data Types: double

## See Also

intrinsicXToLongitude|intrinsicToGeographic| latitudeToIntrinsicY
Introduced in R2013b

## intrplat

Interpolate latitude at given longitude

## Syntax

```
newlat = intrplat(long,lat,newlong)
newlat = intrplat(long,lat,newlong,method)
newlat = intrplat(long,lat,newlong,method,units)
```


## Description

newlat $=$ intrplat(long, lat, newlong) returns an interpolated latitude, newlat, corresponding to a longitude newlong. long must be a monotonic vector of longitude values. The actual entries must be monotonic; that is, the longitude vector [350 357310 ] is not allowed even though the geographic direction is unchanged (use [350 357363 370] instead). lat is a vector of the latitude values paired with each entry in long.
newlat $=$ intrplat(long, lat, newlong, method) specifies the method of interpolation employed, listed in the table below.

Method	Description
' linear'	Linear, or Cartesian, interpolation (default)
'pchip'	Piecewise cubic Hermite interpolation
'rh'	Returns interpolated points that lie on rhumb lines between input data
'gc'	Returns interpolated points that lie on great circles between input data

newlat $=$ intrplat(long, lat, newlong, method, units) specifies the units used, where units is any valid angle units string scalar or character vector. The default is 'degrees'.

The function intrplat is a geographic data analogy of the standard MATLAB function interp1.

## Examples

## Interpolate Coordinates at Specific Locations

Define the latitudes and longitudes.

```
lat = [57 68 60 65 56];
lon = [1 3 4 9 13];
```

Specify the longitude for which you want to compute a latitude.
newlon $=7.3$;

## Linear Interpolation

Generate a new latitude using the default method of linear interpolation.

```
newlatLinear = intrplat(lon,lat,newlon)
```

newlatLinear = 63.3000

## Great Circle Interpolation

Generate a new latitude using great circle interpolation.

```
newlatGC = intrplat(lon,lat,newlon,'gc')
newlatGC = 63.5029
```


## Rhumb Line Interpolation

Generate a new latitude using interpolation along a rhumb line.

```
newlatRhumb = intrplat(lon,lat,newlon,'rh')
newlatRhumb = 63.3937
```


## Tips

There are separate functions for interpolating latitudes and longitudes, for although the cases are identical when using those methods supported by interpl, when latitudes and longitudes are treated like the spherical angles they are (using 'rh' or 'gc'), the results are different. Compare the example above to the example under intrplon, which reverses the values of latitude and longitude.

## See Also

## Functions

interpm |intrplon

## Topics

"Geographic Interpolation of Vectors"

## Introduced before R2006a

## intrplon

Interpolate longitude at given latitude

## Syntax

```
newlon = intrplon(lat,lon,newlat)
newlon = intrplon(lat,lon,newlat,method)
newlon = intrplon(lat,lon,newlat,method,units)
```


## Description

newlon = intrplon(lat,lon, newlat) returns an interpolated longitude, newlon, corresponding to a latitude newlat. lat must be a monotonic vector of longitude values. lon is a vector of the longitude values paired with each entry in lat.
newlon = intrplon(lat,lon, newlat,method) specifies the method of interpolation employed, listed in the table below.

Method	Description
' linear'	Linear, or Cartesian, interpolation (default)
'pchip'	Piecewise cubic Hermite interpolation
'rh'	Returns interpolated points that lie on rhumb lines between input data
'gc'	Returns interpolated points that lie on great circles between input data

newlon = intrplon(lat,lon, newlat,method,units) specifies the units used, where units is any valid angle units string scalar or character vector. The default is 'degrees'.

The function intrplon is a geographic data analogy of the MATLAB function interp1.

## Examples

Compare the results of the various methods:

```
long = [25 45]; lat = [30 60];
newlon = intrplon(lat,long,45,'linear')
newlon =
 3 5
newlon = intrplon(lat,long,45,'rh')
newlon =
 33.6515
newlon = intrplon(lat,long,45,'gc')
newlon =
 32.0526
```


## Tips

There are separate functions for interpolating latitudes and longitudes, for although the cases are identical when using those methods supported by interp1, when latitudes and longitudes are treated like the spherical angles they are (using 'rh' or 'gc'), the results are different. Compare the previous example to the example under intrplat, which reverses the values of latitude and longitude.

## See Also

## Functions

interpm |intrplat

## Topics

"Geographic Interpolation of Vectors"
Introduced before R2006a

## inverse

Package: map.geodesy
Convert authalic, conformal, isometric, or rectifying latitude to geodetic latitude

## Syntax

phi = inverse(converter,lat)
phi = inverse(converter,lat,angleUnit)

## Description

phi = inverse(converter, lat) returns the geodetic latitude coordinates corresponding to authalic, conformal, isometric, or rectifying latitude coordinates lat.
phi = inverse(converter,lat,angleUnit) specifies the units of output phi.

## Examples

## Convert Conformal Latitude to Geodetic Latitude

Specify conformal latitude coordinates and create a conformal latitude converter. Then, convert the coordinates.

```
chi = [-90 -67.3637 -44.8077 -22.3643 0 22.3643 44.8077 67.3637 90];
conv = map.geodesy.ConformalLatitudeConverter(wgs84Ellipsoid);
phi = inverse(conv,chi)
phi = 1×9
 -90.0000 -67.5000 -45.0000 -22.5000 0 22.5000 45.0000 67.5000 90.0000
```


## Convert Isometric Latitude to Geodetic Latitude Using Radians

Specify isometric latitude coordinates and convert them to radians. Create an isometric latitude converter. Then, convert the coordinates by specifying the angle unit as 'radians'.

```
psi = [-Inf -1.6087 -0.87663 -0.40064 0 0.40064 0.87663 1.6087 Inf];
conv = map.geodesy.IsometricLatitudeConverter(wgs84Ellipsoid);
phi = inverse(conv,psi,'radians')
phi = 1\times9
 -1.5708 -1.1781 -0.7854 -0.3927
```


## Input Arguments

## converter - Latitude converter

AuthalicLatitudeConverter, ConformalLatitudeConverter, IsometricLatitudeConverter, or RectifyingLatitudeConverter object

Latitude converter, specified as an AuthalicLatitudeConverter, ConformalLatitudeConverter, IsometricLatitudeConverter, or RectifyingLatitudeConverter object.

## lat - Latitude coordinates to convert

numeric scalar, vector, matrix, or N-D array
Latitude coordinates to convert, specified as a numeric scalar, vector, matrix, or N-D array.
The interpretation of lat depends on the latitude converter. If the conversion is:

- authalic, lat represents the variable $\beta$ (beta).
- conformal, lat represents $\chi$ (chi).
- isometric, lat represents $\psi$ (psi). lat is a dimensionless number and does not have an angle unit.
- rectifying, lat represents $\mu$ (mu).

For authalic, conformal, and rectifying conversions, the values of lat must be consistent with angleUnit.

## angleUnit - Unit of latitude coordinates

'degrees' (default)|'radians'
Units of latitude coordinates, specified as 'degrees ' or 'radians '.

## Output Arguments

## phi - Geodetic latitude coordinates

numeric scalar, vector, matrix, or N-D array
Geodetic latitude coordinates, specified as a numeric scalar value, vector, matrix, or N-D array. phi is the same size as lat. If angleUnit is not supplied, phi is in degrees. Otherwise, values of phi are consistent with the units of angleUnit.

Data Types: single | double

## See Also

forward

## Introduced in R2013a

## map.geodesy.isDegree

True if input matches 'degree' and false if 'radian'

## Syntax

tf = map.geodesy.isDegree(angleUnit)

## Description

tf = map.geodesy.isDegree(angleUnit) returns true if angleUnit is a partial match for 'degree' (or 'degrees') and false if angleUnit is a partial match for 'radian' (or 'radians'). If angleUnit matches neither 'degrees' or 'radians', map.geodesy.isDegree returns an error.

## Examples

## Test Inputs to a Function for Validity Before Processing

Create a function to calculate a cosine. In the function, use map.geodesy.isDegree to check the validity of the inputs.

```
function y = cosine(x, angleUnit)
% X can be in either degrees or radians
if map.geodesy.isDegree(angleUnit)
 y = cosd(x);
else
 y = cos(x);
end
```


## Input Arguments

## angleUnit - Angle unit value <br> 'degree' | 'radian'

Angle unit value, specified as 'degree' or 'radian'.
Data Types: char|string

## Output Arguments

tf - True/false flag indicating if a match was found
logical scalar
True/false flag indicating if a match was found, returned as a logical scalar.

## See Also

Introduced in R2013a

## isempty

Determine if geographic or planar vector is empty

## Syntax

tf $=$ isempty (v)

## Description

$\mathrm{tf}=$ isempty (v) determines whether the geographic or planar vector v is empty.

## Examples

## Check If a Geopoint Vector Is Empty

Create a default geopoint vector.

```
gp = geopoint()
gp =
 0x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: []
 Longitude: []
```

Check if the geopoint vector is empty. A returned value of 1 (true) indicates the vector is empty.

```
isempty(gp)
ans = logical
 1
```

Create a second geopoint vector, specifying a geographic point. Confirm that this vector is not empty. A returned value of 0 (false) indicates the vector is not empty.

```
gp2 = geopoint(42.356,-71.101)
gp2 =
 lx1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: 42.3560
```

```
isempty(gp2)
```

ans = logical
0

## Input Arguments

v - Geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## Output Arguments

tf - Flag indicating geographic or planar vector is empty
logical scalar
Flag indicating geographic or planar vector is empty, returned as a logical scalar. $t f$ is True when $v$ is empty.
Data Types: logical
Introduced in R2012a

## isequal

Compare two projcrs or geocrs objects for equivalence

## Syntax

tf = isequal(crs1,crs2)

## Description

$\mathrm{tf}=$ isequal (crs1,crs2) returns logical 1 (true) if the coordinate reference systems (CRSs) crs1 and crs2 are equivalent. Otherwise, it returns logical 0 (false).

- Two projcrs objects are equivalent if they have the same geographic CRS, projection method, projection parameters, and length unit.
- Two geocrs objects are equivalent if they have the same datum name, reference spheroid, prime meridian, and angle unit.

The isequal function does not consider CRS names.

## Examples

## Compare Two Coordinate Reference Systems

Get information about two raster data sets using the georasterinfo function. Assign their coordinate reference systems to variables. In this case, the coordinate reference systems are projers objects.

```
infol = georasterinfo('MtWashington-ft.grd');
info2 = georasterinfo('MountDartmouth-ft.grd');
crs1 = infol.CoordinateReferenceSystem;
crs2 = info2.CoordinateReferenceSystem;
```

Compare the coordinate reference systems.

```
tf = isequal(crs1,crs2)
tf = logical
 1
```


## Compare Coordinate Reference Systems with Different WKT Strings

Two coordinate reference systems can be equivalent, even if the strings returned by the wktstring function are not identical.

Return information about a shapefile as a structure. Find the coordinate reference system by querying the CoordinateReferenceSystem field.

```
info = shapeinfo('landareas.shp');
g1 = info.CoordinateReferenceSystem
g1 =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```

Create a second coordinate reference system by using the geocrs function.

```
g2 = geocrs(4326)
g2 =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```

The coordinate reference systems have the same datum name, reference spheroid, prime meridian, and angle unit. Therefore, the coordinate reference systems are equivalent.

```
isequal(g1,g2)
ans = logical
 1
```

Note that the WKT strings are not identical. The string for g 2 contains additional information about the area of use ("USAGE") and authority code ("ID").

```
wktstring(g1,'Format','Formatted')
ans =
 "GEOGCRS["WGS 84",
 DATUM["World Geodetic System 1984",
 ELLIPSOID["WGS 84",6378137,298.257223563,
 LENGTHUNIT["metre",1]],
 ID["EPSG",6326]],
 PRIMEM["Greenwich",0,
 ANGLEUNIT["Degree",0.0174532925199433]],
 CS[ellipsoidal,2],
 AXIS["longitude",east,
 ORDER[1],
 ANGLEUNIT["Degree",0.0174532925199433]],
 AXIS["latitude",north,
 ORDER[2],
 ANGLEUNIT["Degree",0.0174532925199433],
 ID["EPSG",7030]]]"
```

```
wktstring(g2,'Format','Formatted')
ans =
 "GEOGCRS["WGS 84",
 DATUM["World Geodetic System 1984",
 ELLIPSOID["WGS 84",6378137,298.257223563,
 LENGTHUNIT["metre",1]]],
 PRIMEM["Greenwich",0,
 ANGLEUNIT["degree",0.0174532925199433]],
 CS[ellipsoidal,2],
 AXIS["geodetic latitude (Lat)",north,
 ORDER[1],
 ANGLEUNIT["degree",0.0174532925199433]],
 AXIS["geodetic longitude (Lon)",east,
 ORDER[2],
 ANGLEUNIT["degree",0.0174532925199433]],
 USAGE[
 SCOPE["Horizontal component of 3D system."],
 AREA["World."],
 BBOX[-90,-180, 90, 180]],
 ID["EPSG",4326]]"
```


## Input Arguments

## crs1 - First coordinate reference system

projcrs object| geocrs object
First coordinate reference system, specified as a projcrs or geocrs object.

## crs2 - Second coordinate reference system

projcrs object | geocrs object
Second coordinate reference system, specified as a projcrs or geocrs object.

## Tips

- If you expect two coordinate reference systems to be equivalent, but the isequal function returns 0 (false), you can inspect the WKT strings for differences using the wktstring function.


## See Also

```
Objects
projcrs|geocrs
```

Introduced in R2021a

## isfield

Determine if dynamic property exists in geographic or planar vector

## Syntax

```
tf = isfield(v,name)
tf = isfield(v,names)
```


## Description

$t f=$ isfield(v,name) determines whether the value specified by name is a dynamic property in geographic or planar vector v .
$\mathrm{tf}=$ isfield( $v$, names) determines whether each value specified by names is a dynamic property in v .

## Examples

## Check If a Dynamic Property Exists in a Mappoint Vector

Create a mappoint vector.

```
mp = mappoint(-33.961, 18.484, 'Name', 'Cape Town')
mp =
 1x1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 X: -33.9610
 Y: 18.4840
 Name: 'Cape Town'
```

Check if individual properties are dynamic properties in the mappoint vector.

```
isfield(mp, 'X')
ans = logical
 0
```

This result is 0 (false) because property X in the mappoint vector is not a dynamic property.

```
isfield(mp, 'Name')
ans = logical
 1
```

This result is 1 (true) because the property Name is a dynamic property that exists in the mappoint vector.

```
isfield(mp,'Latitude')
ans = logical
 0
```

This result is 0 (false) because the dynamic property Latitude does not exist in the mappoint vector.

## Check If Multiple Dynamic Properties Exist in a Geoshape Vector

Create a geoshape vector.

```
gs = geoshape(-33.961, 18.484, 'Name', 'Cape Town')
gs =
 1x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1\times1 struct]
Vertex properties:
 Latitude: -33.9610
 Longitude: 18.4840
 Feature properties:
 Name: 'Cape Town'
```

Check if a group of properties are dynamic properties in the geoshape vector.

```
tf = isfield(gs, {'Latitude','longitude','Name'})
tf = 1x3 logical array
 0 0 1
```

The first element of $t f$ is 0 (false) because the property Latitude exists in the geoshape vector but is not a dynamic property. The second element of $t f$ is 0 (false) because the property longitude does not exist in the geoshape vector (property names are case-sensitive.) The last element of tf is 1 (true), indicating that Name is a dynamic property in the geoshape vector.

## Input Arguments

## v - Geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## name - Name of single property

character vector

Name of a single property, specified as a character vector.
names - Name of multiple properties
cell array of character vectors
Name of multiple properties, specified as a cell array of character vectors.

## Output Arguments

tf - Flag indicating the dynamic property exists in the geographic or planar vector logical scalar or vector

Flag indicating the dynamic property exists in the geographic or planar vector, returned as a logical scalar or vector. Each element of $t f$ is True when the corresponding value in name or names is a dynamic property that exists in v .
Data Types: logical

## See Also

fieldnames|isprop
Introduced in R2012a

## isgeotable

Determine if input is geospatial table

## Syntax

tf = isgeotable(A)

## Description

$\mathrm{tf}=$ isgeotable(A) determines if the input A is a geospatial table. The function returns a logical 1 (true) if $A$ is a geospatial table and a logical 0 (false) otherwise.

A geospatial table is a table or timetable object in which:

- The first variable of the table is called Shape.
- The Shape variable contains geopointshape, geolineshape, geopolyshape, mappointshape, maplineshape, or mappolyshape objects.

For more information about geospatial tables, see "Create Geospatial Tables".

## Examples

## Determine if Input is Geospatial Table

Import a shapefile as a geospatial table. Verify that it is a geospatial table.

```
GT = readgeotable("concord_roads.shp");
tf = isgeotable(GT)
tf = logical
 1
```

Convert the geospatial table GT to a table T. The isgeotable function returns false because $T$ is not a geospatial table.

```
T = geotable2table(GT);
tf = isgeotable(T)
tf = logical
 0
```


## Input Arguments

A - Input array
array
Input array. The array can have any data type.

## See Also

## Functions

readgeotable|istable
Introduced in R2021b

## isinterior

Query geographic or planar points in polygon

## Syntax

inpoly = isinterior(shape,querypoint)
[inpoly,onboundary] = isinterior(shape,querypoint)

## Description

inpoly = isinterior(shape, querypoint) returns a logical array whose elements are 1 (true) when the corresponding geographic or planar points in querypoint are in the polygon shape. A point is in the polygon shape if it is either inside a solid region or on one of the boundaries.
[inpoly,onboundary] = isinterior(shape,querypoint) returns an additional logical array whose elements are 1 (true) when the corresponding points are on a boundary of the polygon shape.

## Examples

## Query Points in Polygon Using Geographic Coordinates

Read worldwide land areas into the workspace as a geospatial table. Extract the polygon shape for Australia.

```
GT = readgeotable("landareas.shp");
australia = GT(GT.Name == "Australia",:);
shape = australia.Shape;
```

Read the coordinates of world cities as a geospatial table. Extract the point shapes.

```
cities = readgeotable("worldcities.shp");
querypoint = cities.Shape;
Create an array of cities in Australia.
```

```
inpoly = isinterior(shape,querypoint);
```

inpoly = isinterior(shape,querypoint);
citiesAU = cities(inpoly,:);

```

Compare the number of world cities to the number of cities in Australia.
```

height(querypoint)

```
ans \(=318\)
height (citiesAU)
ans \(=6\)

Display Australia and the cities in Australia on a map.
```

figure
geoplot(shape)
hold on
geoplot(citiesAU,"mo",MarkerFaceColor="m")

```


\section*{Query Points in Polygon Using Planar Coordinates}

Read hydrography data into the workspace as a geospatial table. Extract the polygon shape for a pond.
```

GT = readgeotable("concord_hydro_area.shp");
pond = GT(14,:);
shape = pond.Shape;

```

Specify the coordinates of the query points using the same projected CRS as the hydrography data.
```

xq = [[207768 208399 208218 208044 207879 208210 208076];
yq = [$$
\begin{array}{llll}{91267 912324 912290 912453 912476 912542 912127];}\end{array}
$$]
querypoint = mappointshape(xq,yq);
querypoint.ProjectedCRS = shape.ProjectedCRS;

```

Determine which points are in the pond.
```

inpoly = isinterior(shape,querypoint)

```
```

inpoly = 1×7 logical array

```

Display the pond and all points on a map. Use green for points inside the pond and magenta for points outside the pond.
```

figure
geoplot(pond)
hold on
geoplot(querypoint(inpoly),"*g")
geoplot(querypoint(~inpoly),"*m")

```


\section*{Input Arguments}

\section*{shape - Polygon shape}
geopolyshape object | mappolyshape object
Polygon shape, specified as a geopolyshape object or a mappolyshape object.
- When you specify shape as a geopolyshape object, then you must specify querypoint as an array of geopointshape objects. The GeographicCRS properties of the geopolyshape and geopointshape objects must match.
- When you specify shape as a mappolyshape object, then you must specify querypoint as an array of mappointshape objects. The ProjectedCRS properties of the mappolyshape and mappointshape objects must match.

\section*{querypoint - Point shapes to query}
array of geopointshape objects | array of mappointshape objects
Point shapes to query, specified as an array of geopointshape or mappointshape objects.
- When you specify querypoint as an array of geopointshape objects, then you must specify shape as a geopolyshape object. The GeographicCRS properties of the geopointshape and geopolyshape objects must match.
- When you specify querypoint as an array of mappointshape objects, then you must specify shape as a mappolyshape object. The ProjectedCRS properties of the mappointshape and mappolyshape objects must match.

\section*{Output Arguments}

\section*{inpoly - Indicator for points inside or on boundary of polygon}
logical array
Indicator for points inside or on the boundary of the polygon, returned as a logical array. The size of inpoly matches the size of querypoint.
- A logical 1 (true) indicates that the corresponding query point is inside the polygon or on the boundary.
- A logical 0 (false) indicates that the corresponding query point is outside the polygon.

You can identify query points of interest by using inpoly to index into querypoint.
\begin{tabular}{|l|l|}
\hline Points of Interest & Example Code \\
\hline \begin{tabular}{l}
Query points inside or on the boundary of the \\
polygon
\end{tabular} & querypoint (inpoly) \\
\hline Query points outside the polygon & querypoint (~inpoly) \\
\hline
\end{tabular}

If a query point is a multipoint, then the isinterior function returns 1 (true) only when all points of the multipoint are inside the polygon or on the boundary.

If a query point does not contain coordinate data, then the isinterior function returns 0 (false).

\section*{onboundary - Indicator for points on boundary of polygon}
logical array
Indicator for points on the boundary of the polygon, returned as a logical array. The size of onboundary matches the size of querypoint.
- A logical 1 (true) indicates that the corresponding query point is on the polygon boundary.
- A logical 0 (false) indicates that the corresponding query point is inside or outside the polygon boundary.

You can identify query points of interest by using onboundary to index into querypoint.
\begin{tabular}{|l|l|}
\hline Points of Interest & Example Code \\
\hline Query points on the polygon boundary & querypoint (onboundary) \\
\hline \begin{tabular}{l}
Query points inside or outside the polygon \\
boundary
\end{tabular} & querypoint (~onboundary) \\
\hline Query points strictly inside the polygonal region & querypoint (inpoly\&~onboundary) \\
\hline
\end{tabular}

If a query point is a multipoint, then the isinterior function returns 1 (true) only when all points of the multipoint are on the polygon boundary.

If a query point does not contain coordinate data, then the isinterior function returns 0 (false).

\section*{Tips}
- If your polygon shape is in planar coordinates (a mappointshape object) and your query points are in geographic coordinates, first project the points by using the proj fwd function. Then, create a point shape from the projected coordinates by using the mappointshape function.

\section*{See Also}

\section*{Functions}
isinterior|inpolygon
Introduced in R2022a

\section*{ismap}

True for axes with map projection

\section*{Syntax}
mflag = ismap
mflag = ismap(hndl)
[mflag,msg] = ismap(hndl)

\section*{Description}
\(\mathrm{mflag}=\) ismap returns a 1 if the current axes is a map axes, and 0 otherwise.
\(m f l a g=i s m a p(h n d l)\) specifies the handle of the axes to be tested.
[mflag,msg] = ismap(hndl) returns the character vector msg if the axes is not a map axes, specifying why not.

The ismap function tests an axes object to determine whether it is a map axes.

\section*{See Also}
gcm | ismapped

Introduced before R2006a

\section*{ismapped}

True, if object is projected on map axes

\section*{Syntax}
mflag = ismapped
mflag = ismapped(hndl)
[mflag,msg] = ismapped(hndl)

\section*{Description}
\(\mathrm{mflag}=\) ismapped returns a 1 if the current object is projected on a map axes, and 0 otherwise.
mflag = ismapped(hndl) specifies the handle of the object to be tested.
[mflag,msg] = ismapped(hndl) returns the character vector msg if the axes is not projected on a map axes, specifying why not.

The ismapped function tests an object to determine whether it is projected on map axes.

\section*{See Also}
gcm | ismap

Introduced before R2006a

\section*{map.geodesy.IsometricLatitudeConverter}

Convert between geodetic and isometric latitudes

\section*{Description}

An IsometricLatitudeConverter object provides conversion methods between geodetic and isometric latitudes for an ellipsoid with a given eccentricity.

The isometric latitude is a nonlinear function of the geodetic latitude that is directly proportional to the spacing of parallels, relative to the Equator, in an ellipsoidal Mercator projection. It is a dimensionless quantity and, unlike other types of auxiliary latitude, the isometric latitude is not angle-valued. It equals Inf at the north pole and - Inf at the south pole.

\section*{Creation}

\section*{Syntax}
```

converter = map.geodesy.IsometricLatitudeConverter
converter = map.geodesy.IsometricLatitudeConverter(spheroid)

```

\section*{Description}
```

converter = map.geodesy.IsometricLatitudeConverter returns an

``` IsometricLatitudeConverter object for a sphere and sets the Eccentricity property to 0.
converter = map.geodesy.IsometricLatitudeConverter(spheroid) returns an isometric latitude converter object and sets the Eccentricity property to match the specified spheroid object.

\section*{Input Arguments}

\section*{spheroid - Reference spheroid}
referenceEllipsoid object | oblateSpheroid object | referenceSphere object
Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

\section*{Properties}

\section*{Eccentricity - Ellipsoid eccentricity \\ 0 | numeric scalar}

Ellipsoid eccentricity, specified as a numeric scalar. Eccentricity is in the interval [0, 0.5]. Eccentricities larger than 0.5 are possible in theory, but do not occur in practice and are not supported.
Data Types: double

\section*{Object Functions}
forward Convert geodetic latitude to authalic, conformal, isometric, or rectifying latitude inverse Convert authalic, conformal, isometric, or rectifying latitude to geodetic latitude

\section*{Examples}

\section*{Create an Isometric Latitude Converter Object and Set Property}
```

grs80 = referenceEllipsoid('GRS 80');

```
conv1 = map.geodesy.IsometricLatitudeConverter;
conv1.Eccentricity = grs80.Eccentricity
conv1 =

IsometricLatitudeConverter with properties:
Eccentricity: 0.0818

\section*{Create an Isometric Latitude Converter Object Specifying Spheroid}
```

grs80 = referenceEllipsoid('GRS 80');
conv2 = map.geodesy.IsometricLatitudeConverter(grs80)
conv2 =
IsometricLatitudeConverter with properties:
Eccentricity: 0.0818

```

\section*{See Also}

\section*{Functions}
geocentricLatitude | parametricLatitude
```

Objects
AuthalicLatitudeConverter|ConformalLatitudeConverter|
RectifyingLatitudeConverter

```

Introduced in R2013a

\section*{ispolycw}

True if polygon vertices are in clockwise order

\section*{Syntax}
tf = ispolycw(x,y)

\section*{Description}
\(\mathrm{tf}=\) ispolycw \((\mathrm{x}, \mathrm{y})\) returns true if the polygonal contour vertices represented by x and y are ordered in the clockwise direction. \(x\) and \(y\) are Cartesian vectors with the same number of elements.

Alternatively, x and y can contain multiple contours, either in NaN -separated vector form or in cell array form. In that case, ispolycw returns a logical array containing one true or false value per contour.
ispolycw always returns true for polygonal contours containing two or fewer vertices.
Vertex ordering is not well defined for self-intersecting polygonal contours. For such contours, ispolycw returns a result based on the order or vertices immediately before and after the left-most of the lowest vertices. In other words, of the vertices with the lowest \(y\) value, find the vertex with the lowest \(x\) value. For a few special cases of self-intersecting contours, the vertex ordering cannot be determined using only the left-most of the lowest vertices; for these cases, ispolycw uses a signed area test to determine the ordering.

\section*{Class Support}
\(x\) and \(y\) may be any numeric class.

\section*{Examples}

Orientation of a square:
```

x = [0 1 1 1 0 0];
y = [0 0 1 1 0];
ispolycw(x, y) % Returns 0
ispolycw(fliplr(x), fliplr(y)) % Returns 1

```

\section*{Tips}

You can use ispolycw for geographic coordinates if the polygon does not cross the Antimeridian or contain a pole. A polygon contains a pole if the longitude data spans 360 degrees. To use ispolycw with geographic coordinates, specify the longitude vector as \(x\) and the latitude vector as \(y\).

\author{
See Also \\ poly2cw | poly2ccw | polyshape \\ Topics \\ "Create and Display Polygons"
}

Introduced before R2006a

\section*{isprop}

Determine if property exists in geographic or planar vector

\section*{Syntax}
tf = isprop(v, name)
tf = isprop(v,names)

\section*{Description}
\(\mathrm{tf}=\) isprop(v , name) determines whether the value specified by name is a property in geographic or planar vector v .
\(\mathrm{tf}=\) isprop(v , names) determines whether each value specified by names is a property in v .

\section*{Examples}

\section*{Check If a Single Property Exists in Geoshape Vector}

Create a geoshape vector.
```

s = geoshape(-33.961, 18.484, 'Name', 'Cape Town');

```

Check if Latitude and Name are properties in the geoshape vector.
```

isprop(s, 'Latitude')
ans = logical
1
isprop(s, 'Name')
ans = logical
1

```

Both Latitude and Name are properties in the geoshape vector.

\section*{Check If Multiple Properties Exist in a Mappoint Vector}
```

Create a mappoint vector.
mp = mappoint(-33.961, 18.484, 'Name', 'Cape Town')
mp =
1x1 mappoint vector with properties:
Collection properties:

```

Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
X: -33.9610
Y: 18.4840
Name: 'Cape Town'

Check if a group of properties exist in the mappoint vector.
```

tf = isprop(mp, {'X','x','Latitude','Name'})
tf = 1x4 logical array
1 0 0 1

```

The first and last elements of tf are 1 (true) because the properties \(X\) and Name exist in the mappoint vector. The second and third elements of \(t f\) are 0 (false) because the properties \(x\) and Latitude do not exist in the mappoint vector. Property names are case-sensitive.

\section*{Input Arguments}
v - Geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

\section*{name - Name of single property}
character vector
Name of a single property, specified as a character vector.

\section*{names - Name of multiple properties}
cell array of character vectors
Name of multiple properties, specified as a cell array of character vectors.

\section*{Output Arguments}

\section*{tf - Flag indicating the property exists in the geographic or planar vector}
logical scalar or vector
Flag indicating the property exists in the geographic or planar vector, returned as a logical scalar or vector. Each element of \(t f\) is True when the corresponding value in name or names is a property that exists in \(v\).

Data Types: logical

\section*{See Also}
isfield|properties

\section*{Introduced in R2012a}

\section*{isShapeMultipart}

True if polygon or line has multiple parts

\section*{Syntax}
tf = isShapeMultipart(xdata, ydata)

\section*{Description}
tf = isShapeMultipart(xdata, ydata) returns 1 (true) if the polygon or line shape specified by xdata and ydata consists of multiple NaN-separated parts (i.e. has inner or multiple polygon rings or multiple line segments). The coordinate arrays xdata and ydata must match in size and have identical NaN locations.

\section*{Examples}

\section*{Check If Datasets Are Multipart}

Create a simple data set and check if it's multipart. If a data set contains NaN separators, isShapeMultipart returns 1 , otherwise 0 .
```

sample_xdata = [0 0 1];
sample_ydata = [0 1 0];
isShapeMultipart(sample_xdata,sample_ydata)
ans = logical
0

```

Create simple multipart data sets.
```

multi xdata = [0 0 1 NaN 2 2 3 3];
multi_ydata = [0 1 0 NaN 2 3 3 2];
isShapeMultipart(multi_xdata,multi_ydata)
ans = logical
1

```

Check a real data set.
```

load coastlines
isShapeMultipart(coastlat,coastlon)
ans = logical
1

```

Check the data in a shapefile.
```

S = shaperead('concord_hydro_area.shp');
isShapeMultipart(S(1).X, S(1).Y)

```
```

ans = logical
0

```

Check another dataset in the shapefile.
isShapeMultipart(S(14).X, S(14).Y)
ans \(=\) logical
1

\section*{See Also}
polysplit

\section*{Topics}
"Create and Display Polygons"

Introduced in R2006a

\section*{km2deg}

Convert spherical distance from kilometers to degrees

\section*{Syntax}
```

deg = km2deg(km)
deg = km2deg(km,radius)
deg = km2deg(km,sphere)

```

\section*{Description}
deg \(=\mathrm{km} 2 \mathrm{deg}(\mathrm{km})\) converts distances from kilometers to degrees, as measured along a great circle on a sphere with a radius of 6371 km , the mean radius of the Earth.
deg \(=\mathrm{km} 2 \mathrm{deg}(\mathrm{km}\), radius) converts distances from kilometers to degrees, as measured along a great circle on a sphere having the specified radius.
deg \(=\) km2deg(km,sphere) converts distances from kilometers to degrees, as measured along a great circle on a sphere approximating an object in the Solar System.

\section*{Examples}

\section*{Convert Kilometers to Degrees}

Two cities are 340 km apart. How many degrees of arc is that?
```

deg = km2deg(340)
deg =
3.0577

```

How many degrees would it be if the cities were on Mars?
```

deg = km2deg(340,'mars')
deg =
5.7465

```

\section*{Input Arguments}

\section*{km - Distance in kilometers}
numeric array
Distance in kilometers, specified as a numeric array.
Data Types: single | double

\section*{radius - Radius}

\section*{6371 (default) | numeric scalar}

Radius of sphere in units of kilometers, specified as a numeric scalar.

\section*{sphere - Sphere}
'sun'|'moon'|'mercury'|'venus'| 'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ', 'moon','mercury','venus', 'earth', 'mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

\section*{Output Arguments}
deg - Distance in degrees
numeric array
Distance in degrees, returned as a numeric array.
Data Types: single | double

\author{
See Also \\ deg2rad | rad2deg | deg2km | km2rad | nm2deg | sm2deg \\ Introduced in R2007a
}

\section*{km2nm}

Convert kilometers to nautical miles

\section*{Syntax}
\(\mathrm{nm}=\mathrm{km} 2 \mathrm{~nm}(\mathrm{~km})\)

\section*{Description}
\(\mathrm{nm}=\mathrm{km} 2 \mathrm{~nm}(\mathrm{~km})\) converts distances from kilometers to nautical miles.

\section*{Examples}

\section*{Convert Kilometers to Nautical Miles}

Convert 500 kilometers to nautical miles.
\(\mathrm{nm}=\mathrm{km} 2 \mathrm{~nm}(500)\)
\(n m=269.9784\)

\section*{Input Arguments}
km - Distance in kilometers
numeric array
Distance in kilometers, specified as a numeric array.

\section*{Output Arguments}
nm - Distance in nautical miles
numeric array
Distance in nautical miles, returned as a numeric array of the same size as km.

\section*{See Also}

Functions
nm2km | deg2km | km2deg | deg2nm | nm2deg

Introduced in R2007a

\section*{km2rad}

Convert spherical distance from kilometers to radians

\section*{Syntax}
```

rad = km2rad(km)
rad = km2rad(km,radius)
rad = km2rad(km,sphere)

```

\section*{Description}
rad \(=\mathrm{km} 2 \mathrm{rad}(\mathrm{km})\) converts distances from kilometers to radians, as measured along a great circle on a sphere with a radius of 6371 km , the mean radius of the Earth.
rad \(=\mathrm{km} 2 \mathrm{rad}(\mathrm{km}\), radius) converts distances from kilometers to radians, as measured along a great circle on a sphere having the specified radius.
rad \(=\mathrm{km} 2 \mathrm{rad}(\mathrm{km}\), sphere) converts distances from kilometers to radians, as measured along a great circle on a sphere approximating an object in the Solar System.

\section*{Examples}

\section*{Convert Kilometers to Radians}

How many radians does \(1,000 \mathrm{~km}\) span on the Earth and on the Moon?
```

rad = km2rad(1000)
rad =
0.1570
rad = km2rad(1000,'moon')
rad =
0.5754

```

\section*{Input Arguments}

\section*{km - Distance in kilometers}
numeric array
Distance in kilometers, specified as a numeric array.
Data Types: single | double

\section*{radius - Radius}

6371 (default) | numeric scalar
Radius of sphere in units of kilometers, specified as a numeric scalar.

\section*{sphere - Sphere}
'sun' | 'moon' | 'mercury' | 'venus'| 'earth' | ...

Sphere approximating an object in the Solar System, specified as one of the following values: ' sun', 'moon','mercury', 'venus','earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

\section*{Output Arguments}

\section*{rad - Distance in radians}
numeric array
Distance in radians, returned as a numeric array.
Data Types: single|double

\section*{See Also}
deg2rad \| rad2deg | km2deg \| nm2rad \| sm2rad \| rad2km
Introduced in R2007a

\section*{km2sm}

Convert kilometers to statute miles

\section*{Syntax}
\(\mathrm{sm}=\mathrm{km} 2 \mathrm{sm}(\mathrm{km})\)

\section*{Description}
\(\mathrm{sm}=\mathrm{km} 2 \mathrm{sm}(\mathrm{km})\) converts distances from kilometers to statute miles.

\section*{Examples}

Convert Kilometers to Statute Miles
Convert 500 kilometers to statute miles.
\(\mathrm{sm}=\mathrm{km} 2 \mathrm{sm}(500)\)
\(\mathrm{sm}=310.6850\)

\section*{Input Arguments}
km - Distance in kilometers
numeric array
Distance in kilometers, specified as a numeric array.

\section*{Output Arguments}

\section*{sm - Distance in statute miles}
numeric array
Distance in statute miles, returned as a numeric array of the same size as km .

\section*{See Also}

Functions
sm2km | deg2km | km2deg | deg2sm | sm2deg

Introduced in R2007a

\section*{kmlwrite}

Write geographic data to KML file

\section*{Syntax}
kmlwrite(filename, S)
kmlwrite(filename, address)
kmlwrite(\(\qquad\) ,Name, Value)

\section*{Description}
kmlwrite(filename, S) writes the geographic point, line, or polygon data stored in S to the file specified by filename in Keyhole Markup Language (KML) format. The kmlwrite function creates a KML Placemark in the file and populates the tags in the placemark with the data in S .
kmlwrite(filename, address) writes address to the file specified by filename in KML format. address is a string scalar or character vector containing freeform address data, that can include street, city, state, country, and/or postal code. To specify multiple addresses, use a cell array of character vectors or string scalars. kmlwrite creates a KML Placemark in the file, setting the value of the address tag. An address is an alternative way to specify a point, instead of using latitude and longitude.
kmlwrite(\(\qquad\) ,Name, Value) specifies name-value pairs that set additional KML feature properties. Parameter names can be abbreviated and are case-insensitive.

\section*{Examples}

\section*{Write Polygon Data to KML File}

Import a shapefile containing polygon data into a geospatial table. The polygons represent state boundaries.
```

GT = readgeotable("usastatelo.shp");

```

Create a colormap for the data using random, muted colors.
```

colors = polcmap(height(GT));

```

Write the polygon data to a KML file called usastatelo.kml. Specify the labels and the colors of the polygon faces and edges using name-value arguments.
```

kmlwrite("usastatelo.kml",GT,"Name",GT.Name, ...
"FaceColor",colors,"EdgeColor","k")

```

\section*{Write Point Data to KML File Using Geographic Point Vector}

Import point data as a geographic point (geopoint) vector.
```

placenames = gpxread("boston_placenames.gpx");

```

Specify the colors to use with the point data.
```

colors = jet(length(placenames));

```

Write the point data to a file called boston_placenames. kml. Specify the point names and icon colors using name-value arguments.
```

kmlwrite("boston_placenames.kml",placenames,"Name",placenames.Name,"Color",colors)

```

\section*{Write Line Data to KML File Using Geographic Shape Vector}

Read line features into a geographic shape (geoshape) vector.
```

tracks = gpxread("sample_tracks.gpx","Index",1:2);

```

Write the line data to a KML file. Specify the colors, widths, names, and descriptions of the lines using name-value arguments.
```

colors = ["red" "green"];
description = tracks.Metadata.Name;
name = ["track1" "track2"];
kmlwrite("sample_tracks.kml",tracks,"Color",colors,"LineWidth",2, ...
"Description",description, "Name", name)

```

\section*{Write Geographic Data to KML File Using Geographic Structure Array}

Read the names and locations of major European cities from a shapefile. The shaperead function returns a geographic structure array (geostruct).
```

latlim = [30;75];
lonlim = [-25;45];
cities = shaperead("worldcities.shp","UseGeoCoords",true, ...
"BoundingBox",[lonlim, latlim]);

```

Convert the structure to a geographic point (geopoint) vector.
```

cities = geopoint(cities);

```

Write the data to a KML file. Include city names in the placemarks by using the Name name-value argument. Remove the default Description table.
```

kmlwrite("european_cities.kml",cities,"Name",cities.Name,"Description",{});

```

\section*{Write Unstructured Address to KML File}

Create a cell array of unstructured addresses. For this example, use the names of several Australian cities.
```

address = {'Perth, Australia', ...
'Melbourne, Australia', ...
'Sydney, Australia'};

```

Write the unstructured address data to a KML file called australian_cities.kml. Include the names of the cities in the placemarks using the Name name-value argument.
kmlwrite("australian_cities.kml", address, "Name", address);

\section*{Input Arguments}

\section*{filename - Name of output file}
character vector | string scalar
Name of output file, specified as a string scalar or character vector. kmlwrite writes the file in the current folder, unless you specify a full or relative path name. If the file name includes an extension, it must be . kml.

Data Types: char | string

\section*{S - Geographic features to write to file}
geospatial table | geopoint vector | geoshape vector | geographic structure array
Geographic features to write to file, specified as one of the following:
- A geospatial table containing geopointshape, geolineshape, or geopolyshape objects. The kmlwrite function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A geopoint vector.
- A geoshape vector. The Geometry field identifies the type of the data as 'point ', ' line ', or 'polygon'.
- A geographic structure array (geostruct) with Lat and Lon fields. If you specify a geographic structure array with \(X\) and \(Y\) fields, kmlwrite throws an error.

The attribute fields of \(S\) appear as a table in the Description tag of the Placemark for each element of S. The attribute fields appear in the table in the same order as they occur in S.

If S contains valid altitude data, kmlwrite writes the field values to the file as KML altitudes and sets the altitude interpretation to 'relativeToSeaLevel '. If S does not contain altitude data, kmlwrite sets the altitude field in the file to 0 and sets the altitude interpretation to 'clampToGround '. The altitude data can be in a field named either Elevation, Altitude, or Height. If S contains fields with more than one of these names, kmlwrite issues a warning and ignores the altitude fields.

\section*{address - Location of KML placemark}
character vector \(\mid\) string scalar | cell array of character vectors
Location of KML placemark, specified as a string scalar, character vector or cell array of character vectors containing freeform address data, such as street, city, state, and postal code. If address is a cell array, each cell represents a unique location.
Data Types: char|string|cell

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Name','Point Reyes'

\section*{Name - Label of object displayed in viewer}
'Address \(N\) ', 'Point \(N\) ', 'Line \(N\) ', or 'Polygon \(N\) ', where \(N\) is the index of the feature. (default) | string scalar | character vector | cell array of character vectors

Label for an object displayed in viewer, specified as a string scalar, character vector, or cell array of character vectors. If you specify a string scalar or character vector, kmlwrite applies the name to all objects. If a string vector or cell array of character vectors, you must specify a name for each feature. That is, the cell array must be the same length as S or address. The following describes the default behavior for various features.
\begin{tabular}{|l|l|}
\hline Feature & Default Name \\
\hline Address & 'Address \(N\) ' where \(N\) is the index of the feature. \\
\hline Point & 'Point \(N\) ' where \(N\) is the index of the feature. \\
\hline Multipoint & \begin{tabular}{l}
'Multipoint \(N\) ' where \(N\) is the index of the feature. kmlwrite places the \\
points in the named folder and each point is named 'Point \(M^{\prime}\) ' where \(M\) is \\
the index of the point.
\end{tabular} \\
\hline Line & \begin{tabular}{l}
'Line \(N\) ' where \(N\) is the index of the feature. If the line data contains \(N a N\) \\
values, \(k m l w r i t e ~ p l a c e s ~ t h e ~ l i n e ~ s e g m e n t s ~ i n ~ a ~ f o l d e r ~ n a m e d ~ ' S e g m e n t ~\) \\
wh' \\
where \(M\) is the line segment number.
\end{tabular} \\
\hline Polygon & \begin{tabular}{l}
'Polygon \(N\) ' where \(N\) is the index of the feature. If the polygon vertex list \\
contains multiple outer rings, kmlwrite places each ring in a folder labeled \\
'Part \(M^{\prime}\), where \(M\) is the number for that feature.
\end{tabular} \\
\hline
\end{tabular}

Data Types: char \| string | cell

\section*{Description - Content to be displayed in the placemark description balloon}
string scalar | character vector | cell array of character vectors | attribute specification
Content to be displayed in the placemark description balloon, specified as a string scalar or character vector, cell array of character vectors, or an attribute specification. kmlwrite uses this data to set the values of the feature description tags. The description appears in the description balloon associated with the feature in Google Earth \({ }^{\text {TM }}\).
- If you specify a string scalar or character vector, kmlwrite applies the description to all objects.
- If you specify a string vector or cell array of character vectors, there must be one label for each feature; that is, it must be the same length as S or address.

Description elements can be either plain text or tagged with HTML mark up. When in plain text, Google Earth applies basic HTML formatting automatically. For example, Google Earth replaces newlines with line break tags and encloses valid URLs in anchor tags to make them hyperlinks. To see examples of HTML tags that are recognized by Google Earth, view https://earth.google.com.

If you provide an attribute specification, the attribute fields of \(S\) display as a table in the description tag of the placemark for each element of \(S\), in the order in which the fields appear in the specification. To construct an attribute spec, call makeattribspec and then modify the output to remove attributes or change the Format field for one or more attributes. The latitude and longitude coordinates of \(S\) are not considered to be attributes. If included in an attribute spec, kmlwrite ignores them.
Data Types: char|string|cell

\section*{Icon - File name of custom icon}
defined by viewer (default) | string scalar | character vector | cell array of character vectors
File name of custom icon, specified as a string scalar, character vector or cell array of character vectors.
- If a string scalar or character vector, kmlwrite applies the value to all icons.
- If a string vector or cell array of character vectors, specify an icon for each feature; that is, the cell array must be the same length as \(S\) or address.
- If the string scalar or character vector is an Internet URL, the URL must include the protocol type.
- If the icon file name is not in the current folder, or in a folder on the MATLAB path, specify a full or relative path name.

\section*{Data Types: char|string|cell}

\section*{IconScale - Scaling factor for icon}
positive numeric scalar or vector
Scaling factor for the icon, specified as a positive numeric scalar or vector.
- If a scalar, kmlwrite applies the value to all objects
- If a vector, specify a scale factor for each feature. That is, the cell array must be the same length as \(S\) or address.

Data Types: single | double| int8| int16| int32| int64|uint8|uint16|uint32

\section*{Color - Color of icons, lines, or the faces and edges of polygons}
defined by viewer (default) | color name \| RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | ' none'

Color of icons, lines, or the faces and edges of polygons, specified as one of these values.
- A color name such as 'red ' or a short name such as 'r'.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, \([0.4\) 0.6 0.7].
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r', 'g', 'b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.
- To apply the same color to all features, specify a single color name or RGB triplet.
- To apply a different color to each feature, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of \(S\) or address.
- To create a polygon geoshape with no fill or edge color, specify 'none'.
- To exclude a color specification for icons or lines, specify ' none '. In this case, the viewer defines the icon or line color.

Note that Color specifies the color of polygon faces and edges if you do not specify FaceColor and EdgeColor.

This table contains the color names and equivalent RGB triplets for some common colors.
\begin{tabular}{|l|l|l|l|}
\hline Color Name & Short Name & RGB Triplet & Appearance \\
\hline 'red' & 'r' & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} & \\
\hline 'green' & 'g' & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} & \\
\hline 'blue' & 'b' & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} & \\
\hline 'cyan' & 'c' & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} & \\
\hline 'magenta' & 'm' & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} & \\
\hline 'yellow' & 'y' & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} & \\
\hline 'black' & 'k' & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} & \\
\hline 'white' & 'w' & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} & \\
\hline
\end{tabular}

\section*{Data Types: char | string | cell|double}

\section*{Alpha - Transparency of the icons, lines, or the faces and edges of polygons}

1 (fully opaque) (default) | numeric scalar or vector in the range [0 1]
Transparency of the icons, lines, or the faces and edges of polygons, specified as a numeric scalar or vector in the range [0 1]. If a scalar, kmlwrite applies the value to all features. If a vector, specify a value for each feature; that is, the vector must be the same length as S or address. If S is a polygon geoshape, kmlwrite applies the value to all the polygon faces if FaceAlpha is not specified and the polygon edges if EdgeAlpha is not specified.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32

\section*{LineWidth - Width of lines and polygon edges in pixels}
defined by viewer (default) | positive numeric scalar or vector
Width of lines and polygon edges in pixels, specified as a positive numeric scalar or vector.
- If a scalar, kmlwrite applies the value to all polygon edges.
- If a vector, specify a value for each feature. That is, the vector must have the same length as S .

Data Types: single|double |int8|int16|int32|int64|uint8|uint16|uint32

\section*{FaceColor - Color of polygon faces}
defined by viewer (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | ' none '

Color of polygon faces, specified as one of these values.
- A color name such as 'red ' or a short name such as ' \(r\) '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, \(\left[\begin{array}{lll}0.4 & 0.6 & 0.7\end{array}\right]\).
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r', 'g', 'b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.
- To apply the same color to all polygon faces, specify a single color name or RGB triplet.
- To apply a different color to each face, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of \(S\) or address.
- To create a polygon geoshape with no face color, specify ' none '.

This table contains the color names and equivalent RGB triplets for some common colors.
\begin{tabular}{|l|l|l|l|}
\hline Color Name & Short Name & RGB Triplet & Appearance \\
\hline 'red' & 'r' & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} & \\
\hline 'green' & 'g' & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} & \\
\hline 'blue' & 'b' & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} & \\
\hline 'cyan' & 'c' & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} & \\
\hline 'magenta' & 'm' & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} & \\
\hline 'yellow' & 'y' & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} & \\
\hline 'black' & 'k' & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} & \\
\hline 'white' & 'w' & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} & \\
\hline
\end{tabular}

Data Types: char|string|cell|double

\section*{FaceAlpha - Transparency of polygon faces}

1 (fully opaque) (default) | numeric scalar or vector in the range [0 1]
Transparency of polygon faces, specified as a numeric scalar or vector in the range [0 1].
- If a scalar, kmlwrite applies the value to all polygon faces.
- If a vector, specify a value for each polygon face; that is, the vector must be the same length as S or address.

\section*{Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32}

\section*{EdgeColor - Color of polygon edges}
defined by viewer (default) | color name \| RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | 'none '

Color of polygon edges, specified as one of these values.
- A color name such as 'red ' or a short name such as ' \(r\) '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r','g', 'b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.
- To apply the same color to the edges of all polygons, specify a single color name or RGB triplet.
- To apply a different edge color for each polygon, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of \(S\) or address.
- To create a polygon geoshape with no edge color, specify 'none '.

This table contains the color names and equivalent RGB triplets for some common colors.
\begin{tabular}{|l|l|l|l|}
\hline Color Name & Short Name & RGB Triplet & Appearance \\
\hline 'red' & 'r' & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} & \\
\hline 'green' & 'g' & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} & \\
\hline 'blue' & 'b' & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} & \\
\hline 'cyan' & 'c' & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} & \\
\hline 'magenta' & 'm' & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} & \\
\hline 'yellow' & 'y' & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} & \\
\hline 'black' & 'k' & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} & \\
\hline 'white' & 'w' & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} & \\
\hline
\end{tabular}

Data Types: char | string | cell | double

\section*{EdgeAlpha - Transparency of the polygon edges}

1 (fully opaque) (default) | numeric scalar or vector in the range [0 1]
Transparency of the polygon edges, specified as a numeric scalar or vector.
- If a scalar, kmlwrite applies the value to all polygon edges.
- If a vector, y specify a value for each polygon edge; that is, the vector must be the same length as S. If you do not specify EdgeAlpha, kmlwrite uses the value of Alpha, if specified. If you do not specify either value, kmlwrite uses the default value 1 (fully opaque).

\section*{Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32}

\section*{Extrude - Connect polygons to the ground}

\section*{false (default) | true | logical or numeric scalar | logical or numeric vector}

Connect polygon to the ground, specified as a logical or numeric scalar, true (1) or false (0), or vector. If a scalar, the values applies to all polygons. If a vector, specify a value for each polygon; that is, the vector must be the same length as S or address.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

\section*{CutPolygons - Cut polygon parts}

\section*{true (default) | false}

Cut polygon parts, specified as a logical or numeric scalar true (1) or false (0). If true, kmlwrite cuts polygon parts at the PolygonCutMeridian value. If true, and the polygon parts require cutting, kmlwrite returns an error if the altitude values are nonuniform.
Data Types: single | double | int8| int16| int32| int64|uint8|uint16|uint32|logical

\section*{PolygonCutMeridian - Meridian where polygon parts are cut}

180 (default) | scalar numeric
Meridian where polygon parts are cut, specified as a scalar numeric.
Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32

\section*{AltitudeMode - Interpretation of altitude values}
'clampToGround' | 'relativeToGround' | 'relativeToSeaLevel'
Interpretation of altitude values, specified as one of the following values:
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 'clampToGround ' & \begin{tabular}{l}
Ignore altitude values and set the feature on the ground. \\
This is the default interpretation when you do not specify \\
altitude values.
\end{tabular} \\
\hline 'relativeToGround ' & \begin{tabular}{l}
Set altitude values relative to the actual ground \\
elevation of a particular feature
\end{tabular} \\
\hline 'relativeToSeaLevel ' & \begin{tabular}{l}
Set altitude values relative to sea level, regardless of the \\
actual elevation values of the terrain beneath the \\
feature. (Named ' absolute' in the KML specification.) \\
This is the default interpretation when you specify \\
altitude values.
\end{tabular} \\
\hline
\end{tabular}

\section*{Data Types: char | string}

\section*{LookAt - Position of virtual camera (eye) relative to object being viewed}
geopoint vector
Position of the virtual camera (eye) relative to the object being viewed, specified as a geopoint vector. The fields of the geopoint vector, listed below, define the view. LookAt is limited to looking down at a feature. To tilt the virtual camera to look above the horizon into the sky, use the Camera parameter.
\begin{tabular}{|l|l|l|}
\hline Property Name & Description & Data Type \\
\hline Latitude & \begin{tabular}{l}
Latitude of the object the camera is \\
looking at, in degrees
\end{tabular} & Scalar double, from -90 to 90 \\
\hline Longitude & \begin{tabular}{l}
Longitude of the object the camera \\
is looking at, in degrees
\end{tabular} & Scalar double, from -180 to 180 \\
\hline Altitude & \begin{tabular}{l}
Altitude of the object the camera is \\
looking at from the Earth's surface, \\
in meters
\end{tabular} & Scalar numeric \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Property Name & Description & Data Type \\
\hline Heading & \begin{tabular}{l}
Camera direction (azimuth), in \\
degrees (optional)
\end{tabular} & \begin{tabular}{l}
Scalar numeric [0 360], default 0 \\
(true North)
\end{tabular} \\
\hline Tilt & \begin{tabular}{l}
Angle between the direction of the \\
LookAt position and the normal to \\
the surface of the Earth, in degrees \\
(optional)
\end{tabular} & \begin{tabular}{l}
Scalar numeric [0 90], default 0 \\
(directly above)
\end{tabular} \\
\hline Range & \begin{tabular}{l}
Distance in meters from the object \\
specified by latitude, longitude, \\
and altitude to the location of the \\
camera.
\end{tabular} & Scalar numeric, default 0 \\
\hline AltitudeMode & \begin{tabular}{l}
Interpretation of the camera \\
altitude value (optional)
\end{tabular} & \begin{tabular}{l}
'relativeToSeaLevel ' ' \\
'clampToGround ', (default) \\
'relativeToGround '
\end{tabular} \\
\hline
\end{tabular}

\section*{Camera - Position of virtual camera relative to surface of Earth}
geopoint vector
Position of virtual camera (eye) relative to Earth's surface, specified as a geopoint vector. The fields of the geopoint vector, listed below, define the view. Camera provides full six degrees of freedom control over the view, so you can position the camera in space and then rotate it around the \(x\)-, \(y\)-, and \(z\)-axes. You can tilt the camera view so that you're looking above the horizon into the sky.
\begin{tabular}{|l|l|l|}
\hline Property Name & Description & Data Type \\
\hline Latitude & \begin{tabular}{l}
Latitude of the virtual camera (eye), \\
in degrees
\end{tabular} & \begin{tabular}{l}
Scalar double, in the range [-90 \\
90]
\end{tabular} \\
\hline Longitude & \begin{tabular}{l}
Longitude of the virtual camera, in \\
degrees
\end{tabular} & \begin{tabular}{l}
Scalar double, in the range [- 180 \\
\(180]\).
\end{tabular} \\
\hline Altitude & \begin{tabular}{l}
Distance of the virtual camera from \\
the Earth's surface, in meters
\end{tabular} & Scalar numeric \\
\hline Heading & \begin{tabular}{l}
Direction (azimuth) in degrees \\
(optional)
\end{tabular} & \begin{tabular}{l}
Scalar numeric [0 360], default 0 \\
(true North)
\end{tabular} \\
\hline Tilt & \begin{tabular}{l}
Camera rotation around the X-axis, \\
in degrees (optional)
\end{tabular} & \begin{tabular}{l}
Scalar numeric [0 180], default 0 \\
(directly above)
\end{tabular} \\
\hline Roll & \begin{tabular}{l}
Camera rotation in degrees around \\
the Z-axis (optional)
\end{tabular} & \begin{tabular}{l}
Scalar numeric, in the range [-180 \\
180], default 0
\end{tabular} \\
\hline AltitudeMode & \begin{tabular}{l}
Specifies how camera altitude is \\
interpreted (optional)
\end{tabular} & \begin{tabular}{l}
'relativeToSeaLevel ', \\
'clampToGround ', \\
'relativeToGround ' (default)
\end{tabular} \\
\hline
\end{tabular}

\section*{Tips}
- You can view KML files with the Google Earth browser, which must be installed on your computer.

For Windows, use the winopen function:
winopen(filename)
For Linux, if the file name is a partial path, use the following commands:
```

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

```

For Mac, if the file name is a partial path, use the following commands:
```

cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

```
- You can also view KML files with a Google Maps \({ }^{\mathrm{TM}}\) browser. The file must be located on a web server that is accessible from the Internet. A private intranet server will not suffice because Google's server must be able to access the URL that you provide. The following is a template for using Google Maps. Replace your-web-server-path with a real value.
```

GMAPS URL = 'http://maps.google.com/maps?q=';
KML_URL = 'http://your-web-server-path';
web([GMAPS_URL KML_URL])

```

\section*{Compatibility Considerations}

\section*{kmlwrite syntaxes that accept numeric vectors are not recommended}

Not recommended starting in R2016a
Syntaxes of the kmlwrite function that accept numeric vectors are not recommended. Use the kmlwritepoint function instead. To update your code, replace instances of the kmlwrite function with the kmlwritepoint function.
\begin{tabular}{|l|l|}
\hline Not Recommended & Recommended \\
\hline kmlwrite(filename, lat,lon) & kmlwritepoint(filename, lat, lon) \\
\hline kmlwrite(filename, lat,lon, alt) & kmlwritepoint(filename, lat, lon, alt) \\
\hline
\end{tabular}

\section*{See Also}
kmlwriteline|kmlwritepoint|kmlwritepolygon|makeattribspec|shapewrite

\section*{Introduced in R2007b}

\section*{kmlwriteline}

Write geographic line data to KML file

\section*{Syntax}
```

kmlwriteline(filename,latitude,longitude)
kmlwriteline(filename,latitude,longitude,altitude)
kmlwriteline(

```
\(\qquad\)
``` , Name, Value)
```


Description

kmlwriteline(filename,latitude,longitude) writes the geographic line data specified by latitude and longitude to the file specified by filename in Keyhole Markup Language (KML) format. kmlwriteline creates a KML Placemark element for each line, using the latitude and longitude values as the coordinates of the points that define the line. kmlwriteline sets the altitude values associated with the line to 0 and sets the altitude interpretation to ' clampToGround '.
kmlwriteline(filename, latitude, longitude, altitude) uses the values of latitude, longitude, and altitude to set the coordinates of the points that define the line. When you specify an altitude value, kmlwriteline sets the AltitudeMode attribute to 'relativeToSeaLevel'.
kmlwriteline(\qquad ,Name, Value) specifies name-value pairs that set additional KML feature properties. Parameter names can be abbreviated and are case-insensitive.

Examples

Write Line Data to KML File

Load geographic data describing coast lines.
load coastlines
Define the name of the KML file you want to create.

```
filename = 'coastlines.kml';
```

Write the line data to the file, specifying the color and width of the line.

```
kmlwriteline(filename, coastlat, coastlon, 'Color','black', ...
    'LineWidth', 3);
```


Retrieve GPS Track Log from GPX File and Write Data to KML File

Read the track log from a GPX file. gpxread returns the data as a geopoint vector.

```
points = gpxread('sample_tracks');
```

Get the latitude, longitude, and altitude values from the data.

```
lat = points.Latitude;
lon = points.Longitude;
alt = points.Elevation;
```

Define the name of the KML file you want to create.

```
filename = 'track.kml';
```

Write the geographic line data to the file, specifying a description and a name.

```
kmlwriteline(filename,lat, lon, alt, ...
    'Description', points.Metadata.Name, 'Name', 'Track Log');
```


Display Equally Spaced Waypoints Along Two Great Circle Tracks

Read the track data into a geopoint vector.

```
cities = geopoint(shaperead('worldcities','UseGeoCoords',true));
```

Get the latitude, longitude, and altitude values from the data. The example uses London and New York.

```
city1 = 'London';
city2 = 'New York';
pt1 = cities(strcmp(city1,cities.Name));
pt2 = cities(strcmp(city2,cities.Name));
lat1 = pt1.Latitude;
lon1 = pt1.Longitude;
lat2 = pt2.Latitude;
lon2 = pt2.Longitude;
nlegs = 20;
[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs);
midpoint = nlegs/2;
altscale = 5000;
alt = [0:midpoint midpoint-1:-1:0] * altscale;
```

Specify the view using LookAt parameter values.

```
lookLat = 49.155804;
lookLon = -56.698494;
lookAt = geopoint(lookLat, lookLon);
lookAt.Range = 2060400;
lookAt.Heading = 10;
lookAt.Tilt = 70;
```

Write the geographic line data to two KML files, specifying color, width, and view. One track displays altitude values and the other has the track clamped to the ground.

```
width = 4;
filename1 = 'altitudetrack.kml';
kmlwriteline(filename1,lat,lon,alt,'Color','k','LineWidth',width)
filename2 = 'groundtrack.kml';
```

kmlwriteline(filename2,lat,lon,alt,'Color','w','LineWidth', width, ...
'LookAt', lookAt, 'AltitudeMode', 'clampToGround')

Input Arguments

filename - Name of output file
character vector | string scalar
Name of output file, specified as a string scalar or character vector. kmlwriteline creates the file in the current folder, unless you specify a full or relative path name. If the file name includes an extension, it must be . kml.

Data Types: char|string

latitude - Latitudes of points that define the line

vector in the range [-90 90]
Latitudes of points that define the line, specified as a vector in the range [-90 90].
Data Types: single | double

longitude - Longitudes of points that define the line vector

Longitudes of points that define the line, specified as a vector. Longitude values automatically wrap to the range [-180, 180].
Data Types: single | double

altitude - Altitude of points that define the line

0 (default) | scalar or vector
Altitude of points that define the line, specified as a scalar or vector. Unit of measure is meters.

- If a scalar, kmlwriteline applies the value to each point.
- If a vector, you must specify an altitude value for each point. That is, the vector must have the same length as latitude and longitude.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Name','Point Reyes'

Name - Label of line displayed in viewer

'Line N ' where N is the index of the line (default) | string scalar | character vector
Label of line displayed in viewer, specified as a string scalar or character vector.

If the line contains NaN values, kmlwriteline places the line segments in a folder labeled 'Line 1 '. kmlwriteline labels the line segments 'Segment N ', where N is the index value of the line segment.

Data Types: char | string

Description - Content to be displayed in the line description balloon

string scalar | character vector

Content to be displayed in the line description balloon, specified as a string scalar or character vector. The description appears in the description balloon when the user clicks either the feature name in the Google Earth Places panel or the line in the viewer window.

You can include basic HTML mark up, however, Google Earth applies some HTML formatting automatically. For example, Google Earth replaces newlines with line break tags and encloses valid URLs in anchor tags to make them hyperlinks. To see examples of HTML tags recognized by Google Earth, view https://earth.google.com.
Data Types: char | string

Color - Line color

defined by viewer (default) | color name | RGB triplet | ' none '
Line color, specified as one of these options.

- A color name such as 'red ' or a short name such as ' r '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

If you do not specify a line color, or specify ' none', then the kmlwriteline function does not include a color specification in the file and the viewer defines the color.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Data Types: char \| string | double

Alpha - Transparency of line

1 (default) | numeric scalar in the range [01]
Transparency of line, specified as a numeric scalar in the range [0 1]. The default value, 1 , indicates that the line is fully opaque.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

LineWidth - Width of line in pixels

defined by viewer (default) | positive numeric scalar
Width of line in pixels, specified as a positive numeric scalar. If you do not specify a width, kmlwriteline does not include width information in the file and the viewer defines the line width.
Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32

AltitudeMode - Interpretation of altitude values

'clampToGround ' (default)| 'relativeToGround ' | 'relativeToSeaLevel'
Interpretation of altitude values, specified as one of the following:

Value	Description
'clampToGround '	Ignore altitude values and set the feature on the ground. The default interpretation when you do not specify altitude values.
'relativeToGround '	Set altitude values relative to the actual ground elevation of a particular feature.
'relativeToSeaLevel '	Set altitude values relative to sea level, regardless of the actual elevation values of the terrain beneath the feature. The default interpretation when you specify altitude values. Called 'absolute' in KML terminology.

Data Types: char | string

LookAt - Position of virtual camera (eye) relative to object being viewed

geopoint vector
Position of the virtual camera (eye) relative to the object being viewed, specified as a geopoint vector. The fields of the geopoint vector define the view. LookAt is limited to looking down at a feature. To tilt the virtual camera to look above the horizon into the sky, use the Camera parameter.

Property Name	Description	Data Type
Latitude	Latitude of the line the camera is looking at, in degrees	Scalar double, from -90 to 90
Longitude	Longitude of the line the camera is looking at, in degrees	Scalar double, from -180 to 180
Altitude	Altitude of the line the camera is looking at from the Earth's surface, in meters	Scalar numeric
Heading	Camera direction (azimuth), in degrees (optional)	Scalar numeric [0 360], default 0 (true North)
Tilt	Angle between the direction of the LookAt position and the normal to the surface of the Earth, in degrees (optional)	Scalar numeric [0 90], default 0 (directly above)

Property Name	Description	Data Type
Range	Distance in meters from the point specified by latitude, longitude, and altitude to the position of the camera.	Scalar numeric, default 0
AltitudeMode	Interpretation of the camera altitude value (optional)	'relativeToSeaLevel ' ' ' clampToGround ' (default) 'relativeToGround '

Camera - Position of virtual camera relative to surface of Earth

geopoint vector
Position of virtual camera (eye) relative to Earth's surface, specified as a geopoint vector. The fields of the geopoint vector, listed below, define the view.Camera provides full 6 degrees of freedom control over the view, so you can position the camera in space and then rotate it around the x-, y-, and z-axes. You can tilt the camera view so that you're looking above the horizon into the sky.

Property Name	Description	Data Type
Latitude	Latitude of the virtual camera (eye), in degrees	Scalar double, in the range [-90 $90]$
Longitude	Longitude of the virtual camera, in degrees,	Scalar double, in the range [-180 $180]$.
Altitude	Distance of the virtual camera from the Earth's surface, in meters	Scalar numeric
Heading	Direction (azimuth) in degrees (optional)	Scalar numeric [0 360], default 0 (true North)
Tilt	Camera rotation around the X-axis, in degrees (optional)	Scalar numeric [0 180], default 0 (directly above)
Roll	Camera rotation in degrees around the Z-axis (optional)	Scalar numeric, in the range [-180 180], default 0
AltitudeMode	Specifies how camera altitude is interpreted (optional)	'relativeToSeaLevel ' , 'clampToGround ', 'relativeToGround ' (default)

Tips

- If you do not see your line, set AltitudeMode to 'clampToGround '. If the line appears, then you may have a problem with your altitude value.
- You can view KML files with the Google Earth browser, which must be installed on your computer.

For Windows, use the winopen function:
winopen(filename)
For Linux, if the file name is a partial path, use the following commands:

```
cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])
```

For Mac, if the file name is a partial path, use the following commands:

```
cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])
```

- You can also view KML files with a Google Maps browser. The file must be located on a web server that is accessible from the Internet. A private intranet server will not suffice because Google's server must be able to access the URL that you provide. The following is a template for using Google Maps. Replace your-web-server-path with a real value.

```
GMAPS_URL = 'http://maps.google.com/maps?q=';
KML_URL = 'http://your-web-server-path';
web([GMAPS_URL KML_URL])
```


See Also

kmlwrite | kmlwritepoint | kmlwritepolygon | shapewrite
Introduced in R2013a

kmlwritepoint

Write geographic point data to KML file

Syntax

kmlwritepoint(filename, latitude, longitude)
kmlwritepoint(filename, latitude,longitude, altitude)
kmlwritepoint(\qquad ,Name, Value)

Description

kmlwritepoint(filename,latitude,longitude) writes the geographic point data specified by latitude and longitude to the file specified by filename in Keyhole Markup Language (KML) format. kmlwritepoint creates a KML Placemark element for each point, using the latitude and longitude values as coordinates of the points. kmlwritepoint sets the altitude values associated with the points to 0 and sets the altitude interpretation to 'clampToGround '.
kmlwritepoint(filename,latitude,longitude,altitude) writes latitude,longitude, and altitude data as point coordinates. When you specify an altitude value, kmlwritepoint sets the AltitudeMode attribute to 'relativeToSeaLevel'.
kmlwritepoint(\qquad ,Name, Value) specifies name-value pairs that set additional KML feature properties. Parameter names can be abbreviated and are case-insensitive.

Examples

Write Data to KML File that Includes HTML Format Tags

Define a point by latitude and longitude.

```
lat = 42.299827;
lon = -71.350273;
```

Specify the description text used with the placemark, including HTML tags for formatting.

```
description = sprintf('%s<br>%s</br><br>%s</br>', ...
    '3 Apple Hill Drive', 'Natick, MA. 01760', ...
    'https://www.mathworks.com');
name = 'The MathWorks, Inc.';
iconDir = fullfile(matlabroot,'toolbox','matlab','icons');
iconFilename = fullfile(iconDir, 'matlabicon.gif');
```

Define the name of the KML file you want to create.
filename = 'MathWorks.kml';
Write the data to a KML file, using the Description parameter to include the names of the cities in the placemarks.

```
kmlwritepoint(filename, lat, lon, ...
    'Description', description, 'Name', name, 'Icon', iconFilename);
```


Retrieve Point Data from Shape File and Write Data to KML File

Read the locations of major cities from a shape file into a geostruct.

```
latlim = [ 30; 75];
lonlim = [-25; 45];
cities = shaperead('worldcities.shp','UseGeoCoords', true, ...
    'BoundingBox', [lonlim, latlim]);
```

Get the latitudes, longitudes, and names of the cities from the geostruct.

```
lat = [cities.Lat];
lon = [cities.Lon];
name = {cities.Name};
```

Define the name of the KML file you want to create.

```
filename = 'European_Cities.kml';
```

Write the geographic data to the file, specifying the names of the cities and the size of the icon.

```
kmlwritepoint(filename, lat, lon, 'Name', name, 'IconScale', 2);
```


Write Point Data to KML File Using Camera to Specify View

Create a geopoint object to specify the viewing options available through the Camera parameter. The example sets up a view of the Washington Monument in Washington D.C.

```
camlat = 38.889301;
camlon = -77.039731;
camera = geopoint(camlat,camlon);
camera.Altitude = 500;
camera.Heading = 90;
camera.Tilt = 45;
camera.Roll = 0;
name = 'Camera ground location';
```

Define the name of the KML file you want to create.

```
filename = 'WashingtonMonument.kml';
```

Write the point data to the file with the view specification. Place a marker at the ground location of the camera.

```
lat = camera.Latitude;
lon = camera.Longitude;
kmlwritepoint(filename,lat,lon,'Camera',camera,'Name',name);
```


Write Point Data to KML File Using LookAt to Specify View

Specify the latitude, longitude, and altitude values that define a point. In this example, the location is the Machu Picchu ruins in Peru.

```
lat = -13.163111;
lon = -72.544945;
alt = 2430;
```

Create a geopoint object to specify the viewing options available through the LookAt parameter.

```
lookAt = geopoint(lat,lon);
lookAt.Range = 1500;
lookAt.Heading = 260;
lookAt.Tilt = 67;
name = 'LookAt location parameters';
```

Define the name of the KML file you want to create.

```
filename = 'Machu_Picchu.kml';
```

Write the point data to the file, using the LookAt parameter to specify the view.

```
kmlwritepoint(filename,lat,lon,alt,'Name',name,'LookAt',lookAt)
```


Use Camera Parameter to Specify View

Specify the latitude and longitude values that define the point that you want to view. In this example, the location is Mount Rainier.

```
lat rainier = 46.8533;
lon_rainier = -121.7599;
```

Create a geopoint vector to specify the position of the virtual camera (eye) you will use to view the location using the Camera parameter.
myview $=$ geopoint(46.7, -121.7,'Altitude', 2500,'Tilt', 85,'Heading', 345);
Define the name of the KML file you want to create.

```
filename = 'Mt_Rainier.kml';
```

Write the point data to the file, specifying a name and a custom color for the icon.

```
kmlwritepoint(filename,lat_rainier,lon_rainier,'Name','Mt Rainier',...
    'Color','red','IconScale',2,'Camera',myview)
```


Input Arguments

filename - Name of output file

string scalar | character vector

Name of output file, specified as a string scalar or character vector. kmlwritepoint creates the file in the current folder, unless you specify a full or relative path name. If the file name includes an extension, it must be . kml.
Data Types: char \| string
latitude - Latitudes of points
vector in the range [-90 90]
Latitudes of points, specified as a vector in the range [-90 90].
Data Types: single | double

longitude - Longitudes of points

vector
Longitudes of points, specified as a vector. Longitude values automatically wrap to the range [-180 180], in compliance with the KML specification.

Data Types: single | double

altitude - Altitude of points in meters
0 (default) | scalar or vector
Altitude of points in meters, specified as a scalar or vector.

- If a scalar, kmlwritepoint applies the value to each point.
- If a vector, you must specify an altitude value for each point. That is, the vector must have the same length as latitude and longitude.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kmlwritepoint(filename,lat,lon,'Name','Point Reyes','IconScale',2);

Name - Label of point displayed in viewer

' Point N' where N is the index of the point (default) | string scalar | string array | character vector | cell array of character vectors

Label of point displayed in viewer, specified as a string scalar or character vector or cell array of character vectors.

- If a string scalar or character vector, kmlwritepoint applies the name to all points.
- If a string array or cell array of character vectors, you must include a label for each point; that is, the cell array must have the same length as latitude and longitude.

Data Types: char|string|cell

Content to be displayed in the point description balloon, specified as a string scalar or character vector or a cell array of character vectors. The content appears in the description balloon when you click either the feature name in the Google Earth Places panel or the point in the viewer window.

- If a string scalar or character vector, kmlwritepoint applies the description to all points.
- If a string array or cell array of character vectors, you must include description information for each point; that is, the cell array must be the same length as latitude and longitude.

Description elements can be either plain text or marked up with HTML. When it is plain text, Google Earth applies basic formatting, replacing newlines with line break tags and enclosing valid URLs with anchor tags to make them hyperlinks. To see examples of HTML tags that Google Earth recognizes, view https://earth.google.com.

Data Types: char|string | cell

Icon - File name of a custom icon

defined by viewer, for example, Google Earth uses an image of a push pin. (default) | string scalar | string array | character vector | cell array of character vectors

File name of a custom icon, specified as a string scalar or character vector or cell array of character vectors.

- If a string scalar or character vector, kmlwritepoint uses the icon for all points.
- If a string array or cell array of character vectors, you must specify an icon for each point. That is, the cell array must be the same length as latitude and longitude.

If the icon file name is not in the current folder, or in a folder on the MATLAB path, you must specify a full or relative path name. If the file name is an Internet URL, the URL must include the protocol type.

Data Types: char | string | cell

IconScale - Scaling factor for icon

positive numeric scalar or vector

Scaling factor for the icon, specified as a positive numeric scalar or vector.

- If a scalar, kmlwritepoint applies the scaling factor to the icon for all points.
- If a vector, you must specify a scaling factor for each icon. That is, the vector must be the same length as latitude and longitude.

Data Types: single | double |int8|int16|int32 | int64|uint8|uint16|uint32

Color - Icon color

defined by viewer (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | ' none '

Icon color, specified as one of these options.

- A color name such as 'red ' or a short name such as ' r '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r', 'g', 'b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.

- To apply the same color to all icons, specify a single color name or RGB triplet.
- To apply a different color to each icon, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of latitude and longitude.
- To exclude a color specification for icons, specify ' none '. In this case, the viewer defines the icon color.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	\square
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	' y '	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	[11 111$]$	\square

Data Types: char|string|cell|double

Alpha - Transparency of the icons

1 (default) | numeric scalar or vector in the range [0 1]
Transparency of the icons, specified as a numeric scalar or vector in the range [01]. The default value, 1 , indicates fully opaque.

- If a scalar, kmlwritepoint applies the value to all icons.
- If a vector, you must specify a value for each icon. That is, the vector must be the same length as latitude and longitude.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32

AltitudeMode - Interpretation of altitude values

'clampToGround ' | 'relativeToGround ' | 'relativeToSeaLevel'
Interpretation of altitude values, specified as one of the following values:

Value	Description
' clampToG round '	Ignore altitude values and set the feature on the ground. This is the default interpretation when you do not specify altitude values.

Value	Description
'relativeToGround '	Set altitude values relative to the actual ground elevation of a particular feature.
' relativeToSeaLevel '	Set altitude values relative to sea level, regardless of the actual elevation values of the terrain beneath the feature. This is the default interpretation when you specify altitude values. Called 'absolute' in KML terminology.

Data Types: char \| string
LookAt - Position of the virtual camera (eye) relative to the object being viewed
geopoint vector
Position of the virtual camera (eye) relative to the object being viewed, specified as a geopoint vector. The view is defined by the fields of the geopoint vector, listed in the table below. LookAt is limited to looking down at a feature, you cannot tilt the virtual camera to look above the horizon into the sky. To tilt the virtual camera to look above the horizon into the sky, use the Camera parameter.

Property Name	Description	Data Type
Latitude	Latitude of the point the camera is looking at, in degrees north or south of the Equator (0 degrees)	Scalar double, from -90 to 90
Longitude	Longitude of the point the camera is looking at, in degrees, specifying angular distance relative to the Prime Meridian	Scalar double, in the range [- 180 180]. Values west of the Meridian range from -180 to 0 degrees. Values east of the Meridian range from 0 to 180 degrees
Altitude	Altitude of the point the camera is looking at from the Earth's surface, in meters	Scalar numeric, default 0 Heading Tilt Camera direction (azimuth), in degrees (optional) Angle between the direction of the LookAt position and the normal to the surface of the earth, in degrees (optional)Scalar numeric [0 360], default 0 (true North) Range directly above. [0 90], default: 0,Distance in meters from the point specified by latitude, longitude, and altitude to the point where the camera is positioned- theLookAt position.
Scalar numeric, default: 0		
AltitudeMode	Interpretation of camera altitude value (optional)	'relativeToSeaLevel ' , 'clampToGround ', (default) 'relativeToGround '

Camera - Position of the virtual camera relative to the surface of the Earth
 geopoint vector
 Position of the camera relative to the Earth's surface, specified as a geopoint vector. The fields of the geopoint vector, listed below, define the view.Camera provides full six-degrees-of-freedom control

over the view, so you can position the camera in space and then rotate it around the X, Y, and Z axes. You can tilt the camera view so that you're looking above the horizon into the sky.

Property Name	Description	Data Type
Latitude	Latitude of the virtual camera (eye), in degrees north or south of the Equator (0 degrees)	Scalar double in the range [-90 90]
Longitude	Longitude of the virtual camera, in degrees, specifying angular distance relative to the Prime Meridian	Scalar double, in the range [-180 180]. Values west of the Meridian range from -180 to 0 degrees. Values east of the Meridian range from 0 to 180 degrees
Altitude	Distance of the virtual camera from the surface of the Earth, in meters	Scalar numeric
Heading	Direction (azimuth) in degrees (optional)	Scalar numeric [0 360], default 0 (true North)
Tilt	Camera rotation around the X-axis, in degrees (optional)	Scalar numeric [0 180], default: 0, directly above
Roll	Camera rotation in degrees around the Z-axis (optional)	Scalar numeric, in the range [-180 180] default: 0
AltitudeMode	Specifies the interpretation of camera altitude. (optional)	'relativeToSeaLevel', 'clampToGround' , (default) relativeToGround '

- If a scalar, kmlwritepoint applies the value to all the points.
- If a vector, you must include an item for each point; that is, the length must be the same length as latitude and longitude.

Tips

- You can view KML files with the Google Earth browser, which must be installed on your computer.

For Windows, use the winopen function:

```
winopen(filename)
```

For Linux, if the file name is a partial path, use the following commands:

```
cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])
```

For Mac, if the file name is a partial path, use the following commands:

```
cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])
```

- You can also view KML files with a Google Maps browser. The file must be located on a web server that is accessible from the Internet. A private intranet server will not suffice because Google's server must be able to access the URL that you provide. The following is a template for using Google Maps. Replace your-web-server-path with a real value.

GMAPS URL = 'http://maps.google.com/maps?q=';
KML_URL = 'http://your-web-server-path'; web([GMAPS_URL KML_URL])

See Also

kmlwrite|kmlwriteline|kmlwritepolygon|shapewrite

Introduced in R2013a

kmlwritepolygon

Write geographic polygon to KML file

Syntax

kmlwritepolygon(filename,latitude,longitude)
kmlwritepolygon(filename,latitude,longitude, altitude)
kmlwritepolygon(\qquad ,Name, Value)

Description

kmlwritepolygon(filename,latitude,longitude) writes the geographic latitude and longitude data that define polygon vertices to the file specified by filename in Keyhole Markup Language (KML) format. kmlwritepolygon creates a KML Placemark element for each polygon. By default, kmlwritepolygon sets the altitude value associated with the vertices to 0 and sets the altitude interpretation to 'clampToGround'.
kmlwritepolygon(filename,latitude,longitude,altitude) writes the polygon data to a KML file, including altitude values for each vertex. altitude can be a scalar value, in which case kmlwritepolygon uses it as the value for every vertex. If altitude is a vector, you must specify a value for every vertex; that is, altitude must be the same length as latitude and longitude. By default, when you specify altitude values, kmlwritepolygon sets the altitude interpretation to'relativeToSeaLevel'.
kmlwritepolygon(\qquad ,Name, Value) specifies name-value pairs that set additional KML feature properties. Parameter names can be abbreviated and are not case sensitive.

Examples

Write Coastlines to KML File as Polygon

Load latitude and longitude data that defines the coastlines of the continents.
load coastlines
Specify the name of output KML file that you want to create.

```
filename = 'coastlines.kml';
```

Write the coastline data to the file as a polygon.
kmlwritepolygon(filename, coastlat,coastlon)

Create Polygon with Inner Ring

Define the latitude and longitude coordinates of the center of the rings. For this example, the coordinates specify the Eiffel Tower.

```
lat0 = 48.858288;
lon0 = 2.294548;
```

Define the inner radius and the outer radius of two small circles. The examples calls poly2ccw to change the direction of the vertex order of the second circle to counter-clockwise. This change of direction is needed to define the space between the two circles as a ring-shaped polygon.

```
outerRadius = .02;
innerRadius = .01;
[lat1,lon1] = scircle1(lat0,lon0,outerRadius);
[lat2,lon2] = scircle1(lat0,lon0,innerRadius);
[lon2,lat2] = poly2ccw(lon2,lat2);
lat = [lat1; NaN; lat2];
lon = [lon1; NaN; lon2];
alt = 500;
```

Specify name of output KML file and write the data to the file.

```
filename = 'EiffelTower.kml';
kmlwritepolygon(filename,lat,lon,alt, ...
    'EdgeColor','g','FaceColor','c','FaceAlpha',.5)
```


Create Polygon That Spans the 180 Degree Meridian

Specify latitude and longitude coordinates that define the vertices of the polygon. For this example, specify longitude values that span the 180 degree meridian.

```
lat = [0 1 1 0 0];
lon = [179.5 179.5 -179.5 -179.5 179.5];
h = 5000;
alt = ones(1,length(lat)) * h;
filename = 'cross180.kml';
kmlwritepolygon(filename,lat,lon,alt,'EdgeColor','r','FaceColor','w')
```

By default, the polygon contains a seam at the 180 degree mark. To remove this seam, set PolygonCutMeridian to 0.

```
filename = 'noseam.kml';
kmlwritepolygon(filename,lat,lon,alt,'EdgeColor','r', ...
    'FaceColor','w','PolygonCutMeridian',0);
```

To display a ramp without a seam, wrap the longitude values to the range [0 360], and set CutPolygon to false. Use the Extrude parameter to connect the polygon to the ground for better visibility.

```
filename = 'ramp.kml';
lon360 = wrapTo360(lon);
altramp = [0 0 h h 0];
kmlwritepolygon(filename,lat,lon360,altramp,'EdgeColor','r', ...
    'FaceColor','w','CutPolygons',false,'Extrude',true);
```


Input Arguments

filename - Name of output file
 string scalar | character vector

Name of output file, specified as a string scalar or character vector. kmlwritepolygon creates the file in the current folder, unless you specify a full or relative path name. If the file name includes an extension, it must be . kml.

Data Types: char | string
latitude - Latitudes of polygon vertices
vector in the range [-90 90]
Latitudes of polygon vertices, specified as a vector in the range [-90 90].
Data Types: single | double

longitude - Longitude of polygon vertices

vector in the range [-180, 180]
Longitude of polygon vertices, specified as a vector in the range [-180, 180].

Data Types: single | double

altitude - Altitude of polygon vertices

0 (default) | scalar or vector
Altitude of polygon vertices, specified as a scalar or vector. Unit of measure is meters.

- If a scalar, kmlwritepolygon applies the value to each point.
- If a vector, you must specify an altitude value for each vertex. That is, the vector altitude must be the same length as latitude and longitude.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example:
kmlwritepolygon(filename,lat,lon,alt,'EdgeColor','g','FaceColor','c','FaceAlp
ha',.5)
Name - Label displayed in the viewer for the polygon
    'Polygon 1' (default)| string scalar | character vector
```

Label displayed in the viewer for the polygon, specified as the comma-separated pair consisting of ' Name ' and a string scalar or character vector. If the vertex list contains multiple outer rings, kmlwritepolygon creates a folder with the value of Name and each outer ring labeled 'Part N' where N varies from 1 to the number of outer rings.
Data Types: char | string

Description - Content to be displayed in the polygon description balloon

character vector | string scalar
Content to be displayed in the polygon description balloon, specified as the comma-separated pair consisting of 'Description' and a string scalar or character vector. The content appears in the description balloon when you click either the feature name in the Google Earth Places panel or the polygon in the viewer window.

Description elements can be either plain text or HTML markup. When it is plain text, Google Earth applies basic formatting, replacing newlines with line break tags and enclosing valid URLs with anchor tags to make them hyperlinks. To see examples of HTML tags that Google Earth recognizes, see https://earth.google.com.
Data Types: char \| string

FaceColor - Color of polygon face

defined by viewer (default) | color name | RGB triplet | ' none'
Color of the polygon face, specified as the comma-separated pair of 'FaceColor' and one of these options.

- A color name - A color name such as 'red ' or a short name such as 'r'.
- An RGB triplet - A three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1$]$; for example, [0.4 0.6 0.7].
- 'none' - No fill color.

If you do not specify a face color, then the kmlwritepolygon function does not include a color specification in the file and the viewer defines the color.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Data Types: char | string | double

FaceAlpha - Transparency of the polygon face

1 (default) | numeric scalar in the range [0 1]
Transparency of the polygon face, specified as the comma-separated pair consisting of 'FaceAlpha' and a numeric scalar in the range [0 1]. The default value, 1 , indicates that the face is fully opaque.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

EdgeColor - Color of polygon edges

defined by viewer (default) | color name | RGB triplet | ' none'
Color of polygon edges, specified as the comma-separated pair of 'EdgeColor' and one of these values.

- A color name such as 'red ' or a short name such as ' r '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, $\left[\begin{array}{lll}0.4 & 0.6 & 0.7\end{array}\right]$.
- 'none' - No edge color.

If you do not specify an edge color, then the kmlwritepolygon function does not include a color specification in the file and the viewer defines the color.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Data Types: char | string|double

EdgeAlpha - Transparency of polygon edges

1 (default) | numeric scalar in the range [0 1]
Transparency of polygon edge, specified as the comma-separated pair consisting of 'EdgeAlpha' and a numeric scalar in the range [0 1]. The default value, 1 , indicates that the edge is fully opaque.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

LineWidth - Width of the polygon edge in pixels

determined by viewer (default)
Width of the polygon edge in pixels, specified as the comma-separated pair consisting of 'LineWidth' and a positive numeric scalar.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Extrude - Connect polygon to the ground

false (default) | true
Connect polygon to the ground, specified as the comma-separated pair consisting of 'Extrude' and a logical scalar or numeric value true (1) or false (0).

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical

CutPolygons - Cut polygon parts

true (default) | false
Cut polygon parts, specified as the comma-separated pair consisting of 'CutPolygons' and a logical scalar or numeric value true (1) or false (0). If true, kmlwritepolygon cuts polygons at the meridian specified by PolygonCutMeridian. kmlwritepolygon returns an error if you set this to true, the polygon parts require cutting, and the altitude values are nonuniform.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical

PolygonCutMeridian - Meridian where polygon parts are cut

180 (default) | scalar numeric
Meridian where polygon parts are cut, specified as the comma-separated pair consisting of 'PolygonCutMeridian' and a scalar numeric value.
Data Types: single | double | int8| int16|int32 | int64 | uint8|uint16|uint32|uint64

AltitudeMode - Interpretation of altitude values

'clampToGround ' | 'relativeToGround' | 'relativeToSeaLevel'
Interpretation of altitude values, specified as the comma-separated pair consisting of 'AltitudeMode' and any of the following values:

Value	Meaning
'clampToGround'	Ignore the altitude values and set the feature on the ground. This value is the default interpretation when you do not specify altitude values.
' relativeToGround	Set altitude values relative to the actual ground elevation of a particular feature.
'relativeToSeaLevv el '	Set altitude values relative to sea level, regardless of the actual elevation values of the terrain beneath the feature. This value is the default interpretation when you specify altitude values. In KML terminology, this interpretation is called 'absolute'.

Data Types: char
LookAt - Position of virtual camera (eye) relative to object being viewed
geopoint vector
Position of virtual camera (eye) relative to object being viewed, specified as the comma-separated pair consisting of 'PLookAt' and a geopoint vector. The LookAt parameter defines the virtual camera that views the polygon. The fields of the geopoint vector define the view, outlined in the table below. LookAt can only look down at a feature. To tilt the virtual camera to look above the horizon into the sky, use the Camera parameter.

Field	Meaning	Value
'Latitude'	Latitude of the point the camera is looking at, in degrees	Scalar double
'Longitude '	Longitude of the point the camera is looking at, in degrees	Scalar double

Field	Meaning	Value
'Altitude'	Altitude of the point the camera is looking at, in meters (optional)	Scalar numeric default: 0
'Heading'	Camera direction (azimuth), in degrees (optional)	Scalar numeric [0 360] default 0
'Tilt'	Angle between the direction of the LookAt position and the normal to the surface of the Earth (optional)	Scalar numeric [0 90] default: 0
'Range'	Distance in meters from the point to the LookAt position	Scalar numeric
'AlititudeMo de'	Specifies how the altitude is interpreted for the LookAt point (optional)	' relativeToSeaLev el ' ' ' clampToGround ' , (default), ' relativeToGround '

Camera - Position and viewing direction of the virtual camera relative to the Earth's surface

geopoint vector
Position and viewing direction of the camera relative to the Earth's surface, specified as the commaseparated pair consisting of 'Camera' and a geopoint vector. The vector contains the following fields. The camera value provides full six-degrees-of-freedom control over the view, so you can position the camera in space and then rotate it around the X, Y, and Z axes. Most importantly, you can tilt the camera view to look above the horizon into the sky.

Field	Meaning	Value
'Latitude'	Latitude of the eye point (virtual camera), specified in degrees	Scalar double
'Longitude'	Longitude of the eye point (virtual camera), specified in degrees	Scalar double
'Altitude'	Distance of the camera from the Earth's surface, specified in meters	Scalar numeric default: 0
'Heading'	Camera direction (azimuth) in degrees (Optional)	Scalar numeric [0 360] default 0
'Tilt'	Camera rotation around the X axis, specified in degrees (Optional)	Scalar numeric [0 180] default: 0
'Roll'	Camera rotation around the Z axis, specified in degrees (Optional)	Scalar numeric, default: 0
'AlititudeMo	Specifies how kmlwritepolygon interprets camera altitude values. (Optional)	'relativeToSeaLev el ' '
de ' campToGround ',		
(deafault),		
'relativeToGround		
'		

See Also

kmlwrite|kmlwritepoint|kmlwriteline| shapewrite

Introduced in R2016a

latitudeToIntrinsicY

Package: map.rasterref
Convert from latitude to intrinsic y coordinates

Syntax

yIntrinsic = latitudeToIntrinsicY(R,lat)

Description

yIntrinsic = latitudeToIntrinsicY(R,lat) returns the y-coordinate in the intrinsic coordinate system corresponding to latitude lat in the geographic coordinate system, based on the relationship defined by geographic raster R.

Examples

Find Intrinsic y-Coordinate from Latitude

Import elevation data [1] on page 1-0 for a region in Colorado as an array and a
GeographicPostingsReference object. Find the intrinsic y-coordinate corresponding to a latitude of 39.9539 degrees.
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
yIntrinsic = latitudeToIntrinsicY(R,39.9539)
yIntrinsic = 56.3200
The result means that coordinates with a latitude of 39.9539 degrees fall between rows 56 and 57 of the posting points.
[1] The elevation data used in this example is from the U.S. Geological Survey.

Input Arguments

R - Geographic raster

GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or GeographicPostingsReference object.

lat - Latitude coordinates

numeric array
Latitude coordinates, specified as a numeric array. Valid values of lat are in the range [-90, 90] degrees. lat coordinates can be outside the bounds of the raster R.

Data Types: single|double

Output Arguments

yIntrinsic - y-coordinates in intrinsic coordinate system

numeric array

y-coordinates in intrinsic coordinate system, returned as a numeric array. yIntrinsic is the same size as lat.

When a point has valid latitude outside the bounds of raster R, yIntrinsic (k) is extrapolated in the intrinsic coordinate system. When lat (k) is outside the range $[-90,90]$ degrees, or has a value of NaN , the corresponding value yIntrinsic(k) is set to NaN .

Data Types: double

See Also
 geographicToIntrinsic|intrinsicYToLatitude|longitudeToIntrinsicX

Introduced in R2013b

latlon2pix

(To be removed) Convert latitude-longitude coordinates to pixel coordinates

Note The latlon2pix function will be removed in a future release. Use the geographicToIntrinsic function instead. For more information, see "Compatibility Considerations".

Syntax

[row, col] = latlon2pix(R,lat,lon)

Description

[row, col] = latlon2pix(R,lat,lon) calculates pixel coordinates row, col from latitudelongitude coordinates lat, lon. R is either a 3 -by-2 referencing matrix that transforms intrinsic pixel coordinates to geographic coordinates, or a geographic raster reference object. lat and lon are vectors or arrays of matching size. The outputs row and col have the same size as lat and lon. lat and lon must be in degrees.

Longitude wrapping is handled in the following way: Results are invariant under the substitution lon $=$ lon $+/-\mathrm{n} * 360$ where n is an integer. Any point on the Earth that is included in the image or gridded data set corresponding to r will yield row/column values between 0.5 and $0.5+$ the image height/width, regardless of what longitude convention is used.

Examples

Find the pixel coordinates of the upper left and lower right outer corners of a 2-by-2 degree gridded data set.

```
R = georefcells([-90 90],[0 360],2,2,'ColumnsStartFrom','north')
[UL_row, UL_col] = latlon2pix(R, 90, 0) % Upper left
[LR_row, LR_col] = latlon2pix(R, -90, 360) % Lower right
```


Compatibility Considerations

latlon2pix will be removed

Not recommended starting in R2021b
Some functions that accept referencing matrices as input will be removed, including the latlon2pix function. Use a geographic raster reference object and the geographicToIntrinsic function instead. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing matrix to a reference object using the refmatToGeoRasterReference function.

Then, replace uses of the latlon2pix function with the geographicToIntrinsic function according to this pattern.

Will Be Removed	Recommended
$[$ row, col $]=$ latlon2pix(R,lat,lon);	$[$ col, row $]=$ geographicToIntrinsic(R,lat,lon)

See Also

geographicToIntrinsic|worldToIntrinsic|intrinsicToGeographic
Introduced before R2006a

Icolorbar

Colorbar with text labels

Syntax

lcolorbar(labels)
lcolorbar(labels,'property', value,...)
hcb = lcolorbar(...)

Description

lcolorbar(labels) appends text labels to a colorbar at the center of each color band. The labels input argument is specified as a string array or cell array of character vectors. The number of elements in labels must match the length of the colormap.
lcolorbar(labels,'property', value, ...) controls the properties of the colorbar.

Property	Description
Location	Controls the location of the colorbar. Valid values are 'vertical ' (the default) or 'horizontal '
TitleString	Text of title.
XLabelString	Text of x-label.
YLabelString	Text of y-label.
ZLabelString	Text of z-label.
ColorAlignment	Controls whether the colorbar labels are centered on the color bands or the color breaks. Valid values are 'center' and ' ends '.

Other valid property-value pairs are any properties and values that can be applied to the title and labels of the colorbar axes.
hcb $=$ lcolorbar(...) returns a handle to the colorbar axes.

Examples

```
figure
colormap(jet(5))
labels = {'blue','cyan','green','yellow','orange'};
lcolorbar(labels,'fontweight','bold');
```


See Also

contourcmap | Colormap Editor | polcmap | colormap

legs

Courses and distances between navigational waypoints

Syntax

[course,dist] = legs(lat,lon)
[course,dist] = legs(lat,lon,method)
[course,dist] = legs(pts, \qquad)
mat = legs(\qquad)

Description

[course,dist] = legs(lat,lon) returns the azimuths (course) and distances (dist) between navigational waypoints, which are specified by the column vectors lat and lon.
[course,dist] = legs(lat,lon,method) specifies the logic for the leg characteristics. If the method is 'rh' (the default), course and dist are calculated in a rhumb line sense. If method is ' gc^{\prime}, great circle calculations are used.
[course,dist] = legs(pts,___) specifies waypoints in a single two-column matrix, pts.
mat $=$ legs (___) packs up the outputs into a single two-column matrix, mat.
This is a navigation function. All angles are in degrees, and all distances are in nautical miles. Track legs are the courses and distances traveled between navigational waypoints.

Examples

Imagine an airplane taking off from Logan International Airport in Boston ($42.3^{\circ} \mathrm{N}, 71^{\circ} \mathrm{W}$) and traveling to LAX in Los Angeles ($34^{\circ} \mathrm{N}, 118^{\circ} \mathrm{W}$). The pilot wants to file a flight plan that takes the plane over O'Hare Airport in Chicago ($42^{\circ} \mathrm{N}, 88^{\circ} \mathrm{W}$) for a navigational update, while maintaining a constant heading on each of the two legs of the trip.

What are those headings and how long are the legs?

```
lat = [42.3; 42; 34];
long = [-71; -88; -118];
[course,dist] = legs(lat,long,'rh')
course =
    268.6365
    251.2724
dist =
    1.0e+003 *
        0.7569
        1.4960
```

Upon takeoff, the plane should proceed on a heading of about 2699° for 756 nautical miles, then alter course to 2511° for another 1495 miles.

How much farther is it traveling by not following a great circle path between waypoints? Using rhumb lines, it is traveling

```
totalrh = sum(dist)
totalrh =
    2.2530e+003
```

For a great circle route,
[coursegc,distgc] = legs(lat,long,'gc'); totalgc = sum(distgc)
totalgc $=$
$2.2451 \mathrm{e}+003$

The great circle path is less than one-half of one percent shorter.

```
See Also
dreckon|gcwaypts|navfix|track
```


length

Return number of elements in geographic or planar vector

Syntax

$\mathrm{n}=$ length(v)

Description

$\mathrm{n}=$ length(v) returns the number of elements contained in the geographic or planar vector v .

Examples

Find Length of Geopoint Vector

Create a geopoint vector and find its length.
load coastlines
$p=$ geopoint(coastlat, coastlon);
length (p)
ans $=9865$
length(coastlat)
ans $=9865$

Input Arguments

v - Geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

Output Arguments

n - Number of elements

nonnegative integer scalar
Number of elements in vector v, returned as a nonnegative integer scalar. The result is equivalent to size(v,1).

See Also

size

Introduced in R2012a

lightm

Project light objects on map axes

Syntax

h = lightm(lat,lon)
h = lightm(lat,lon,PropertyName,PropertyValue,...)
h = lightm(lat,lon,alt)

Description

$\mathrm{h}=\mathrm{lightm}(\mathrm{lat}, \mathrm{lon})$ projects a light object at the coordinates lat and lon. The handle, h , of the object can be returned.
h = lightm(lat,lon, PropertyName, PropertyValue, ...) allows the specification of any property name/property value pair supported by the standard MATLAB light function.
$h=\operatorname{lightm}(l a t, l o n, a l t)$ allows the specification of an altitude, alt, for the light object. When omitted, the default is an infinite light source altitude.

Examples

Add Light to Map

Load elevation raster data and a geographic cells reference object. Create a globe frame using map axes.

```
load topo60c
axesm globe
view(120,30)
axis off
```

Display the data and apply a colormap appropriate for elevation data.

```
meshm(topo60c,topo60cR)
```

demcmap(topo60c)

Add light to the globe by specifying a latitude, longitude, and color. Set reflectance properties by using the material function. Change the lighting method using the lighting function.

```
lightm(0,90,'Color','y')
material([.5 .5 1])
lighting gouraud
```


Add a second light source that uses a different color.
lightm(90,0,'Color','m')

See Also

light

Introduced before R2006a

limitm

(To be removed) Determine latitude and longitude limits of regular data grid

Note limitm will be removed in a future release. Instead, create a geographic raster reference object, and query its LatitudeLimits and LongitudeLimits properties. For more information, see "Compatibility Considerations".

Syntax

[latlim,lonlim] = limitm(Z,R)
latlonlim $=$ limitm(Z,R)

Description

[latlim,lonlim] = limitm(Z,R) computes the latitude and longitude limits of the geographic quadrangle bounding the regular data grid Z spatially referenced by R. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If R is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be 1-by- 3 with elements:

```
[cells/degree northern_latitude_limit western_longitude_limit]
```

If R is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:

```
[lon lat] = [row col 1] * R
```

If R is a referencing matrix, it must also define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. The output latlim is a vector of the form [southern_limit northern_limit] and lonlim is a vector of the form [western_limit eastern_limit]. All angles are in units of degrees.
latlonlim $=\operatorname{limitm}(Z, R)$ concatenates latlim and lonlim into a 1-by-4 row vector of the form:
[southern_limit northern_limit western_limit eastern_limit]

Examples

Load elevation raster data and a geographic cells reference object. Then, find the latitude and longitude limits.

```
load topo60c
[latlimits,lonlimits] = limitm(topo60c,topo60cR)
latlimits =
    -90 90
```


lonlimits =

0360
The data set covers the whole globe, so the result is expected.

Compatibility Considerations

limitm will be removed

Warns starting in R2022a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the limitm function. Instead, create a geographic raster reference object, and query its LatitudeLimits and LongitudeLimits properties. Reference objects have several advantages over referencing vectors and matrices.

- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, find the limits of the raster by querying the LatitudeLimits and LongitudeLimits properties of the reference object, R.

```
latlim = R.LatitudeLimits;
lonlim = R.LongitudeLimits;
```


See Also

GeographicPostingsReference | GeographicCellsReference
Introduced before R2006a

Line Properties

Geographic primitive line appearance and behavior

Description

Line properties control the appearance and behavior of a Line object. By changing property values, you can modify certain aspects of the line plot.
uif = uifigure;
g = geoglobe(uif);
$p=$ geoplot3(g,51.5074,0.1900,200)
p.Marker = 'o';
p.LineWidth = 2 ;

Properties

Line

Color - Line color

[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red '	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	$' \# F F 0000 '$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	$' \# 00 F F 00 '$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	$' \# 0000 F F^{\prime}$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$' \# 00 F F F F^{\prime}$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	$' \# F F 00 F F^{\prime}$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	$' \# F F F F 00 '$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	$' \# 000000 '$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	$' \# F F F F F F^{\prime}$	\square

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD '	
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
[0.4660 0.6740 0.1880]	'\#77AC30'	
[0.3010 0.7450 0.9330]	'\#4DBEEE'	
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: 'blue'

Example: [0 0 1]
Example: '\#0000FF'

LineStyle - Line style

'- ' (default)|'none'
Line style, specified as one of these options:

Line Style	Description	Resulting Line
' - '	Solid line (default)	
'none '	No line	No line

LineWidth - Line width

0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point $=1 / 72$ of an inch. If the line has markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

SeriesIndex - Series index

positive integer
Series index, specified as a positive integer. This property is useful for reassigning the colors of several Line objects so that they match each other. By default, the SeriesIndex property of a line object is a number that corresponds to the object's order of creation, starting at 1.

MATLAB uses the number to calculate indices for assigning color when you call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder property of the parent object.

MATLAB automatically updates the color of the Line object when you change its SeriesIndex, or when you change the ColorOrder property on the parent object. However, the following conditions must be true for the changes to have any effect:

- The SeriesIndex property on the Line object is greater than 0 .
- The NextSeriesIndex property on the parent object is greater than 0 .

Markers

Marker - Marker symbol

'none ' (default)|'o'
Marker symbol, specified as 'none' or ' o '. By default, the line does not display markers. Specify ' o ' to display circle markers at each data point or vertex.

Markers do not tilt or rotate as you navigate the globe.

MarkerIndices - Indices of data points at which to display markers

1:length(LatitudeData) (default)| vector of positive integers | scalar positive integer
Indices of data points at which to display markers, specified as a vector of positive integers. If you do not specify the indices, then MATLAB displays a marker at every data point.

Note To see the markers, you must also specify a marker symbol.

Example: geoplot3(g,lat,lon,h,'-o','MarkerIndices',[1 5 10]) displays a circle marker at the first, fifth, and tenth data points.
Example: geoplot3(g,lat,lon, h,'-0','MarkerIndices',1:3:length(lat)) displays a circle marker every three data points.
Example: geoplot3(g,lat,lon,h,'Marker', 'o','MarkerIndices',5) displays one circle marker at the fifth data point.

MarkerSize - Marker size

6 (default) | positive value
Marker size, specified as a positive value in points, where 1 point $=1 / 72$ of an inch.

Coordinate Data

LatitudeData - Latitude values
vector
Latitude values, specified as a vector. LatitudeData and LongitudeData must have the same size.

LongitudeData - Longitude values

vector
Longitude values, specified as a vector. LatitudeData and LongitudeData must have the same size.

HeightData - Height values

scalar | vector
Height values, specified as a scalar or vector. If HeightData is a scalar, then its value is applied to every element in LatitudeData and LongitudeData. If HeightData is a vector, it must be the same size as LatitudeData and LongitudeData.

HeightReference - Height reference

'geoid' (default)|'terrain' | 'ellipsoid'
Height reference, specified as one of these values:

- 'geoid' - Height values are relative to the geoid (mean sea level).
- 'terrain' - Height values are relative to the ground.
- 'ellipsoid ' - Height values are relative to the WGS84 reference ellipsoid.

For more information about terrain, geoid, and ellipsoid height, see "Find Ellipsoidal Height from Orthometric and Geoid Height".

Interactivity

Visible - State of visibility

'on' (default)|'off'
State of visibility, specified as one of these values:

- 'on ' - Display the object.
- 'off' - Hide the object without deleting it. You still can access the properties of an invisible object.

Parent/Child

Parent - Parent

GeographicGlobe object
Parent, specified as a GeographicGlobe object.

Children - Children

empty GraphicsPlaceholder array
The object has no children. You cannot set this property.

HandleVisibility - Visibility of object handle

'on' (default)|'off'|'callback'
Visibility of the object handle in the Children property of the parent, specified as one of these values:

- ' on ' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- ' callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on ' to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type - Type of graphics object

'line'
Type of graphics object, returned as ' line'. Use this property to find all objects of a given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag - Object identifier

' ' (default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

UserData - User data

[] (default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see "Share Data Within App Designer Apps".

See Also

geoplot3| geoglobe
Introduced in R2020a

Line Properties

Geographic chart line appearance and behavior

Description

Line properties control the appearance and behavior of a Line object. By changing property values, you can modify certain aspects of the line. Use dot notation to query and set properties.

```
shape = geolineshape(1:10,1:10);
p = geoplot(shape);
c = p.Color;
p.Color = "r";
```


Properties

Line

Color - Line color

[0 0 0] (default) |'flat'|RGB triplet | hexadecimal color code | 'r'|'g'|'b'|...
Line color, specified as ' flat ' , an RGB triplet, a hexadecimal color code, a color name, or a short name. The 'flat ' option uses colors from the ColorData property. When the geoplot function sets the ColorData property, MATLAB updates this property to 'flat'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1$]$; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	'\#FF0000'	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	'\#00FF00'	-
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	'\#0000FF'	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	'\#00FFFF'	\square
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	'\#FF00FF'	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	'\#000000'	
'white'	'w'	[1111]	'\#FFFFFF'	\square

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'none'	Not applicable	Not applicable	Not applicable	No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD '	
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	-
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
$\left[\begin{array}{llll}0.4660 & 0.6740 & 0.1880\end{array}\right]$	'\#77AC30 '	\square
[0.3010 0.7450 0.9330]	'\#4DBEEE'	\square
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '\#D2F9A7'

LineStyle - Line style

' - ' (default) |'--'|':'|' - .'| 'none'

Line style, specified as one of the options listed in this table.

Line Style	Description	Resulting Line
' - '	Solid line	$\underline{\square}$
'--'	Dashed line	- - - - -
':'	Dotted line
' - .'	Dash-dotted line	--------
'none'	No line	No line

LineWidth - Line width

0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point $=1 / 72$ of an inch.
The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

Color Data

ColorData - Line colors

[] (default) | numeric vector

Line colors, specified as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData. Specify ColorData as a vector the same length as ShapeData.

The ColorData property controls the colors of the lines when the Color property has a value of 'flat'.

ColorDataMode - Control how ColorData is set

'auto' (default)|'manual'
Control how the ColorData property is set, specified as one of these values:

- 'auto' - MATLAB controls the value of the ColorData property.
- 'manual' - You manually control the value of the ColorData property. When you set the ColorData property, MATLAB sets this property to 'manual'.

To specify colors using the ColorVariable property, this property must have a value of 'auto '.

SeriesIndex - Series index

non-negative integer
Series index, specified as a non-negative integer. This property is useful for reassigning the colors of several Line objects so that they match each other. By default, the SeriesIndex property of a Line object is a number that corresponds to the order of creation of the object, starting at 1.

MATLAB uses the number to calculate indices for assigning colors when you call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder property of the axes.

MATLAB automatically updates the color of the Line object when you change its SeriesIndex, or when you change the ColorOrder property on the axes. However, the following conditions must be true for the changes to have any effect:

- The ColorDataMode property on the Line object is has a value of 'auto'.
- The Color property on the Line object has a value of 'flat'.
- The SeriesIndex property on the Line object is greater than 0.
- The NextSeriesIndex property on the axes object is greater than 0.

Shape Data

ShapeData - Line shapes

empty geolineshape object (default) | geolineshape or maplineshape object \| vector of geolineshape or maplineshape objects

Line shapes, specified as a geolineshape or maplineshape object or as a vector of geolineshape or maplineshape objects. For maplineshape objects, the value of the ProjectedCRS property must not be empty.

When you pass shape objects or a geospatial table to the geoplot function, the geoplot function sets the value of ShapeData.

ShapeDataMode - Control how ShapeData is set

'auto' (default) | 'manual'
Control how the ShapeData property is set, specified as one of these values:

- 'auto' - MATLAB automatically updates the ShapeData property based on the SourceTable and ShapeVariable properties. When you pass a geospatial table to the geoplot function, MATLAB sets this property to 'auto '.
- 'manual' - You manually control the value of the ShapeData property. When you set the ShapeData property or pass shape objects to the geoplot function, MATLAB sets this property to 'manual'.

Table Data

SourceTable - Source table

geospatial table
Source table containing the data to plot, specified as a geospatial table. A geospatial table is a table or timetable object that contains a Shape variable and attribute variables. For more information about geospatial tables, see "Create Geospatial Tables".

ShapeVariable - Table variable containing shape objects

table variable index
Table variable containing the shape objects, specified as a table variable index. The table variable must contain geolineshape or maplineshape objects. For maplineshape objects, the value of the ProjectedCRS property must not be empty.

When you pass a geospatial table to the geoplot function, the value of this property is 'Shape'. When you set this property, MATLAB updates the ShapeData property.

This table lists the different indexing schemes you can use to specify the table variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable
Variable type: A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.	- vartype("double") - The variable containing values of type double

ColorVariable - Table variable containing color data

table variable index
Table variable containing the color data, specified as a variable index into the source table.

Specifying the Table Index

Use any of these indexing schemes to specify the desired variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable
Variable type: A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.	- vartype("double") - The variable containing values of data type double

Specifying Color Data

The ColorVariable property controls the colors of the lines when the Color property has a value of 'flat'.

Specify the color data values as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData.

When you set the ColorVariable property, MATLAB updates the ColorData property.

Legend

DisplayName - Legend label

' ' (default) | character vector | string scalar

Legend label, specified as a character vector or string scalar. The legend does not display until you call the legend command. If you do not specify the text, then legend sets the label using the form 'dataN'.

Annotation - Control for including or excluding object from legend

Annotation object

This property is read-only.
Control for including or excluding the object from a legend, returned as an Annotation object. Set the underlying IconDisplayStyle property to one of these values:

- ' on ' - Include the object in the legend (default).
- 'off' - Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the IconDisplayStyle property to 'off'.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend function. Specify the first input argument as a vector of the graphics objects to include. If you do not specify an existing graphics object in the first input argument, then it does not appear in the legend. However, graphics objects added to the axes after the legend is created do appear in the legend. Consider creating the legend after creating all the plots to avoid extra items.

Interactivity

Visible - State of visibility

'on ' (default) | on/off logical value
State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on ' - Display the object.
- 'off' - Hide the object without deleting it. You still can access the properties of an invisible object.

ContextMenu - Context menu

empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context menu when you right-click the object. Create the context menu using the uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then the context menu does not appear.

Selected - Selection state

' off' (default) | on/off logical value
Selection state, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- ' on ' - Selected. If you click the object when in plot edit mode, then MATLAB sets its Selected property to 'on'. If the SelectionHighlight property also is set to 'on', then MATLAB displays selection handles around the object.
- 'off' - Not selected.

SelectionHighlight - Display of selection handles

' on ' (default) | on/off logical value
Display of selection handles when selected, specified as ' on ' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on' is equivalent to true, and 'off' is equivalent to false. Thus,
you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on' - Display selection handles when the Selected property is set to 'on'.
- 'off' - Never display selection handles, even when the Selected property is set to 'on '.

Callbacks

ButtonDownFcn - Mouse-click callback

' ' (default) | function handle | cell array | character vector
Mouse-click callback, specified as one of these values:

- Function handle
- Cell array containing a function handle and additional arguments
- Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:

- Clicked object - Access properties of the clicked object from within the callback function.
- Event data - Empty argument. Replace it with the tilde character (\sim) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see "Callback Definition".

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then this callback does not execute.

CreateFcn - Creation function

' ' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

DeleteFcn - Deletion function

' ' (default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn callback before destroying the properties of the object. If you do not specify the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Callback Execution Control

Interruptible - Callback interruption

' on ' (default) | on/off logical value
Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor, and pause.

If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of the object that owns the running callback determines if the interruption occurs:

- If the value of Interruptible is 'off' , then no interruption occurs. Instead, the BusyAction property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.
- If the value of Inter ruptible is ' on ' , then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.

Note Callback interruption and execution behave differently in these situations:

- If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback, then the interruption occurs regardless of the Inter ruptible property value.
- If the running callback is currently executing the waitfor function, then the interruption occurs regardless of the Interruptible property value.
- If the interrupting callback is owned by a Timer object, then the callback executes according to schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the object returned by the gca or gcf command might change when another callback executes.

BusyAction - Callback queuing

'queue' (default)|'cancel'
Callback queuing, specified as 'queue' or 'cancel '. The BusyAction property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions are met:

- The running callback contains a command that processes the callback queue, such as drawnow, figure, uifigure, getframe, waitfor, or pause.
- The value of the Inter ruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the BusyAction property:

- 'queue ' - Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
- ' cancel' - Does not execute the interrupting callback.

PickableParts - Ability to capture mouse clicks

'visible' (default)|'none'
Ability to capture mouse clicks, specified as one of these values:

- 'visible' - Capture mouse clicks only when visible. The Visible property must be set to ' on '. The HitTest property determines if the Line object responds to the click or if an ancestor does.
- ' none ' - Cannot capture mouse clicks. Clicking the Line object passes the click to the object behind it in the current view of the figure window. The HitTest property of the Line object has no effect.

HitTest - Response to captured mouse clicks

' on ' (default) | on/off logical value
Response to captured mouse clicks, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on ' - Trigger the ButtonDownFcn callback of the Line object. If you have defined the ContextMenu property, then invoke the context menu.
- 'off' - Trigger the callbacks for the nearest ancestor of the Line object that has one of these:
- HitTest property set to 'on'
- PickableParts property set to a value that enables the ancestor to capture mouse clicks

Note The PickableParts property determines if the Line object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted - Deletion status

on/off logical value
This property is read-only.
Deletion status, returned as an on/off logical value of type matlab. lang.OnOffSwitchState.
MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property remains set to ' on ' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted before querying or modifying it.

Parent/Child

Parent - Parent

GeographicAxes object
Parent, specified as a GeographicAxes object.

Children - Children

empty GraphicsPlaceholder array
The object has no children. You cannot set this property.

HandleVisibility - Visibility of object handle

'on' (default) |'off' | 'callback'
Visibility of the object handle in the Children property of the parent, specified as one of these values:

- 'on' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- ' callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to ' on ' to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type - Type of graphics object
 'line'

This property is read-only.
Type of graphics object, returned as ' line '. Use this property to find all objects of a given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag - Object identifier

' ' (default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

UserData - User data

[] (default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see "Share Data Within App Designer Apps".

See Also

Functions

geoplot

Objects
 geolineshape |maplineshape

Topics

"Access Property Values"
"Graphics Object Properties"
Introduced in R2022a

linecirc

Find intersection of line and circle in Cartesian coordinates

Syntax

[xout,yout] = linecirc(slope,intercpt,centerx,centery,radius)

Description

[xout,yout] = linecirc(slope,intercpt,centerx, centery,radius) finds the intersection of a line with the specified slope and intercept and a circle with the specified center and radius, in Cartesian coordinates.

Examples

Find Intersection of Line and Circle

Find the intersection of the line $y=2 x-1$ and a circle with its center at $(3,4)$ and a radius of 5 .

```
[xout,yout] = linecirc(2,-1,3,4,5)
xout = 1\times2
    4.8271 0.3729
yout = 1\times2
    8.6542 -0.2542
```


Find Intersection of Vertical Line and Circle

Find the intersection of the line $x=-1$ and a circle with its center at $(3,4)$ and a radius of 5 .

```
[xout,yout] = linecirc(Inf,-1,3,4,5)
xout = 1\times2
    -1 -1
yout = 1\times2
    7 1
```


Input Arguments

slope - Slope of line
numeric scalar | Inf
Slope of the line, specified as a numeric scalar or Inf. Specify Inf when the line is vertical.

intercpt - Intercept of line
 numeric scalar

Intercept of the line, specified as a numeric scalar.

- When slope is a numeric scalar, this argument is the y-intercept of the line.
- When slope is Inf, this argument is the x-intercept of the line.
centerx - x-coordinate of center of circle
numeric scalar
x-coordinate of the center of the circle, specified as a numeric scalar.
centery - \boldsymbol{y}-coordinate of center of circle
numeric scalar
y-coordinate of the center of the circle, specified as a numeric scalar.
radius - Radius of circle
positive scalar
Radius of the circle, specified as a positive scalar.

Output Arguments

xout - x-coordinates of intersections

two-element vector
x-coordinates of the intersections, returned as a two-element vector.

- When the line is tangent to the circle, the elements of the vector are equal.
- When the line does not intersect the circle, both elements are NaN.

yout - \boldsymbol{y}-coordinates of intersections

two-element vector
y-coordinates of the intersections, returned as a two-element vector.

- When the line is tangent to the circle, the elements of the vector are equal.
- When the line does not intersect the circle, both elements are NaN.

See Also

Functions
circcirc

Introduced before R2006a

linem

Project line object on map axes

Syntax

h = linem(lat,lon)
h = linem(lat,lon, LineSpec)
h = linem(lat,lon, PropertyName,PropertyValue,...)
h = linem(lat,lon,z)

Description

$\mathrm{h}=$ linem(lat,lon) displays projected line objects on the current map axes. lat and lon are the latitude and longitude coordinates, respectively, of the line object to be projected. Note that this ordering is conceptually reversed from the MATLAB line function, because the vertical (y) coordinate comes first. However, the ordering latitude, then longitude, is standard geographic usage. lat and lon must be the same size and in the AngleUnits of the map axes. The object handle for the displayed line can be returned in h.
h = linem(lat,lon,LineSpec) specifies the line style, marker, and color on page 1-879.
h = linem(lat,lon, PropertyName, PropertyValue,...) allows the specification of any number of property name/property value pairs for any properties recognized by the MATLAB line function except for XData, YData, and ZData.
$\mathrm{h}=$ linem(lat,lon, z) displays a line object in three dimensions, where z is the same size as lat and lon and contains the desired altitude data. z is independent of AngleUnits. If omitted, all points are assigned a z-value of 0 by default.

The units of z are arbitrary, except when using the globe projection. In the case of globe, z should have the same units as the radius of the earth or semimajor axis specified in the 'geoid ' (reference ellipsoid) property of the map axes. This implies that when the reference ellipsoid is a unit sphere, the units of z are earth radii.
linem is the mapping equivalent of the MATLAB line function. It is a low-level graphics function for displaying line objects in map projections. Ordinarily, it is not used directly. Use plotm or plot3m instead.

Examples

axesm sinusoid; framem
linem([15; 0; -45; 15],[-100; 0; 100; 170],'r-')

More About

Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' $-r^{\prime}$.

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - -
':'	Dotted line	\ldots.
'-.'	Dash-dotted line	--------

Marker	Description	Resulting Marker
'0'	Circle	\bigcirc
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
' X '	Cross	\times
'_'	Horizontal line	-
' 1 '	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond

Marker	Description	Resulting Marker
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	\triangleleft
'p'	Pentagram	\pm
'h'	Hexagram	3

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

See Also

line | plot3m | plotm

longitudeToIntrinsicX

Package: map. rasterref
Convert from longitude to intrinsic x coordinates

Syntax

xIntrinsic = longitudeToIntrinsicX(R,lon)

Description

xIntrinsic $=$ longitudeToIntrinsicX(R,lon) returns the x-coordinate in the intrinsic coordinate system corresponding to longitude lon in the geographic coordinate system, based on the relationship defined by geographic raster R.

Examples

Find Intrinsic x-Coordinate from Longitude

Import a GeoTIFF image [1] on page 1-0 of the Gulf of Mexico as an array and a
GeographicCellsReference object. Find the intrinsic x-coordinate corresponding to a longitude of -90.0226 degrees.
[Z,R] = readgeoraster('katrina.tif');
xIntrinsic = longitudeToIntrinsicX(R,-90.0226)
xIntrinsic = 341.0619
The result means that coordinates with a longitude of -90.0226 degrees fall between columns 341 and 342 of the posting points.
[1] The image used in this example is derived from imagery obtained from the NASA Goddard Scientific Visualization Studio (SVS) Image Server.

Input Arguments

R-Geographic raster
GeographicCellsReference or GeographicPostingsReference object
Geographic raster, specified as a GeographicCellsReference or
GeographicPostingsReference object.

Lon - Longitude coordinates

numeric array
Longitude coordinates, specified as a numeric array. lon coordinates can be outside the bounds of the raster R .

Data Types: single|double

Output Arguments

xIntrinsic - x-coordinates in intrinsic coordinate system
 numeric array

x-coordinates in intrinsic coordinate system, returned as a numeric array. xIntrinsic is the same size as lat.

When $\operatorname{lon}(k)$ is outside the bounds of raster $\mathrm{R}, \mathrm{xIntrinsic}(k)$ is extrapolated in the intrinsic coordinate system. Elements of lon with value NaN map to NaN in xIntrinsic.

Data Types: double

See Also
 geographicToIntrinsic|latitudeToIntrinsicY|intrinsicXToLongitude
 Introduced in R2013b

lookAtSpheroid

Line of sight intersection with oblate spheroid

Syntax

[lat,lon,slantrange] = lookAtSpheroid(lat0,lon0,h0,az,tilt,spheroid)

Description

[lat,lon,slantrange] = lookAtSpheroid(lat0,lon0,h0,az,tilt,spheroid) computes the latitude and longitude (lat and lon) of the first point of intersection of the line-of-sight from a viewpoint in space with the surface of an oblate spheroid. If the line-of-sight does not intersect with the spheroid, lat and lon contain NaNs.
lat0 and lon0 are the geodetic coordinates of the viewpoint on the reference spheroid, spheroid. h 0 specifies the geodetic height of the viewpoint in space above the spheroid. The az and tilt arguments specify the direction of the view (line-of-sight) as the azimuth angle, measured clockwise from North, and a tilt angle. The following figure illustrates these measurements.

The optional slantrange output argument returns the (3-D Euclidean) distance from the viewpoint to the intersection. All angles are in degrees.

Examples

Calculate Intersection with Spheroid of View from Geostationary Orbit

Create a reference spheroid. Specify the length unit as kilometers.

```
spheroid = wgs84Ellipsoid('km');
```

Define location of view in space. The units for h 0 match the units of the spheroid (kilometers).

```
lat0 = 0;
lon0 = -100;
h0 = 35786;
```

Define the view from space in terms of the azimuth angle and tilt.

```
az = 45;
tilt = 6;
```

Calculate the point on the spheroid at which the view first intersects with the spheroid. The example also returns the distance in kilometers between the viewpoint in space and the first point of intersection with the spheroid.

```
[lat,lon,slantrange] = lookAtSpheroid(lat0,lon0,h0,az,tilt,spheroid)
lat = 25.7991
lon = -71.3039
slantrange = 3.7328e+04
```


Input Arguments

lat0 - Geodetic latitude of the viewpoint on the spheroid scalar | vector | matrix | N-D array

Geodetic latitude of the viewpoint on the spheroid, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

lon0 - Geodetic longitude of the viewpoint on the spheroid
 scalar | vector | matrix | N-D array

Geodetic longitude of the viewpoint on the spheroid, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

h0 - Height of the viewpoint in space above the spheroid
 scalar | vector | matrix | N-D array

Height of the viewpoint in space above the spheroid, specified as a scalar value, vector, matrix, or ND array. h0 must be in units that match the spheroid input.
Data Types: single | double
az - Azimuth angle of view from space
scalar | vector | matrix | N-D array
Azimuth angle of view from space, specified as a scalar value, vector, matrix, or N-D array. Measured in degrees, clockwise from north.
Data Types: single | double

tilt - Tilt angle of view from space

scalar | vector | matrix | N-D array

Tilt angle of view from space, specified as scalar value, vector, matrix, or N-D array. Measured in degrees, relative to a vector pointing downward toward the nadir point. The nadir point is the point on the spheroid directly below the viewpoint, with geodetic coordinates (lat0, lon0, 0). When the tilt is zero (0), the line-of-sight is directed at the nadir point itself. Tilt can be in the range [0 180] but for large angles and all angles greater than or equal to 90 degrees, there is no intersection with the spheroid.
Data Types: single | double
spheroid - Reference spheroid
referenceEllipsoid | oblateSpheroid | referenceSphere
Reference spheroid, specified as a referenceEllipsoid, oblateSpheroid, or referenceSphere object. Use the constructor for one of these three classes, or the wgs84Ellipsoid function, to construct a spheroid object. You cannot directly pass in the name of the reference spheroid. Instead, pass the name to referenceEllipsoid or referenceSphere and use the resulting object.

Output Arguments

lat - Latitude of the first point of intersection with the spheroid scalar | vector | matrix | N-D array

Latitude of the first point of intersection with the spheroid, returned as a scalar value, vector, matrix, or N-D array. If the line-of-sight does not intersect with the spheroid, lat contains NaNs.

lon - Longitude of the first point of intersection with the spheroid

 scalar | vector | matrix | N-D arrayLongitude of the first point of intersection with the spheroid, returned as a scalar value, vector, matrix, or N-D array. If the line-of-sight does not intersect with the spheroid, lon contains NaNs.

slantrange - Distance from the viewpoint to the first intersection with the spheroid scalar | vector | matrix | N-D array

Distance from the viewpoint to the intersection with the spheroid, returned as a scalar value, vector, matrix, or N-D array. Units match the LengthUnit property of the input spheroid object.

See Also
geodetic2aer
Introduced in R2016b

los2

Line-of-sight visibility between two points in terrain

Syntax

```
vis = los2(Z,R,lat1,lon1,lat2,lon2)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,altlopt)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...
    alt2opt,actualradius)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...
    alt2opt,actualradius,effectiveradius)
[vis,visprofile,dist,H,lattrk,lontrk] = los2(...)
los2(...)
```


Description

los 2 computes the mutual visibility between two points on a displayed digital elevation map. los 2 uses the current object if it is a regular data grid, or the first regular data grid found on the current axes. The grid's zdata is used for the profile. The color data is used in the absence of data in z . The two points are selected by clicking on the map. The result is displayed in a new figure. Markers indicate visible and obscured points along the profile. The profile is shown in a Cartesian coordinate system with the origin at the observer's location. The displayed z coordinate accounts for the elevation of the terrain and the curvature of the body.
vis $=\operatorname{los} 2(Z, R$, lat1,lon1,lat2,lon2) computes the mutual visibility between pairs of points on a digital elevation map. The elevations are provided as a regular data grid Z containing elevations in units of meters. The two points are provided as vectors of latitudes and longitudes in units of degrees. The resulting logical variable vis is equal to one when the two points are visible to each other, and zero when the line of sight is obscured by terrain. If any of the input arguments are empty, los2 attempts to gather the data from the current axes. With one or more output arguments, no figures are created and only the data is returned.
R can be a geographic raster reference object, a referencing vector, or a referencing matrix. If R is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If R is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] $=[$ row $\operatorname{col} 1] * R$
If R is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.
vis $=\operatorname{los} 2(Z, R, l a t 1, l o n 1, l a t 2, l o n 2, a l t 1)$ places the first point at the specified altitude in meters above the surface (on a tower, for instance). This is equivalent to putting the point on a tower. If omitted, point 1 is assumed to be on the surface. alt1 may be either a scalar or a vector with the same length as lat1, lon1, lat2, and lon2.
vis $=\operatorname{los} 2(Z, R, l a t 1, l o n 1, l a t 2, l o n 2, a l t 1, a l t 2)$ places both points at a specified altitudes in meters above the surface. alt2 may be either a scalar or a vector with the same length as lat1, lon1, lat2, and lon2. If alt2 is omitted, point 2 is assumed to be on the surface.
vis $=\operatorname{los} 2(Z, R, l a t 1, l o n 1, l a t 2, l o n 2, a l t 1, a l t 2, a l t 1 o p t)$ controls the interpretation of alt1 as either a relative altitude (alt1opt equals 'AGL', the default) or an absolute altitude (altlopt equals 'MSL'). If the altitude option is 'AGL', alt1 is interpreted as the altitude of point 1 in meters above the terrain ("above ground level"). If altlopt is 'MSL', alt1 is interpreted as altitude above zero ("mean sea level").
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt) controls the interpretation ALT2.
vis $=\operatorname{los} 2(Z, R$, lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,..
alt2opt, actualradius) does the visibility calculation on a sphere with the specified radius. If omitted, the radius of the earth in meters is assumed. The altitudes, elevations and the radius should be in the same units. This calling form is most useful for computations on bodies other than the earth.
vis $=\operatorname{los} 2(Z, R, l a t 1, l o n 1, l a t 2, l o n 2, a l t 1, a l t 2, a l t 1 o p t, \ldots$
alt2opt, actualradius, effectiveradius) assumes a larger radius for propagation of the line of sight. This can account for the curvature of the signal path due to refraction in the atmosphere. For example, radio propagation in the atmosphere is commonly treated as straight line propagation on a sphere with $4 / 3$ the radius of the earth. In that case the last two arguments would be R_e and $4 / 3 *$ R_e, where $R \_e$ is the radius of the earth. Use Inf as the effective radius for flat earth visibility calculations. The altitudes, elevations and radii should be in the same units.
[vis,visprofile,dist,H,lattrk,lontrk] = los2(...), for scalar inputs (lat1, lon1, etc.), returns vectors of points along the path between the two points. visprofile is a logical vector containing true (logical(1)) where the intermediate points are visible and false (logical(0)) otherwise. dist is the distance along the path (in meters or the units of the radius). H contains the terrain profile relative to the vertical datum along the path. lattrk and lontrk are the latitudes and longitudes of the points along the path. For vector inputs los2 returns visprofile, dist, H, lattrk, and lontrk as cell arrays, with one cell per element of lat1, lon1, etc.
los2(...), with no output arguments, displays the visibility profile between the two points in a new figure.

Examples

Determine Line-of-Sight

Determine the line-of-sight for two points. Display the visibility profile in 2-D and 3-D.
Import terrain data for an area around South Boulder Peak in Colorado. Prepare the data for analysis by specifying the output type as 'double'.

```
[Z,R] = readgeoraster("n39_w106_3arc_v2.dt1","OutputType","double");
```

Specify the coordinates of South Boulder Peak and a nearby point. Determine whether the nearby point is visible from a location 100 meters above the peak by assigning the result of los2 to a variable.

```
latPeak = 39.95384;
lonPeak = -105.29916;
latNearby = 39.96955;
lonNearby = -105.29867;
vis = los2(Z,R,latPeak,lonPeak,latNearby,lonNearby,100)
vis = logical
    0
```

The value of vis is 0 , which means the point is not visible from the peak.
To display the visibility profile in 2-D, call los2 without an output argument.
los2(Z,R,latPeak, lonPeak, latNearby, lonNearby, 100)

To display the visibility profile in 3-D, return visibility information about points between the coordinates you specified. The outputs lattrk and lontrk contain the coordinates of the points. The output visprofile contains logical values indicating whether the points are visible.

```
[~,visprofile,~,~,lattrk,lontrk] = los2(Z,R,latPeak,lonPeak,latNearby,lonNearby,100);
```

Create a geographic globe that includes custom terrain for the area around South Boulder Peak.

```
addCustomTerrain("southboulder","n39_w106_3arc_v2.dt1")
```

uif = uifigure;
g = geoglobe(uif,"Terrain", "southboulder");

Plot the line-of-sight between the coordinates you specified. Use a magenta line to indicate the point is not visible from above the peak.
hold(g,"on")
geoplot3(g,[latPeak latNearby],[lonPeak lonNearby],[100 0],"m","LineWidth",2, ...
"HeightReference", "terrain")
Plot the intermediate points. Use magenta markers for points that are not visible and green markers for points that are visible. Plot each value 10 meters above the terrain so the markers are not obscured by the terrain.

```
geoplot3(g,lattrk(~visprofile),lontrk(~visprofile),10, ...
    "mo","MarkerSize", 2,"LineWidth", 2,"HeightReference", "terrain")
geoplot3(g,lattrk(visprofile),lontrk(visprofile),10,"go", ...
    "MarkerSize",2,"LineWidth",2,"HeightReference","terrain")
```

Adjust the view by setting the camera position, pitch, roll, and heading.

```
campos(g,39.9519,-105.3039,2.9424e+03)
```

campitch (g,-31.7850)
camroll(g,0.3603)
camheading(g,36.5618)

Close the figure containing the geographic globe and remove the custom terrain.

```
close(uif)
removeCustomTerrain("southboulder")
```


Find Elevation Angle of Point 90 Degrees from Observer

Find the elevation angle of a point 90 degrees from an observer assuming that the observer and the target are both 1000 km above the Earth.

```
lat1 = 0;
lon1 = 0;
alt1 = 1000*1000;
lat2 = 0;
lon2 = 90;
alt2 = 1000*1000;
[az, elev, r] = geodetic2aer(lat2,lon2,alt2,lat1,lon1,alt1,referenceEllipsoid('grs 80'))
az = 90
elev = -45
r = 1.0434e+07
```

Visually check the result using the los2 line of sight function. Construct a data grid of zeros to represent the Earth's surface. The los2 function with no output arguments creates a figure displaying the geometry.

```
Z = zeros(181,361);
R = georefpostings([-90 90],[-180 180], size(Z))
R =
    GeographicPostingsReference with properties:
                LatitudeLimits: [-90 90]
            LongitudeLimits: [-180 180]
                RasterSize: [181 361]
            RasterInterpretation: 'postings'
                ColumnsStartFrom: 'south'
                    RowsStartFrom: 'west'
        SampleSpacingInLatitude: 1
        SampleSpacingInLongitude: 1
            RasterExtentInLatitude: 180
            RasterExtentInLongitude: 360
            XIntrinsicLimits: [1 361]
            YIntrinsicLimits: [1 181]
            CoordinateSystemType: 'geographic'
                    GeographicCRS: []
                            AngleUnit: 'degree'
los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt1);
```


See Also

viewshed |mapprofile
Introduced before R2006a

ItIn2val

(To be removed) Extract data grid values for specified locations

Note ltln2val will be removed in a future release. Use the geointerp function instead. For more information, see "Compatibility Considerations".

Syntax

val = ltln2val(Z, R, lat, lon)
val = ltln2val(Z, R, lat, lon, method)

Description

val = ltln2val(Z, R, lat, lon) interpolates a regular data grid Z with referencing vector R at the points specified by vectors of latitude and longitude, lat and lon. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If R is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1 -by- 3 with elements:

```
[cells/degree northern_latitude_limit western_longitude_limit]
```

If R is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] $=[$ row $\operatorname{col} 1] * \mathrm{R}$
If R is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.
val = ltln2val(Z, R, lat, lon, method) where method specifies the type of interpolation: 'bilinear' for linear interpolation, 'bicubic' for cubic interpolation, or 'nearest' for nearest neighbor interpolation.

Examples

Load elevation raster data and a geographic cells reference object. Then, find the elevation in meters associated with Milan, Bern, and Prague.

```
load topo60c
lat = [45.45 46.95 50.1];
lon = [9.2 7.4 14.45];
elevations = ltln2val(topo60c,topo60cR,lat,lon)
```


Compatibility Considerations

ltln2val will be removed

Warns starting in R2022a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the $l t \ln 2 v a l$ function. Use a geographic reference object and the geointerp function instead. Reference objects have several advantages over referencing vectors and matrices.

- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of geographic rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of geographic rasters associated with reference objects using the georesize function.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, replace uses of the ltln2val function with the geointerp function according to these patterns. Note that the default method of interpolation for the geointerp function is ' linear' instead of ' nearest'. In addition, replace the interpolation methods of 'bilinear' and 'bicubic' for the ltln2val function with 'linear' and 'cubic' for the geointerp function.

Will Be Removed	Recommended
val $=$ ltln2val(Z,R,lat,lon);	val $=$ geointerp(Z,R,lat,lon, 'nearest' $) ;$
val $=$ ltln2val(Z,R,lat,lon, method);	val $=$ geointerp(Z,R,lat,lon, method) ;

See Also

findm | imbedm | geointerp

Iv2ecef

(To be removed) Convert local vertical to geocentric (ECEF) coordinates

Note The lv2ecef function will be removed in a future release. Use the enu2ecef function instead. By default, the enu2ecef function assumes that the latitude and longitude of the local origin are in degrees. When you update your code, you can specify the angleUnit input argument as ' radians '.

Syntax

[x,y,z] = lv2ecef(xl,yl,zl,phi0,lambda0,h0,ellipsoid)

Description

$[x, y, z]=\operatorname{lv2ecef}(x l, y l, z l, p h i 0, l a m b d a 0, h 0, e l l i p s o i d)$ converts arrays $x l, y l$, and $z l$ in the local vertical coordinate system to arrays x, y, and z in the geocentric coordinate system. The origin of the local vertical system is at geodetic latitude phi0, geodetic longitude lambda0, and ellipsoidal height h 0 . The arrays xl, yl, and zl may have any shape, as long as they are all the same size. They are measured in the same length units as the semimajor axis. phi0 and lambda0 are scalars measured in radians; h 0 is a scalar with the same length units as the semimajor axis; and ellipsoid is a referenceEllipsoid (oblateSpheroid) object, a referenceSphere object, or a vector of the form [semimajor axis, eccentricity]). The coordinates x, y, and z also have the same units as the semimajor axis.

More About

Local Vertical System

In the local vertical Cartesian system defined by phi0, lambda0, h0, and ellipsoid, the $x l$ axis is parallel to the plane tangent to the ellipsoid at (phi0,lambda0) and points due east. The yl axis is parallel to the same plane and points due north. The $z l$ axis is normal to the ellipsoid at (phi0,lambda0) and points outward into space. The local vertical system is sometimes referred to as East-North-Up or ENU.

Geocentric System

The geocentric Cartesian coordinate system, also known as Earth-Centered, Earth-Fixed (ECEF), is fixed with respect to the Earth, with its origin at the center of the spheroid and its positive X -, Y -, and Z axes intersecting the surface at the following points:

	Latitude	Longitude	Notes
X-axis	0	0	Equator at the Prime Meridian
Y-axis	0	90	Equator at 90-degrees East
Z-axis	90	0	North Pole

See Also

enu2ecef |ecef2enu

Introduced before R2006a

majaxis

Semimajor axis of ellipse

Syntax

a = majaxis(semiminor,e)

Description

a = majaxis(semiminor,e) computes the semimajor axis length a of an ellipse or an ellipsoid of revolution given the semiminor axis length semiminor and eccentricity e.

Examples

Semimajor Axis of Ellipse from Semiminor Axis and Eccentricity

Find the semimajor axis length of an ellipse from the eccentricity and length of the semiminor axis.
$a=\operatorname{majaxis}(6356752,0.0818)$
$a=6.3781 e+06$

Input Arguments

semiminor - Semiminor axis length
numeric scalar
Semiminor axis length, specified as a numeric scalar.
e-Eccentricity of ellipse
numeric scalar
Eccentricity of the ellipse, specified as a numeric scalar. The value of e must be in the range $[0,1)$.
Data Types: single | double

Output Arguments

a - Semimajor axis length

numeric scalar
Semimajor axis length, returned as a numeric scalar. The units of a are the same as those of semiminor.

Compatibility Considerations

Only numeric scalars will be accepted as input
Not recommended starting in R2013b

The majaxis function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

See Also
 axes2ecc|flat2ecc|minaxis|n2ecc

Introduced before R2006a

makeattribspec

Create attribute specification

Syntax

attribspec = makeattribspec(S)

Description

attribspec $=$ makeattribspec(S) creates an attribute specification for use with the kmlwrite, wmmarker, wmline, and wmpolygon functions based on the vector geographic features stored in S .

The kmlwrite function creates an HTML table from attribute fields. The first column of the table includes attribute labels and the second column includes attribute values as text. Use an attribute specification with the kmlwrite function and Description name-value argument to specify which attribute fields to include in the HTML table and the format of the attribute values.

When you plot features using wmmarker, wmline, or wmpolygon, you can view feature balloons with attribute information by clicking on features. Use an attribute specification with wmmarker, wmline, or wmpolygon and the Description name-value argument to specify which attribute fields to include in the feature balloons and the format of the attribute values.

Examples

Create Attribute Specification

Import a shapefile representing tsunami (tidal wave) events reported over several decades, tagged geographically by source location, as a geospatial table. Create an attribute specification from the table.

```
GT = readgeotable("tsunamis.shp","CoordinateSystemType","geographic");
attribspec = makeattribspec(GT)
attribspec = struct with fields:
            Year: [1x1 struct]
            Month: [1x1 struct]
                Day: [1x1 struct]
            Hour: [1x1 struct]
        Minute: [1x1 struct]
        Second: [1x1 struct]
    Val_Code: [1x1 struct]
    Validity: [1x1 struct]
        Cause Code: [1x1 struct]
            Cause: [1x1 struct]
            Eq_Mag: [1x1 struct]
            Country: [1x1 struct]
            Location: [1x1 struct]
    Max_Height: [1x1 struct]
            Iida_Mag: [1x1 struct]
            Intensity: [1x1 struct]
```

```
    Num_Deaths: [1x1 struct]
Desc_Deaths: [1x1 struct]
```

Remove all attributes from the specification, except for the attributes describing the maximum height, cause, year, location, and country.

```
desiredAttributes = {'Max_Height','Cause','Year','Location','Country'};
allAttributes = fieldnames(attribspec);
attributes = setdiff(allAttributes,desiredAttributes);
attribspec = rmfield(attribspec,attributes)
attribspec = struct with fields:
            Year: [1x1 struct]
            Cause: [1x1 struct]
        Country: [1x1 struct]
        Location: [1x1 struct]
    Max_Height: [1x1 struct]
```

Rename the Max Height attribute to Maximum Height and highlight each attribute label in bold font.

```
attribspec.Max_Height.AttributeLabel = "<b>Maximum Height</b>";
attribspec.Cause.AttributeLabel = "<b>Cause</b>";
attribspec.Year.AttributeLabel = "<b>Year</b>";
attribspec.Location.AttributeLabel = "<b>Location</b>";
attribspec.Country.AttributeLabel = "<b>Country</b>";
```

Add Meters to the format of the maximum height attribute. Set the format of the year attribute to include no decimal places.

```
attribspec.Max_Height.Format = "%.1f Meters";
attribspec.Year.Format = "%.0f";
```

Export the selected attributes and tsunami source locations to a KML file.

```
kmlwrite("tsunamis.kml",GT,"Description",attribspec,"Name",GT.Location)
```


Display Marker Overlay Using Attribute Specification

Import a shapefile representing tsunami (tidal wave) events reported over several decades, tagged geographically by source location.

```
GT = readgeotable("tsunamis.shp","CoordinateSystemType","geographic");
```

Create an attribute specification for use in the feature balloons. Modify the specification so that it defines a table of values, including year, cause, country, location, and maximum height. The attribute specification defines the format of the expected value for each field.

```
attribspec = makeattribspec(GT);
desiredAttributes = ...
    {'Max_Height','Cause','Year','Location','Country'};
allAttributes = fieldnames(attribspec);
```

```
attributes = setdiff(allAttributes,desiredAttributes);
attribspec = rmfield(attribspec,attributes);
attribspec.Max Height.AttributeLabel = "<b>Maximum Height</b>";
attribspec.Max_Height.Format = "%.1f Meters";
attribspec.Cause.AttributeLabel = "<b>Cause</b>";
attribspec.Year.AttributeLabel = "<b>Year</b>";
attribspec.Year.Format = "%.0f";
attribspec.Location.AttributeLabel = "<b>Location</b>";
attribspec.Country.AttributeLabel = "<b>Country</b>";
```

Create a web map with a base layer containing ocean details. Add the marker overlay. Display the table data you specified in the attribute specification by selecting a marker.

```
webmap("ocean basemap");
wmmarker(GT,"Description",attribspec,...
            "OverlayName","Tsunami Events")
wmzoom(2)
```


Input Arguments

S - Vector geographic features

geospatial table | geopoint vector | geoshape vector| geostruct vector
Vector geographic features, specified as one of these:

- A geospatial table containing geopointshape, geolineshape, or geopolyshape objects. The makeattribspec function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A geopoint vector.
- A geoshape vector with no dynamic vertex properties.
- A geographic structure array (geostruct) with Lat and Lon fields.

Output Arguments

attribspec - Attribute specification

structure array
Attribute specification, returned as a structure array with two levels. The top level contains a field for each attribute in S. Each field in the top level contains a scalar structure with two fields.

Field	Description
AttributeLabel	Attribute label for the kmlwrite function to use in the first column of the HTML table, returned as a character vector. By default, the label is identical to the name of the corresponding attribute field.
Format	Format for the kmlwrite function to use when converting the attribute value to text, returned as a character vector. For more information about formatting data, see the sprintf function.

You can change the structure array before using it with the kmlwrite function. For example, you can remove attributes from the structure or change the AttributeLabel field to include spaces.

See Also

Functions

kmlwrite | wmmarker|wmline |wmpolygon | makedbfspec| shapewrite

Introduced before R2006a

makedbfspec

Create DBF specification

Syntax

dbfspec $=$ makedbfspec (S)

Description

dbfspec = makedbfspec (S) creates a DBF specification for use with the shapewrite function based on the vector geographic features stored in S .

The shapewrite function creates a main file (.shp), an index file (.shx), and an attribute file (.dbf). Use a DBF specification with the shapewrite function and DbfSpec name-value argument to specify which attribute fields to include in the DBF file, the length of each field, and the numerical precision of each field.

Examples

Create DBF Specification

Import a shapefile representing a network of road segments in Concord, MA, as a geospatial table. Create a DBF specification from the table.

```
GT = readgeotable("concord_roads.shp");
dbfspec = makedbfspec(GT)
dbfspec = struct with fields:
    STREETNAME: [1x1 struct]
        RT_NUMBER: [1x1 struct]
            CLASS: [1x1 struct]
    ADMIN_TYPE: [1x1 struct]
        LENGTH: [1x1 struct]
```

Remove the ADMIN_TYPE field from the specification, rename the STREETNAME field to Street Name, and reduce the number of decimal places used to store road lengths.

```
dbfspec = rmfield(dbfspec,"ADMIN TYPE");
dbfspec.STREETNAME.FieldName = "S\overline{Street Name";}
dbfspec.LENGTH.FieldDecimalCount = 1;
```

Export the road network to a new shapefile.

```
shapewrite(GT,"concord_roads_new.shp","DbfSpec",dbfspec)
```


Input Arguments

S - Vector geographic features

geospatial table |mappoint vector \| mapshape vector \| mapstruct vector | geopoint vector | geoshape vector \mid geostruct vector

Vector geographic features, specified as one of these:

- A geospatial table. The makedbfspec function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A mappoint vector.
- A mapshape vector.
- A map structure array (mapstruct) with X and Y coordinate fields.
- A geopoint vector.
- A geoshape vector.
- A geographic structure array (geostruct) with Lat and Lon fields.

Output Arguments

dbfspec - DBF specification

structure array
DBF specification, returned as a structure array with two levels. The top level contains a field for each attribute in S . Each field in the top level contains a scalar structure with four fields.

Field	Description
FieldName	Field name for the shapewrite function to use in the DBF file. By default, the field name is identical to the name of the corresponding attribute.
FieldType	Field type for the shapewrite function to use in the DBF file, specified as 'N' (numeric) or 'C' (character).
FieldLength	Number of bytes each instance of the field occupies in the file.
FieldDecimalCount	Number of digits to the right of the decimal place. Specify the number of digits as 0 for integer-valued fields and character fields. The default value for noninteger numeric fields is 6.

You can change the structure array before using it with the shapewrite function. For example, you can remove attributes from the structure or change the FieldName field to include spaces.

See Also

Functions

shapeinfo| shapewrite | readgeotable

Introduced before R2006a

makemapped

(To be removed) Convert ordinary graphics object to mapped object

Note The makemapped function will be removed in a future release.

Syntax

makemapped(h)

Description

makemapped (h) modifies the graphic object(s) associated with h such that upon subsequent modification of map axes properties, they are automatically reprojected appropriately. The object's coordinates are not changed by makemapped, but will change should you modify the map projection. h can be a handle, vector of handles, or any name recognized by handlem. The objects are then considered to be geographic data. You should first trim objects extending outside the map frame to the map frame using trimcart.

Examples

```
axesm('miller','geoid',[25 0])
framem
plot(humps,'b+-')
h = plot(humps,'r+-');
trimcart(h)
makemapped(h)
setm(gca,'MapProjection','sinusoid')
```


Tips

Objects should first be trimmed to the map frame using trimcart. This avoids problems in taking inverse map projections with out-of-range data.

See Also

makerefmat

(To be removed) Construct affine spatial-referencing matrix

Note makerefmat will be removed in a future release. Create a raster reference object using the georefcells, georefpostings, georasterref, maprefcells, maprefpostings, or maprasterref function instead. For more information, see "Compatibility Considerations".

Syntax

R = makerefmat(x11, y11, dx, dy)
R = makerefmat(lon11, lat11, dlon, dlat)
$\mathrm{R}=$ makerefmat(param1, val1, param2, val2, ...)

Description

$R=$ makerefmat (x11, y11, dx, dy), with scalars $d x$ and $d y$, constructs a referencing matrix that aligns image or data grid rows to map x and columns to map y. Scalars $x 11$ and $y 11$ specify the map location of the center of the first $(1,1)$ pixel in the image or the first element of the data grid.
dx is the difference in x (or longitude) between pixels in successive columns, and dy is the difference in y (or latitude) between pixels in successive rows.

Pixels cover squares on the map when $\mathrm{abs}(\mathrm{dx})=\mathrm{abs}(\mathrm{dy})$. To achieve the most typical kind of alignment, where x increases from column to column and y decreases from row to row, make $d x$ positive and dy negative. In order to specify such an alignment along with square pixels, make dx positive and make dy equal to -dx :

```
R = makerefmat(x11, y11, dx, -dx)
```

$R=$ makerefmat ($x 11, y 11, d x, d y$), with two-element vectors $d x$ and $d y$, constructs the most general possible kind of referencing matrix.

In this general case, each pixel can become a parallelogram on the map, with neither edge necessarily aligned to map x or y. The vector [$\mathrm{dx}(1) \mathrm{dy}(1)]$ is the difference in map location between a pixel in one row and its neighbor in the preceding row. Likewise, [$d x(2) d y(2)]$ is the difference in map location between a pixel in one column and its neighbor in the preceding column.

To specify pixels that are rectangular or square (but possibly rotated), choose dx and dy such that $\operatorname{prod}(d x)+\operatorname{prod}(d y)=0$. To specify square (but possibly rotated) pixels, choose $d x$ and dy such that the 2-by-2 matrix [dx(:) dy(:)] is a scalar multiple of an orthogonal matrix (that is, its two eigenvalues are real, nonzero, and equal in absolute value). This amounts to either rotation, a mirror image, or a combination of both. Note that for scalars $d x$ and $d y$,
$R=$ makerefmat (x11, y11, [0 dx], [dy 0])
is equivalent to
$R=$ makerefmat (x11, $y 11, d x, d y)$
$R=$ makerefmat(lon11, lat11, dlon, dlat), with longitude preceding latitude, constructs a referencing matrix for use with geographic coordinates.

R = makerefmat (param1, val1, param2, val2, ...) uses parameter name-value pairs to construct a referencing matrix for an image or raster grid that is referenced to and aligned with a geographic coordinate system. There can be no rotation or skew: each column must fall along a meridian, and each row must fall along a parallel. Each parameter name must be specified exactly as shown, including case.

Parameter Name	Data Type	Value
RasterSize	Two-element size vector [M N]	The number of rows (M) and columns (N) of the raster or image to be used with the referencing matrix. With 'RasterSize', you may also provide a size vector having more than two elements. This enables usage such as: where RGB is $\mathrm{M}-\mathrm{by}-\mathrm{N}-$ by -3 . However, in cases like this, only the first two elements of the size vector will actually be used. The higher (non-spatial) dimensions will be ignored. The default value is [1 1].
LatitudeLimits	Two-element row vector of the form: [southern limit, northern_limit], in units of degrees.	The limits in latitude of the geographic quadrangle bounding the georeferenced raster. The default value is [01].
LongitudeLimits	Two-element row vector of the form: [western limit, eastern_limit], in units of degrees.	The limits in longitude of the geographic quadrangle bounding the georeferenced raster. The elements of the 'LongitudeLimits ' vector must be ascending in value. In other words, the limits must be unwrapped. The default value is [01].
ColumnsStartFrom	String scalar or character vector	Indicates the column direction of the raster (south-to-north vs. north-to-south) in terms of the edge from which row indexing starts. Values are ' south' or 'north' and they can be shortened, and are case-insensitive. In a typical terrain grid, row indexing starts at southern edge. In images, row indexing starts at northern edge. The default value is 'south'.
RowsStartFrom	String scalar or character vector	Indicates the row direction of the raster (west-toeast vs. east-to-west) in terms of the edge from which column indexing starts. Values are: 'west' or 'east ' and they can be shortened, and are caseinsensitive. Rows almost always run from west to east. The default value is 'west'.

Examples

Create a referencing matrix for an image with square, four-meter pixels and with its upper left corner (in a map coordinate system) at $x=207000$ meters, $y=913000$ meters. The image follows the typical orientation: x increasing from column to column and y decreasing from row to row.

```
x11 = 207002; % Two meters east of the upper left corner
y11 = 912998; % Two meters south of the upper left corner
dx = 4;
dy = -4;
R = makerefmat(x11, y11, dx, dy)
```


More About

Spatial Referencing Matrix

A spatial referencing matrix R ties the row and column subscripts of an image or regular data grid to 2-D map coordinates or to geographic coordinates (longitude and geodetic latitude). R is a 3 -by-2 affine transformation matrix. R either transforms pixel subscripts (row, column) to/from map coordinates (x, y) according to
[$\mathrm{x} y \mathrm{y}]=[$ row col 1] * R
or transforms pixel subscripts to/from geographic coordinates according to

```
[lon lat] = [row col 1] * R
```

To construct a referencing matrix for use with geographic coordinates, use longitude in place of X and latitude in place of Y , as shown in the $\mathrm{R}=$ makerefmat ($\mathrm{X} 11, \mathrm{Y} 11, \mathrm{dx}, \mathrm{dy}$) syntax. This is one of the few places where longitude precedes latitude in a function call.

Compatibility Considerations

makerefmat will be removed

Warns starting in R2022a
Some functions that return referencing matrices will be removed, including the makerefmat function. Instead, create a geographic raster reference object by using the georefcells, georefpostings, or georasterref function, or a map raster reference object by using the maprefcells, maprefpostings, or maprasterref function. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and MapPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

Depending on the makerefmat function syntax, there are different ways to update your code.

- To specify the first data point of A and scalar values of $d x$ and $d y$ or dlon and dlat, use these replacement patterns. Use the georasterref function for geographic coordinates and the maprasterref function for planar map coordinates.

Will Be Removed	Recommended
$R=$ makerefmat $(x 11, y 11, d x, d y) ;$	W = [dx 0 x11; 0 dy y11]; $R=$ maprasterref $(W$, size $(A)) ;$
$R=$ makerefmat (lon11, lat11,dlon, dlat);	W = [dlon 0 lon11; 0 dlat lat11]; $R=$ georasterref $(W$, size $(A)) ;$

- To specify the first data point of A and vector values of $d x$ and $d y$ or $d l o n$ and dlat, use these replacement patterns. Use the georasterref function for geographic coordinates and the maprasterref function for planar map coordinates.

Will Be Removed	Recommended
$R=$ makerefmat $(x 11, y 11, d x, d y) ;$	W = [dx xll; dy yll]; $R=$ maprasterref $(W$, size $(A)) ;$
$R=$ makerefmat (lon11, lat11,dlon,dlat);	W = [dlon lon11; dlat lat11]; $R=$ georasterref $(W$, size $(A)) ;$

- To specify arguments such as the raster size or latitude and longitude limits, use this replacement pattern. Use the georefcells function for a raster of cells and the georefpostings function for a raster of regularly posted samples.

Will Be Removed	Recommended
R = makerefmat('RasterSize', size, $\ldots .$.	R = georefcells(latlim,lonlim,size);
'LatitudeLimits', latlim,	
'LongitudeLimits', lonlim)	$;$

You can also create a map raster reference object using the maprefcells or maprefpostings function. These functions are useful if you have information such as world limits or cell extents. Use the maprefcells function for a raster of cells and the maprefpostings function for a raster of regularly posted samples.

See Also

maprasterref|georasterref|georefpostings|georefcells|maprefcells| maprefpostings

makesymbolspec

Create vector layer symbol specification

Syntax

symbolspec $=$ makesymbolspec(geometry,rule1,rule2,...,ruleN)

Description

symbolspec = makesymbolspec(geometry,rule1,rule2,...,ruleN) creates a symbol specification symbolspec for the shape geometry according to the rules specified in one or more rule arguments.

Use symbol specifications to customize the appearance of vector shapes for maps you create using the mapshow and geoshow functions.

Examples

Specify Default Line Color

Import a shapefile containing road data for Concord, MA, as a geospatial table.

```
roads = readgeotable("concord_roads.shp");
```

Create a symbol specification that specifies the default line color as purple.
blueRoads = makesymbolspec("Line",\{'Default','Color','\#7E2F8E'\});
Display the roads using the symbol specification.
mapshow(roads, "SymbolSpec", blueRoads)

Specify Line Color Based on Attribute Values

Import a shapefile containing road data for Concord, MA, as a geospatial table.
roads = readgeotable("concord_roads.shp");
The CLASS attribute includes information about road types. For example, a value of 2 indicates a multilane highway and a value of 6 indicates a minor road. Create a symbol specification that specifies road colors based on the value of CLASS.

```
roadColors = makesymbolspec("Line", ...
    {'CLASS',2,'Color','#A2142F'}, ...
    {'CLASS',3,'Color','#77AC30'}, ...
    {'CLASS',6,'Color','#0072BD'}, ...
    {'Default','Color','k'});
```

Display the roads using the symbol specification.

```
mapshow(roads,"SymbolSpec",roadColors)
```


Specify Line Style Using Range of Attribute Values

Import a shapefile containing road data for Concord, MA, as a geospatial table.
roads $=$ readgeotable("concord_roads.shp");
The CLASS attribute includes information about road types. For example, a value of 2 indicates a multilane highway and a value of 6 indicates a minor road. Create a symbol specification that specifies line styles and widths based on the value of CLASS such that major roads have a thick dashed lines and minor roads have thin dash-dotted lines.

```
lineStyles = makesymbolspec("Line", ...
    {'CLASS',[1 3],'LineStyle',':','LineWidth',2}, ...
    {'CLASS',[4 6],'LineStyle',''.','LineWidth',0.25});
```

Display the roads using the symbol specification.

```
mapshow(roads,"SymbolSpec",lineStyles)
```


Specify Line Style Using Range of Attribute and Property Values

Import a shapefile containing road data for Concord, MA, as a geospatial table.

```
roads = readgeotable("concord_roads.shp");
```

The CLASS attribute includes information about road types. For example, a value of 2 indicates a multilane highway, a value of 3 indicates a major road, and a value of 6 indicates a minor road. Create a symbol specification that specifies line colors in the turbo colormap based on the value of CLASS so that highways are blue, major roads are green, and minor roads are red.

```
cmap = turbo(5);
colorRange = makesymbolspec("Line", ...
    {'CLASS',[2 6],'Color',cmap});
```

Display the roads using the symbol specification.

```
mapshow(roads,"SymbolSpec",colorRange)
```

Add a colorbar to the map by setting the colormap and colormap limits of the axes.

```
colormap(cmap)
caxis([2 7])
colorbar
```


Input Arguments

geometry - Shape type

"Point"| "Line" | "PolyLine" | "Polygon" | "Patch"
Shape type, specified as one of these options:

- "Point" - Point shape
- "Line" - Line shape
- "PolyLine" - Series of connected line shapes
- "Polygon" - Polygon shape
- "Patch" - Patch shape

Data Types: char|string

rule - Shape customization rule

cell array
Shape customization rule, specified as a cell array.
To create a default rule for all features with the specified geometry, specify rule using this pattern:
\{'Default',Property1,Value1,Property2,Value2,..., PropertyN,ValueN\},
where Property1, Property2, and PropertyN are graphics properties and Value1, Value2, and ValueN are values. Specify properties using character vectors. Valid properties depend on the value of geometry:

- "Point" - Valid properties are Marker, Color, MarkerEdgeColor, MarkerFaceColor, MarkerSize, and Visible. For a description of each property, see Line Properties.
- "Line" and "PolyLine" - Valid properties are Color, LineStyle, LineWidth, and Visible. For a description of each property, see Line Properties.
- "Polygon" and "Patch" - Valid properties are FaceColor, FaceAlpha, LineStyle, LineWidth, EdgeColor, and EdgeAlpha, and Visible. For a description of each property, see Patch Properties.

To create a rule based on the values of an attribute, specify rule using this pattern:
\{AttributeName, AttributeValue, Property1,Value1, Property2,Value2,..., PropertyN , ValueN\},
where AttributeName is the attribute and AttributeValue is the value or range of values. The size of AttributeValue and Value1, Value2, and ValueN do not need to match.

When a feature does not match a rule, the mapshow and geoshow functions display the feature using default graphics properties.
Data Types: cell

See Also

Functions

mapshow | geoshow | readgeotable

Introduced before R2006a

map2pix

(To be removed) Convert map coordinates to pixel coordinates

Note The map2pix function will be removed in a future release. Use the worldToIntrinsic function instead. For more information, see "Compatibility Considerations".

Syntax

[row, col] = map2pix $(\mathrm{R}, \mathrm{x}, \mathrm{y})$
$p=\operatorname{map} 2 p i x(R, x, y)$
[...] = map2pix(R,s)

Description

[row, col] = map2pix ($\mathrm{R}, \mathrm{x}, \mathrm{y}$) calculates pixel coordinates row, col from map coordinates $\mathrm{x}, \mathrm{y} . \mathrm{R}$ is either a 3 -by- 2 referencing matrix defining a 2 -dimensional affine transformation from intrinsic pixel coordinates to map coordinates, or a map raster reference object. x and y are vectors or arrays of matching size. The outputs row and col have the same size as x and y.
$p=\operatorname{map} 2 p i x(R, x, y)$ combines row and col into a single array p. If x and y are column vectors of length n, then p is an n-by-2 matrix and each $p(k,:)$ specifies the pixel coordinates of a single point. Otherwise, p has size [size(row) 2], and $\mathrm{p}(\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn},:$) contains the pixel coordinates of a single point.
$[\ldots]=\operatorname{map} 2 \operatorname{pix}(R, s)$ combines x and y into a single array s. If x and y are column vectors of length n, the s should be an n-by-2 matrix such that each row ($s(k,:))$ specifies the map coordinates of a single point. Otherwise, s should have size [size (X) 2], and $\mathrm{s}(\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn}, \mathrm{:})$ should contain the map coordinates of a single point.

Examples

\% Find the pixel coordinates for the spatial coordinates
\% (207050, 912900)
[X, cmap] = imread('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw','planar',size(X));
$[r, C]=\operatorname{map2pix}(R, 207050,912900) ;$

Compatibility Considerations

map2pix will be removed

Not recommended starting in R2021b
Some functions that accept referencing matrices as input will be removed, including the map2pix function. Use a map raster reference object and the worldToIntrinsic function instead. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the MapPostingsReference and MapCellsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the maprefcells function or a raster of regularly posted samples using the maprefpostings function. Alternatively, convert from a referencing matrix to a reference object using the refmatToMapRasterReference function.

Then, replace uses of the map2pix function with the worldToIntrinsic function according to these patterns.

Will Be Removed	Recommended
[row, col] = map2pix(R,x,y) ;	[col,row] = worldToIntrinsic(R,x,y) ;
$\mathrm{p}=\operatorname{map} 2 \mathrm{pix}(\mathrm{R}, \mathrm{x}, \mathrm{y})$;	```If x and y are column vectors: [col,row] = worldToIntrinsic(R,x,y); p = [row col]; If row and col have size M-by-N or 1-by-N: [col,row] = worldToIntrinsic(R,x,y); p = cat(3,row,col);```
[row,col] = map2pix(R,s);	$\begin{aligned} & \text { If s has size } N \text {-by-2: } \\ & {[\text { col, row }]=\text { worldToIntrinsic }(R, s(:, 1), s(:, 2} \end{aligned}$

See Also

intrinsicToWorld|worldfileread|worldToIntrinsic

Introduced before R2006a

mapbbox

(To be removed) Compute bounding box of georeferenced image or data grid

Note mapbbox will be removed in a future release. Instead, create a map raster reference object, and query its XWorldLimits and YWorldLimits properties. For more information, see "Compatibility Considerations".

Syntax

bbox $=$ mapbbox (R , height, width)
bbox $=\operatorname{mapbbox}(R$, sizea)
BBOX $=$ mapbbox(info)

Description

bbox = mapbbox(R, height, width) computes the 2-by-2 bounding box of a georeferenced image or regular gridded data set. R is either a 3 -by- 2 referencing matrix defining a 2 -dimensional affine transformation from intrinsic pixel coordinates to map coordinates, or a MapCellsReference object. (If you are using a raster reference object, you can calculate the bounding box from the object limit properties of the object rather than using this function.) height and width are the image dimensions. bbox bounds the outer edges of the image in map coordinates:
[minX minY
$\operatorname{maxX} \max Y]$
bbox = mapbbox(R, sizea) accepts sizea = [height, width, ...] instead of height and width.

BBOX = mapbbox(info) accepts a scalar structure array with the fields
'RefMatrix' 3-by-2 referencing matrix
'Height' Scalar number
'Width' Scalar number

Compatibility Considerations

mapbbox will be removed
Warns starting in R2022a
Some functions that accept referencing matrices as input will be removed, including the mapbbox function. Instead, create a map raster reference object, and query its XWorldLimits and YWorldLimits properties. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its world limits, and the direction of its rows and columns. For more information about reference object properties, see the MapCellsReference and MapPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the mapresize function.

To update your code, first create a reference object for either a raster of cells using the maprefcells function or a raster of regularly posted samples using the maprefpostings function. Alternatively, convert from a referencing matrix to a reference object using the refmatToMapRasterReference function.

Then, find the limits of the raster by querying the XWorldLimits and YWorldLimits properties of the reference object, R. Create a bounding box matrix using the property values.

```
xlimits = R.XWorldLimits;
ylimits = R.YWorldLimits;
bbox = [xlimits' ylimits'];
```


See Also

Functions

geotiffinfo|mapoutline|worldGrid|intrinsicToWorld
Objects
MapCellsReference | MapPostingsReference

Introduced before R2006a

MapCellsReference

Reference raster cells to map coordinates

Description

A map cells reference object contains information that describes the relationship between a planar map coordinate system and an intrinsic coordinate system on page 1-925 that is anchored to the columns and rows of a 2-D spatially referenced raster grid or image of cells.

Typically, the raster is sampled regularly in the planar world x and world y coordinates of the map system, such that the intrinsic x and world x axes align and the intrinsic y and world y axes align. When this is true, the relationship between the two systems is rectilinear. More generally, and much more rarely, their relationship is affine. The affine relationship allows for a possible rotation (and skew). In either case, rectilinear or affine, the sample spacing from row to row need not equal the sample spacing from column to column. The cells or pixels need not be square. In the most general case, they could conceivably be parallelograms, but in practice they are always rectangular.

This image illustrates a 8 -by- 10 planar raster of cells. The raster cells have an extent of 1 meter in x and y, cover x values in the range $[40,50]$ in meters, and cover y values in the range $[20,28]$ in meters. The boundary of the raster of cells is made up of the outermost boundaries of the outermost cells.

To reference a raster of postings to planar map coordinates, use a MapPostingsReference object instead.

Creation

You can use these functions to create MapCellsReference objects:

- readgeoraster - Import a raster data file as an array and a reference object.
- maprefcells - Create a map raster reference object by specifying the x and y world limits of the raster and either the size of the raster or the extent of the cells.
- maprasterref - Convert a world file to a map raster reference object.
- refmatToMapRasterReference - Convert a referencing matrix to a map raster reference object.

Properties

XWorldLimits - Limits of raster in world \boldsymbol{x}-coordinates
[0.5 2.5] (default)| two-element row vector
Limits of raster in world x-coordinates, specified as a two-element row vector of the form [xMin xMax].

The value of the ProjectedCRS property determines the length units for the raster. This code shows how to find the length units for a raster associated with the map cells reference object R .
R.ProjectedCRS.LengthUnit

Example: [207000 209000]
Data Types: double
YWorldLimits - Limits of raster in world \boldsymbol{y}-coordinates
[0.5 2.5] (default)| two-element row vector
Limits of raster in world y-coordinates, specified as a two-element row vector of the form [yMin yMax].

The value of the ProjectedCRS property determines the length units for the raster. This code shows how to find the length units for a raster associated with the map cells reference object R .
R.ProjectedCRS.LengthUnit

Example: [911000 913000]
Data Types: double

RasterSize - Number of rows and columns of the raster or image associated with the referencing object

[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster or image associated with the referencing object, specified as a two-element vector, $[m n$], where m represents the number of rows and n the number of columns.

For convenience, you can assign a size vector having more than two elements. This enables assignments like R.RasterSize $=\operatorname{size}($ RGB $)$, where RGB is m-by- n-by-3. In cases like this, the object stores only the first two elements of the size vector and ignores the higher (nonspatial) dimensions.
Example: [200 300]
Data Types: double

RasterInterpretation - Geometric nature of the raster

```
'cells' (default)
```

This property is read-only.
Geometric nature of the raster, specified as 'cells '. The value 'cells ' indicates that the raster comprises a grid of quadrangular cells, and is bounded on all sides by cell edges. For an m-by-n raster, points with an intrinsic x-coordinate of 1 or n or an intrinsic x-coordinate of 1 or m fall within the raster, not on its edges.

Data Types: char

ColumnsStartFrom - Edge from which column indexing starts 'south' (default)|'north'

Edge from which column indexing starts, specified as 'south ' or 'north'.
Example: 'south'
Data Types: char
RowsStartFrom - Edge from which row indexing starts
'west' (default)|'east'
Edge from which row indexing starts, specified as 'west' or 'east'.
Example: 'east'
Data Types: char
CellExtentInWorldX - Extent in world x-coordinates of individual cells
1 (default) | positive numeric scalar
Extent in world x-coordinates of individual cells, specified as a positive numeric scalar. Distance between the eastern and western limits of a single raster cell. The value is the same for all cells in the raster.

Example: 2.5
Data Types: double

CellextentInWorldY - Extent in world \boldsymbol{y}-coordinates of individual cells

1 (default) | positive numeric scalar
Extent in world y-coordinates of individual cells, specified as a positive numeric scalar. Distance between the northern and southern limits of a single raster cell. The value is the same for all cells in the raster.
Example: 2.5
Data Types: double
RasterExtentInWorldX - Extent of the full raster or image as measured in the world system in a direction parallel to its rows
2 (default) | positive numeric scalar
This property is read-only.
Extent of the full raster or image as measured in the world system in a direction parallel to its rows, specified as a positive numeric scalar. In the case of a rectilinear geometry, which is most typical, this is the horizontal direction (east-west).
Data Types: double
RasterExtentInWorldY - Extent of the full raster or image as measured in the world system in a direction parallel to its columns
2 (default) | positive numeric scalar
This property is read-only.

Extent of the full raster or image as measured in the world system in a direction parallel to its columns, specified as a positive numeric scalar. In the case of a rectilinear geometry, which is most typical, this is the vertical direction (north-south).
Data Types: double
XIntrinsicLimits - Raster limits in intrinsic \mathbf{x}-coordinates
[0.5 2.5] (default)| two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic x-coordinates, specified as a two-element row vector of positive integers, [xMin xMax]. For an m-by-n raster, XIntrinsicLimits equals [0.5, m+0.5], because the RasterInterpretation is 'cells'.
Data Types: double
YIntrinsicLimits - Raster limits in intrinsic \boldsymbol{y}-coordinates
[0.5 2.5] (default)| two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic y-coordinates, specified as a two-element row vector of positive integers, [yMin yMax]. For an m-by-n raster, YIntrinsicLimits equals [0.5, m+0.5], because the RasterInterpretation is 'cells'.
Data Types: double

TransformationType - Type of geometric relationship between intrinsic and world systems
 'rectilinear' (default)|'affine'

This property is read-only.
Type of geometric relationship between the intrinsic coordinate system and the world coordinate system, specified as either 'rectilinear' or 'affine'. Its value is 'rectilinear' when world x depends only on intrinsic x and vice versa, and world y depends only on intrinsic y and vice versa. When the value is 'rectilinear', the image displays without rotation in the world system, although it might be flipped. Otherwise, the value is 'affine'.

Data Types: char

CoordinateSystemType - Type of coordinate system to which the image or raster is referenced
 'planar' (default)

This property is read-only.
Type of coordinate system to which the image or raster is referenced, specified as 'planar'.
Data Types: char
ProjectedCRS - Projected coordinate reference system
[] (default) | projcrs object
Projected coordinate reference system (CRS), specified as a proj crs object. A projected CRS consists of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS.

The value of ProjectedCRS determines the length units for the raster. To find the length units, query the LengthUnit property of the projers object.

Object Functions

contains firstCornerX Return world x -coordinate of map raster index $(1,1)$
firstCornerY Return world y-coordinate of map raster index $(1,1)$
intrinsicToWorld sizesMatch
worldFileMatrix worldGrid
worldToDiscrete worldToIntrinsic

Transform intrinsic to planar world coordinates
Determine if geographic or map raster object and image or raster are sizecompatible
Return world file parameters for transformation
World coordinates of raster elements
Transform planar world to discrete coordinates
Transform planar world to intrinsic coordinates

Examples

Display Planar Raster with Regularly Spaced Cell Centers

Import a land cover classification of Oahu, Hawaii as an array, a MapCellsReference object, and a colormap by using the readgeoraster function.

```
[Z,R,cmap] = readgeoraster('oahu_landcover.img');
```

View the properties of the MapCellsReference object.

```
R
R =
    MapCellsReference with properties:
        XWorldLimits: [569857 645907]
        YWorldLimits: [2345284 2405884]
            RasterSize: [2020 2535]
        RasterInterpretation: 'cells'
            ColumnsStartFrom: 'north'
            RowsStartFrom: 'west'
        CellExtentInWorldX: 30
        CellExtentInWorldY: 30
    RasterExtentInWorldX: 76050
    RasterExtentInWorldY: 60600
        XIntrinsicLimits: [0.5 2535.5]
        YIntrinsicLimits: [0.5 2020.5]
        TransformationType: 'rectilinear'
        CoordinateSystemType: 'planar'
            ProjectedCRS: [1x1 projcrs]
```

Display the land cover classification on a map.

```
mapshow(Z,cmap,R)
```


More About

Intrinsic Coordinate System

A 2-D Cartesian system with its x-axis running parallel to the rows of a raster or image and its y-axis running parallel to the columns. x increases by 1 from column to column, and y increases by 1 from row to row.

The Mapping Toolbox and Image Processing Toolbox use the convention for the location of the origin relative to the raster cells or sampling points such that, at a sample location or at the center of a cell, x has an integer value equal to the column index. Likewise, at a sample location or at the center of a cell, y has an integer value equal to the row index. For details, see Image Coordinate Systems (Image Processing Toolbox).

See Also

Functions

maprefpostings |maprasterref|readgeoraster
Objects
MapPostingsReference | GeographicPostingsReference| GeographicCellsReference

Topics

"Spatially Reference Imported Rasters"

Introduced in R2013b

mapclip

Clip shape to $x y$-limits in planar coordinates

Syntax

clipped $=$ mapclip(shape,xlimits,ylimits)

Description

clipped = mapclip(shape,xlimits,ylimits) clips the planar point, line, or polygon shapes in shape to the $x y$-limits in xlimits and ylimits.

To crop raster data that is represented by an array and a map raster reference object, use the mapcrop function instead.

Examples

Clip Shapes in Planar Coordinates

Read hydrography data as a geospatial table. Extract the polygon shape for a pond.

```
hydro = readgeotable("concord_hydro_area.shp");
shape = hydro.Shape(14)
shape =
    mappolyshape with properties:
            NumRegions: 1
                        NumHoles: 3
                            Geometry: "polygon"
        CoordinateSystemType: "planar"
            ProjectedCRS: [1×1 projcrs]
```

Specify the $x y$-limits and clip the shape.

```
xlimits = [207736 208212];
ylimits = [912283 912636];
clipped = mapclip(shape,xlimits,ylimits);
```

Display the shape and the clipped shape on a map.

```
figure
geoplot(shape)
hold on
geoplot(clipped)
```


Remove Shapes with No Coordinate Data from Output

Read the names and locations of places in Boston as a geospatial table. Extract the point shapes.

```
places = readgeotable("boston placenames.shp");
shape = places.Shape
shape =
    13x1 mappointshape array with properties:
            NumPoints: [13x1 double]
                    X: [13x1 double]
                            Y: [13x1 double]
                            Geometry: "point"
        CoordinateSystemType: "planar"
        ProjectedCRS: [1x1 projcrs]
```

Specify the $x y$-limits and clip the shapes.

```
xlimits = [235226 237174];
ylimits = [900179 901059];
clipped = mapclip(shape,xlimits,ylimits);
```

When a point shape lies outside the specified limits, the clipped shape has no coordinate data and the NumPoints property is 0 . Remove shapes with no coordinate data from the clipped shapes.

```
idx = clipped.NumPoints ~= 0;
clipped = clipped(idx)
clipped =
    5x1 mappointshape array with properties:
    NumPoints: [5x1 double]
            X: [5x1 double]
                            Y: [5x1 double]
            Geometry: "point"
        CoordinateSystemType: "planar"
            ProjectedCRS: [1x1 projcrs]
```

When a line or polygon shape has no coordinate data, its respective the NumParts or NumRegions property is 0 .

Clip Projected Shape Using Geographic Limits

If your shape is in projected coordinates and your limits are in geographic coordinates, then you must project the geographic coordinates before clipping the shape. To use this approach:

- You must know the projected coordinate reference system (CRS) for the shape. You can determine whether a shape object is associated with a projected CRS by querying the ProjectedCRS property.
- The projection method for the CRS must result in x-coordinates and y-coordinates that run approximately west-to-east and south-to-north, respectively, such as transverse Mercator or Lambert Conic Conformal. This approach is not valid for projection methods such as polar stereographic. You can find the projection method for a projected CRS object by querying the ProjectionMethod property.

Read road data for an area in Boston as a geospatial table. Extract the line shapes.

```
roads = readgeotable("boston_roads.shp");
shape = roads.Shape
shape=2795\times1 object
    16\times1 maplineshape array with properties:
            NumParts: [16\times1 double]
            Geometry: "line"
        CoordinateSystemType: "planar"
                        ProjectedCRS: [1×1 projcrs]
```

Verify that the shape has a projected CRS with an appropriate projection method.

```
crs = shape.ProjectedCRS
crs =
    projcrs with properties:
        Name: "NAD83 / Massachusetts Mainland"
        GeographicCRS: [1×1 geocrs]
```

```
    ProjectionMethod: "Lambert Conic Conformal (2SP)"
    LengthUnit: "meter"
ProjectionParameters: [1\times1 map.crs.ProjectionParameters]
```

Specify the latitude and longitude limits using geographic coordinates. Project the latitude and longitude limits to $x y$-limits by using the projected CRS and the proj fwd function.

```
latlim = [42.3494 42.3614];
lonlim = [-71.0766 -71.0571];
[xlimits,ylimits] = projfwd(crs,latlim,lonlim);
```

Clip the shapes.

```
clipped = mapclip(shape,xlimits,ylimits);
```

Display the clipped shapes on a map. Compare the limits you specified with the limits of the plot by setting the tick format to decimal degrees.
figure
geoplot(clipped)
geotickformat("dd")

Input Arguments

shape - Shape

mappointshape, maplineshape, or mappolyshape object | array of mappointshape, maplineshape, or mappolyshape objects

Shape, specified as a mappointshape, maplineshape, or mappolyshape object or as an array of mappointshape, maplineshape, or mappolyshape objects. When you specify an array, you can include a combination of point, line, and polygon shape objects.

xlimits - x-limits

two-element vector
x-limits, specified as a two-element vector of the form [xmin xmax], where xmax is greater than xmin.

The units of xlimits must match the units of shape. If the ProjectedCRS property of shape contains a projers object, you can find the units by querying the LengthUnit property of the projers object, for example shape. ProjectedCRS. LengthUnit.

ylimits - y-limits

two-element vector
y-limits, specified as a two-element vector of the form [ymin ymax], where ymax is greater than ymin.

The units of y limits must match the units of shape. If the ProjectedCRS property of shape contains a projcrs object, you can find the units by querying the LengthUnit property of the projers object, for example shape. ProjectedCRS. LengthUnit.

Output Arguments

clipped - Clipped shape

mappointshape, maplineshape, or mappolyshape object | array of mappointshape, maplineshape, or mappolyshape objects

Clipped shape, returned as a mappointshape, maplineshape, or mappolyshape object or as an array of mappointshape, maplineshape, or mappolyshape objects.
clipped has the same type and size as shape.
If an element of shape lies completely outside the specified limits, then the corresponding element of clipped does not contain coordinate data. When a point, line, or polygon shape does not contain coordinate data, its respective NumPoints, NumParts, or NumRegions property is 0.

Tips

- If you clip a shape within a geospatial table, the function does not modify any attributes of the table.

See Also

Functions
geoclip | mapcrop
Objects
projers
\section*{Topics}
"Create Geospatial Tables"
Introduced in R2022a

mapcrop

Crop projected map raster

Syntax

$[B, R B]=$ mapcrop($A, R A, x$ limits, y limits $)$

Description

[B, RB] = mapcrop(A,RA,xlimits,ylimits) crops the projected map raster specified by A and raster reference RA and returns the cropped raster B and raster reference $R B$. The returned raster is cropped to limits in world coordinates close to those specified by xlimits and ylimits.

To clip vector data represented by a point, line, or polygon shape in planar coordinates, use the mapclip function instead.

Examples

Crop Projected Raster Image

Crop a projected raster image and display the cropped image.
First, import a projected raster image of Boston and a map cells reference object. Then, crop the image to the limits specified by xlimits and ylimits.

```
[A,RA] = readgeoraster('boston.tif');
xlimits = [771660 773290];
ylimits = [2953410 2955240];
[B,RB] = mapcrop(A,RA,xlimits,ylimits);
```

Display the cropped image.
mapshow(B,RB)

Input Arguments

A - Projected map raster

array
Projected map raster, specified as an M-by- N or M-by- N-by- P numeric or logical array.

RA - Raster reference

MapCellsReference object | MapPostingsReference object
Raster reference for A, specified as a MapCellsReference object or MapPostingsReference object. The TransformationType property of RA must be 'rectilinear'.

xlimits - Minimum and maximum x limits

two-element vector
Minimum and maximum x limits, specified as a two-element numeric vector of the form [xmin xmax], where xmax is greater than xmin.

ylimits - Minimum and maximum y limits

two-element vector
Minimum and maximum y limits, specified as a two-element numeric vector of the form [ymin ymax], where ymax is greater than ymin.

Output Arguments

B - Cropped projected map raster

array
Cropped projected map raster, returned as a numeric or logical array. The data type and size of B matches the data type and size of A.

If the limits specified by x limits and ylimits do not intersect the raster specified by A and $R A$, then B is empty.

RB - Raster reference
 MapCellsReference object | MapPostingsReference object

Raster reference for B, returned as MapCellsReference object or MapPostingsReference object. The object type of RB matches the object type of RA.

The exact x and y limits of RB do not match the limits specified by x limits and y limits, unless they coincide with a cell boundary or posting location. Otherwise, the limits of RB are slightly larger than xlimits and ylimits.

If the limits specified by x limits and y limits do not intersect the raster specified by A and $R A$, then $R B$ is empty.

See Also

geocrop|mapclip|mapresize

Introduced in R2020a

mapinterp

Map raster interpolation

Syntax

```
Vq = mapinterp(V,R,xq,yq)
\(\mathrm{Vq}=\) mapinterp(
``` \(\qquad\)
``` ,method)
```


Description

$\mathrm{Vq}=$ mapinterp($\mathrm{V}, \mathrm{R}, \mathrm{xq}, \mathrm{yq})$ interpolates the spatially referenced raster V , using bilinear interpolation. The function returns a value in $V q$ for each of the query points in arrays $x q$ and $y q$. R is a map raster reference object that specifies the location and extent of data in V.
$\mathrm{Vq}=$ mapinterp(__ , method) specifies alternate interpolation methods.

Examples

Interpolate Spatially Referenced Raster Grid at Defined Coordinates

Load projected elevation data and a map cells reference object for an area around Mount Washington. Specify the points you want to interpolate. Then, interpolate the values.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
x = [ lllllll}312829 317447 316083 311150];
y = [4913618 4912253 4904329 4904172];
Vinterpolated = mapinterp(Z,R,x,y)
Vinterpolated = 1x4 int32 row vector
    1524 3678 6236 2365
```


Input Arguments

V - Spatially referenced raster grid
numeric or logical array
Spatially referenced raster grid, specified as numeric or logical array.
Data Types: single| double | int8| int16|int32|int64|uint8|uint16|uint32|uint64| logical

R - Map raster
MapCellsReference or MapPostingsReference object
Map raster, specified as a MapCellsReference or MapPostingsReference object.

To convert a referencing matrix to a map raster reference object, use refmatToMapRasterReference.

xq - Query point coordinates in \boldsymbol{x} dimension

numeric array
Query point coordinates in x dimension, specified as a numeric array.
Data Types: single|double

yq - Query point coordinates in y dimension

numeric array
Query point coordinates in y dimension, specified as a numeric array.
Data Types: single|double
method - Interpolation methods
'linear' (default)|'nearest'|'cubic'|'spline'
Interpolation methods, specified as one of these values:

Method	Description
'nearest'	Nearest neighbor interpolation
'linear'	Bilinear interpolation
'cubic'	Bicubic interpolation
'spline'	Spline interpolation

Data Types: char | string

Output Arguments

Vq - Interpolated values

numeric array
Interpolated values, returned as a numeric array.

See Also

geointerp|interp2|griddedInterpolant

Introduced in R2017a

maplist

Map projection support for map axes and map projection structures

Syntax

list = maplist
[list,defproj] = maplist

Description

list = maplist returns a structure that lists the IDs and classifications of map projections for use with map axes and map projection structures. The structure list contains the fields Name, IdString, Classification, and ClassCode. The maps and axesmui functions use the structure when processing map projection identifiers during operation of the toolbox functions.
[list,defproj] = maplist also returns the default projection's IdString.
list. Name defines the full name of the projection. This entry is used in the command-line table display and in the Projection Control Box.
list.IdString provides the name of the MATLAB function that computes the projection.
list.Classification defines the projection classification that is used in the command-line table display.
list.ClassCode defines the character vector that is used to label the classes of projections in the Projection Control Box. The eight class codes are

- Azim - Azimuthal
- Coni - Conic
- Cyln - Cylindrical
- Mazi - Modified azimuthal
- Pazi - Pseudoazimuthal
- Pcon - Pseudoconic
- Pcy - Pseudocylindrical
- Poly - Polyconic

See Also

maps | axesmui

mapoutline

Compute outline of georeferenced image or data grid

Syntax

```
[x,y] = mapoutline(R,height,width)
[x,y] = mapoutline(R, sizea)
[x,y] = mapoutline(info)
[x,y] = mapoutline(...,'close')
[lon,lat] = mapoutline(R,...)
outline = mapoutline(...)
```


Description

$[x, y]=$ mapoutline(R, height, width $)$ computes the outline of a georeferenced image or regular gridded data set in map coordinates. R is either a 3 -by- 2 referencing matrix defining a 2 dimensional affine transformation from intrinsic pixel coordinates to map coordinates, or a MapCellsReference or MapPostingsReference object. height and width are the image dimensions. x and y are 4-by-1 column vectors containing the map coordinates of the outer corners of the corner pixels, in the following order:

```
(1,1), (height,1), (height, width), (1, width).
```

$[x, y]=$ mapoutline(R, sizea) accepts sizea $=$ [height, width,...$]$ instead of height and width.
$[x, y]=$ mapoutline(info) accepts a scalar structure array with the fields

'RefMatrix'	3-by-2 referencing matrix
'Height'	Scalar number
'Width'	Scalar number

$[x, y]=$ mapoutline(..., 'close') returns x and y as 5-by-1 vectors, appending the coordinates of the first of the four corners to the end.
[lon,lat] = mapoutline(R, \ldots. $)$, where R georeferences pixels to longitude and latitude rather than map coordinates, returns the outline in geographic coordinates. Longitude must precede latitude in the output argument list.
outline $=$ mapoutline(...) returns the corner coordinates in a 4-by-2 or 5-by-2 array.

Examples

Draw a red outline delineating the Boston GeoTIFF image, which is referenced to the Massachusetts Mainland State Plane coordinate system with units of survey feet.

```
figure
info = georasterinfo('boston.tif');
R = info.RasterReference;
```

```
[x,y] = mapoutline(R,R.RasterSize,'close');
hold on
plot(x,y,'r')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')
```

Draw a black outline delineating a TIFF image of Concord, Massachusetts, while lies roughly 25 km north west of Boston. Convert world file units to survey feet from meters to be consistent with the Boston image.

```
info = imfinfo('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw','planar', ...
    [info.Height info.Width]);
[x,y] = mapoutline(R, info.Height, info.Width, 'close');
x = x * unitsratio('sf','meter');
y = y * unitsratio('sf','meter');
plot(x,y,'k')
```


See Also

Functions

worldGrid|intrinsicToWorld

Objects

MapCellsReference | MapPostingsReference

Introduced before R2006a

mappoint

Planar point vector

Description

A mappoint vector is a container object that holds planar point coordinates and attributes. The points are coupled, such that the size of the x - and y-coordinate arrays are always equal and match the size of any dynamically added attribute arrays. Each entry of a coordinate pair and associated attributes, if any, represents a discrete element in the mappoint vector.

To create a planar point shape for use with a geospatial table, create a mappointshape object instead.

Creation

Syntax

```
p = mappoint()
p = mappoint(x,y)
p = mappoint(x,y,Name,Value)
p = mappoint(structArray)
p = mappoint(x,y,structArray)
```


Description

p = mappoint() constructs an empty mappoint vector, p, with these default property settings:
$p=$
0×1 mappoint vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
X: []
Y: []
$\mathrm{p}=$ mappoint (x, y) constructs a new mappoint vector and assigns the X and Y properties to the numeric array inputs, x and y.
$p=$ mappoint (x, y, Name, Value) constructs a mappoint vector, then adds dynamic properties to the mappoint vector using Name, Value argument pairs. You can specify several name-value pair arguments in any order as Name1, Value1, . . . NameN, ValueN.
p = mappoint(structArray) constructs a new mappoint vector, assigning the fields of the structure array, structArray, as dynamic properties. Field values in structArray that are not numeric values, string scalar, string array, character vectors, or cell arrays of numeric values or character vectors are ignored.
$p=$ mappoint (x, y, structArray) constructs a new mappoint vector, sets the X and Y properties equal to the numeric arrays x and y, and sets dynamic properties from the field values of structArray.

Properties

Each element in a mappoint vector is considered a feature. For more about the property types in mappoint, see "Collection Properties" on page 1-957 and "Feature Properties" on page 1-957.

Dynamic properties are new features that are added to a mappoint vector and that apply to each individual feature in the mappoint vector. You can attach dynamic Feature properties to a mappoint object during construction with a Name,Value pair or after construction using dot (.) notation. This is similar to adding dynamic fields to a structure. For an example of adding Feature properties dynamically, see "Construct a Mappoint Vector for Multiple Features and Examine Autosizing" on page 1-947.

Geometry - Type of geometry
 'point'

Type of geometry, specified as 'point '. For mappoint, Geometry is always 'point '.
Data Types: char \| string

Metadata - Information for the entire set of mappoint vector elements

scalar structure

Information for the entire set of mappoint vector elements, specified as a scalar structure. You can add any data type to the structure.

- If Metadata is provided as a dynamic property Name in the constructor, and the corresponding Value is a scalar structure, then Value is copied to the Metadata property. Otherwise, an error is issued.
- If a Metadata field is provided by structArray, and both Metadata and structArray are scalar structures, then the Metadata field value is copied to the Metadata property value. If structArray is a scalar but the Metadata field is not a structure, then an error is issued. If structArray is not scalar, then the Metadata field is ignored.

Data Types: struct
X - Planar X-coordinates
numeric row or column vector
Planar x-coordinate, specified as a numeric row or column vector.
Data Types: double | single
Y - Planar y-coordinates
numeric row or column vector

Planar y-coordinates, specified as a numeric row or column vector.
Data Types: double|single

Object Functions

append	Append features to geographic or planar vector
cat	Concatenate geographic or planar vector
disp	Display geographic or planar vector
fieldnames	Return dynamic property names of geographic or planar vector
isempty	Determine if geographic or planar vector is empty
isfield	Determine if dynamic property exists in geographic or planar vector
isprop	Determine if property exists in geographic or planar vector
length	Return number of elements in geographic or planar vector
properties	Return property names of geographic or planar vector
rmfield	Remove dynamic property from geographic or planar vector
rmprop	Remove property from geographic or planar vector
size	Return size of geographic or planar vector
struct	Convert geographic or planar vector to scalar structure
vertcat	Vertically concatenate geographic or planar vectors

Examples

Construct a Default Mappoint Vector

Dynamically set the X and Y property values, and dynamically add Vertex property Z .

```
p = mappoint();
p.X = 1:3;
p.Y = 1:3;
p.Z = [10 10 10]
p =
    3x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1 2 3]
            Y: [1 2 3]
            Z: [10 10 10]
```


Construct a Mappoint Vector from \mathbf{X} and \mathbf{Y} Values

Define x and y coordinates. Use them to create a mappoint.

```
x = [40 50 60];
y = [10, 11, 12];
p = mappoint(x, y)
p =
    3x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
```

Metadata: [1x1 struct]
Feature properties:
$X: \quad\left[\begin{array}{lll}40 & 50 & 60\end{array}\right]$
$\mathrm{Y}:\left[\begin{array}{lll}10 & 11 & 12\end{array}\right]$

Construct a Mappoint Vector from X, Y, and Temperature Values

```
x = 41:43;
y = 1:3;
temperature = 61:63;
p = mappoint(x, y, 'Temperature', temperature)
p =
    3x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
                            X: [41 42 43]
                    Y: [1 2 3]
        Temperature: [61 62 63]
```


Construct a Mappoint Vector from a Structure Array

Create a structure array and then create a mappoint vector, specifying the array as input.
structArray = shaperead('boston_placenames')
p = mappoint(structArray)

```
structArray =
```

13x1 struct array with fields:
Geometry
X
Y
NAME
FEATURE
COORD
$p=$
13×1 mappoint vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
X: [1x13 double]
Y: [1x13 double]
NAME: \{1x13 cell\}

```
FEATURE: {1x13 cell}
    COORD: {1x13 cell
```


Construct a Mappoint Vector from X and Y Numeric Arrays and a Structure Array

```
[structArray, A] = shaperead('boston_placenames');
x = [structArray.X];
y = [structArray.Y];
p = mappoint(x, y, A)
p =
    13x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1x13 double]
            Y: [1x13 double]
            NAME: {1\times13 cell}
            FEATURE: {1x13 cell}
            COORD: {1x13 cell}
```


Construct a Mappoint Vector for One Feature

This example shows how to add a single feature to an empty mappoint vector after construction.

```
x = 1;
y = 1;
p = mappoint(x, y)
p =
    1x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: 1
            Y: 1
```

Add a dynamic Feature property with a character vector value.

```
p.FeatureName = 'My Feature'
p =
    1x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
```

```
    X: 1
    Y: 1
FeatureName: 'My Feature'
```


Construct a Mappoint Vector for Multiple Features and Examine Autosizing

This example show how mappoint vectors autoresize all properties lengths to ensure they are equal in size when a new dynamic property is added or an existing property is appended or shortened.

Create a mappoint vector.

```
x = [ll 2];
y = [10 10];
p = mappoint(x,y)
p =
    2x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1 2]
            Y: [10 10]
```

Add a dynamic Feature property.

```
p.FeatureName = {'Feature 1','Feature 2'}
p =
    2x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
                            X: [1 2]
                            Y: [10 10]
        FeatureName: {'Feature 1' 'Feature 2'}
```

Add a numeric dynamic Feature property.

```
p.ID = [ll 2
p =
    2x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
                            X: [1 2]
                    Y: [10 10]
```

```
FeatureName: {'Feature 1' 'Feature 2'}
    ID: [1 2]
```

Add a third feature. All properties are autosized so that all vector lengths match.

```
p(3).X = 3
p(3).Y = 10
p =
    3x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
Feature properties:
                            X: [1 2 3]
                            Y: [10 10 10]
        FeatureName: {'Feature 1' 'Feature 2' ''}
            ID: [1 2 0]
```

Set the values for the ID feature dynamic property with more values than contained in X or Y . All properties are expanded to match in size.

```
p.ID = 1:4
p =
    4x1 mappoint vector with properties:
    Collection properties:
    Geometry: 'point'
    Metadata: [1x1 struct]
Feature properties:
                            X: [1 2 3 0]
            Y: [10 10 10 0]
        FeatureName: {'Feature 1' 'Feature 2' '' ''}
            ID: [1 2 3 4]
```

Set the values for the ID dynamic Feature property with fewer values than contained in X or Y . The ID property values expand to match the length of X and Y.

```
p.ID = 1:2
p =
    4x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
Feature properties:
            X: [1 2 3 0]
            Y: [10 10 10 0]
        FeatureName: {'Feature 1' 'Feature 2' '' ''}
            ID: [1 2 0 0]
```

Set the values of either coordinate property (X or Y) with fewer values. All properties shrink in size to match the new length.

```
p.X = 1:2
p =
    2x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
Feature properties:
            X: [1 2]
            Y: [10 10]
        FeatureName: {'Feature 1' 'Feature 2'}
            ID: [1 2]
```

Remove the FeatureName property by setting its value to [].

```
p.FeatureName = []
p =
    2x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
                            X: [1 2]
            Y: [10 10]
            ID: [1 2]
```

Remove all dynamic properties and set the object to empty by setting a coordinate property value to [].
p. $X=$ []
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
X: []
Y: []

Construct a Mappoint Specifying Two Features

This example shows how to include multiple dynamic features during object construction.

```
point = mappoint([42 44],[10, 11],'Temperature',[63 65], ...
    'TemperatureUnits','Fahrenheit')
point =
    2x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
```


Create a Mappoint Vector from a MAT-File

This example shows how to construct a mappoint vector using data from a MAT-file containing oceanic depths.

Load data from the seamount MAT-file and construct a mappoint vector to hold the coordinates.

```
seamount = load('seamount');
p = mappoint(seamount.x, seamount.y, 'Z', seamount.z);
```

Create a level list to use to bin the z values and create a list of color values for each level.

```
levels = [unique(floor(seamount.z/1000)) * 1000; 0];
colors = {'red','green','blue','cyan','black'};
```

Add a MinLevel and MaxLevel feature property to indicate the lowest and highest binned level. Add a dynamic feature property to indicate the z-coordinate. Add a dynamic Feature property to indicate a binned level value and a color value for a given level. Include metadata information from the MAT-file.

```
for k = 1:length(levels) - 1
    index = levels(k) <= p.Z & p.Z < levels(k+1);
    p(index).MinLevel = levels(k);
    p(index).MaxLevel = levels(k+1) - 1;
    p(index).Color = colors{k};
end
```

Add metadata information. Metadata is a scalar structure containing information for the entire set of properties. You can add any type of data to the structure.

```
p.Metadata.Caption = seamount.caption;
p.Metadata
ans =
    Caption: [1x229 char]
```

Display the point data as a 2-D plot.

```
figure
minLevels = unique(p.MinLevel);
for k=1:length(minLevels)
    index = p.MinLevel == minLevels(k);
    mapshow(p(index).X, p(index).Y, ...
        'MarkerEdgeColor', p(find(index,1)).Color, ...
        'Marker', 'o', ...
        'DisplayType', 'point')
end
legend(num2str(minLevels'))
```


Display the point data as a 3-D scatter plot.

```
figure
scatter3(p.X, p.Y, p.Z)
```


Assign Dynamic Features to Mappoint Vector from a Structure Array

This example shows how to create a mappoint vector from a structure array, and how to add features and metadata to the mappoint vector.

```
structArray = shaperead('boston_placenames');
p = mappoint();
p.X = [structArray.X];
p.Y = [structArray.Y];
p.Name = {structArray.NAME}
p =
    13x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1x13 double]
            Y: [1x13 double]
            Name: {1x13 cell}
```

Construct a mappoint vector from a structure array using the constructor syntax.

```
filename = 'boston_placenames.shp';
structArray = shaperead(filename);
p = mappoint(structArray)
p =
    13x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1x13 double]
            Y: [1x13 double]
            NAME: {1x13 cell}
        FEATURE: {1x13 cell}
            COORD: {1x13 cell}
```

Add a Filename field to the Metadata structure. Display the first five points and the Metadata structure.

```
p.Metadata.Filename = filename;
p(1:5)
p.Metadata
ans =
    5x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
                    X: [2.3403e+05 2.3357e+05 2.3574e+05 2.3627e+05 2.3574e+05]
                    Y: [900038 9.0019e+05 9.0113e+05 9.0097e+05 9.0036e+05]
                NAME: {1x5 cell}
            FEATURE: {'PPL-SUBDVSN' ' MARSH' ' HILL' ' PPL' ' PENINSULA'}
                COORD: {1x5 cell}
ans =
    Filename: 'boston_placenames.shp'
```


Append a Point by Indexing

This example show how to add a feature to the mappoint vector using linear indexing.
Append Paderborn, Germany to the vector of world cities.

```
p = mappoint(shaperead('worldcities.shp'));
x = 51.715254;
y = 8.75213;
p = append(p, x, y, 'Name', 'Paderborn');
p(end)
ans =
```

```
1x1 mappoint vector with properties:
Collection properties:
    Geometry: 'point'
    Metadata: [1x1 struct]
Feature properties:
            X: 51.7153
            Y: 8.7521
            Name: 'Paderborn'
```

You can also add a point to the end of the mappoint vector using linear indexing. Add Arlington, Virginia to the end of the vector.

```
p(end+1).X = 38.880043;
p(end).Y = -77.196676;
p(end).Name = 'Arlington';
p(end-1:end)
ans =
    2x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [51.7153 38.8800]
            Y: [8.7521 -77.1967]
            Name: {'Paderborn' 'Arlington'}
% Plot the points
figure
mapshow(p.X, p.Y, 'DisplayType', 'point')
```


Sort Dynamic Properties

This example show how features can be sorted by using the indexing behavior of the mappoint class.
Construct a mappoint vector and sort the dynamic properties.

```
p = mappoint(shaperead('tsunamis'));
p = p(:, sort(fieldnames(p)))
p =
    162x1 mappoint vector with properties:
    Collection properties:
            Geometry: 'point'
            Metadata: [1x1 struct]
    Feature properties:
            X: [1x162 double]
            Y: [1x162 double]
            Cause: {1x162 cell}
        Cause_Code: [1x162 double]
            Country: {1x162 cell}
                            Day: [1x162 double]
        Desc_Deaths: [1x162 double]
            Eq_Mag: [1x162 double]
                Hour: [1x162 double]
```

```
    Iida_Mag: [1x162 double]
Intensity: [1x162 double]
    Location: {1x162 cell}
Max_Height: [1x162 double]
            Minute: [1x162 double]
            Month: [1x162 double]
Num_Deaths: [1x162 double]
            Second: [1x162 double]
    Val Code: [1x162 double]
    Val\overline{i}dity: {1x162 cell}
            Year: [1x162 double]
```

Modify the mappoint vector to contain only the dynamic properties, 'Year', 'Month', 'Day', 'Hour', 'Minute'.

```
p = p(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})
p =
    162x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
                X: [1x162 double]
                    Y: [1x162 double]
            Year: [1x162 double]
            Month: [1x162 double]
            Day: [1x162 double]
            Hour: [1x162 double]
            Minute: [1x162 double]
```

Display the first five elements.

```
p(1:5)
ans =
    5x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [128.3000 -156 157.9500 143.8500 -155]
            Y: [-3.8000 19.5000 -9.0200 42.1500 19.1000]
            Year: [1950 1951 1951 1952 1952]
            Month: [10 8 12 3 3]
            Day: [8 21 22 4 17]
            Hour: [3 10 NaN 1 3]
            Minute: [23 57 NaN 22 58]
```


Row and Column Input Arguments

This example demonstrates that input arguments x and y can be either row or column vectors.

If you typically store x - and y-coordinate values in an n-by- 2 or 2 -by- m array, you can assign a mappoint object to these numeric values. If the values are stored in an n-by-2 array, then the X property values are assigned to the first column and the Y property values are assigned to the second column.

```
x = 1:10;
y = 21:30;
pts = [x' y'];
p = mappoint;
p(l:length(pts)) = pts
p =
    10x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
            X: [1 1 2 3 4 5 5 6 7 8 9 10]
            Y: [21 22 23 24 25 26 27 28 29 30]
```

If the values are stored in a 2-by-m array, then the X property values are assigned to the first row and the Y property values are assigned to the second row.

```
pts = [x; y];
p(1:length(pts)) = pts
p =
    10x1 mappoint vector with properties:
    Collection properties:
        Geometry: 'point'
        Metadata: [1x1 struct]
    Feature properties:
                            X: [1 [ 2 3 4 5 6 7 8 9 10]
            Y: [21 22 23 24 25 26 27 28 29 30]
```

Observe that in both cases, X and Y are stored as row vectors.

More About

Collection Properties

Collection properties contain only one value per class instance. In contrast, the Feature property type has attribute values associated with each feature. Geometry and Metadata are the only two Collection properties.

Feature Properties

Feature properties contain one value (a scalar number, string scalar, or a character vector) for each feature in a mappoint vector. They are suitable for properties such as name, owner, serial number, or age, that describe a given feature (an element of a mappoint vector) as a whole. The X and Y coordinate properties are feature properties as there is one value for each element in the mappoint vector.

Feature properties can be added dynamically using dot notation. This is similar to adding dynamic fields to a structure.

Tips

- If X, Y, or a dynamic property is set with more values than features in the mappoint vector, then all other properties expand in size using 0 for numeric values and an empty character vector (' ') for cell values.
- If a dynamic property is set with fewer values than the number of features, then this dynamic property expands to match the size of the other properties, by inserting a 0 if the value is numeric or an empty character vector (' '), if the value is a cell array.
- If the X or Y property of the mappoint vector is set with fewer values than contained in the object, then all other properties shrink in size.
- If either X or Y is set to [], then both coordinate properties are set to [] and all dynamic properties are removed.
- If a dynamic property is set to [], then it is removed from the object.
- The mappoint vector can be indexed like any MATLAB vector. You can access any element of the vector to obtain a specific feature. The following examples demonstrate this behavior:
"Append a Point by Indexing" on page 1-953
"Sort Dynamic Properties" on page 1-955

See Also

Functions

gpxread | shaperead
Objects
geopoint | geoshape | mapshape

Introduced in R2012a

mappointshape

Point shape in planar coordinates

Description

A mappointshape object represents a point or multipoint in planar coordinates. A multipoint is an individual point shape that contains a set of point locations.

To represent a point or multipoint in geographic coordinates, use a geopointshape object instead.

Creation

To create mappointshape objects, either:

- Import point data in planar coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the mappointshape function (described here).

Syntax

shape = mappointshape(x,y)

Description

shape $=$ mappointshape (x, y) creates a mappointshape object or array of mappointshape objects with the specified x - and y-coordinates. The sizes of x, y, and the mappointshape object array shape match.

Input Arguments

x - x-coordinates

numeric array | cell array of numeric arrays
x-coordinates, specified as a numeric array or a cell array of numeric arrays.

- Create a point by specifying a scalar, such as 39 .
- Create a multipoint by specifying an array within a cell, such as $\left.\left\{\begin{array}{llll}38 & -30 & 29\end{array}\right]\right\}$.
- Create an array of points by specifying an array, such as [38-30 29].
- Create an array of points and multipoints by specifying a cell array of numeric arrays, such as \{39,[38-30 29]\}.

Create placeholders for points with missing data by including NaN values. The NaN values in x must correspond to the NaN values in y .

The size of x must match the size of y. For cell arrays, the size of the array in each cell of x must match the size of the array in the corresponding cell of y.
Data Types: double | cell

$\mathbf{y} \boldsymbol{-} \mathbf{y}$-coordinates

numeric array | cell array of numeric arrays
y-coordinates, specified as a numeric array or a cell array of numeric arrays.

- Create a point by specifying a scalar, such as -113.
- Create a multipoint by specifying an array within a cell, such as \{[-66 -31 42] $\}$.
- Create an array of points by specifying an array, such as [-66 - 31 42].
- Create an array of points and multipoints by specifying a cell array of numeric arrays, such as $\{-113,[-66-3142]\}$.

Create placeholders for points with missing data by including NaN values. The NaN values in x must correspond to the NaN values in y .

The size of x must match the size of y. For cell arrays, the size of the array in each cell of x must match the size of the array in the corresponding cell of y.

Properties

NumPoints - Number of points

array of nonnegative integers
This property is read-only.
Number of points, returned as an array of nonnegative integers.
For a mappointshape scalar, the value of NumPoints is 1 when the mappointshape object represents a single point and more than 1 when the object represents a multipoint.

For a mappointshape array, the size of NumPoints matches the size of the array.
Data Types: double
X - X-coordinates
array
x-coordinates, specified as an array.
For a mappointshape scalar, the size of X matches the value of NumPoints.
For a mappointshape array, the size of X matches the size of NumPoints. If the array contains mappointshape objects with multipoints, then accessing the X property of the array is not supported. Instead, access the X property of individual objects within the array.

This property is read-only for arrays when any element of NumPoints is greater than 1.
X and Y must be the same size.
Data Types: double

\mathbf{Y} - y-coordinates
 array

y-coordinates, specified as an array.

For a mappointshape scalar, the size of Y matches the value of NumPoints.
For a mappointshape array, the size of Y matches the size of NumPoints. If the array contains mappointshape objects with multipoints, then accessing the Y property of the array is not supported. Instead, access the Y property of individual objects within the array.

This property is read-only for arrays when any element of NumPoints is greater than 1.
X and Y must be the same size.
Data Types: double

Geometry - Geometric type

"point" (default)
This property is read-only.
Geometric type, returned as "point".
Data Types: string
CoordinateSystemType - Coordinate system type
"planar" (default)
This property is read-only.
Coordinate system type, returned as "planar".
Data Types: string
ProjectedCRS - Projected coordinate reference system
[] (default) | projcrs object
Projected coordinate reference system (CRS), specified as a projcrs object. A projected CRS consists of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS.

Object Functions

geoplot Plot points, lines, and polygons in geographic axes
mapclip Clip shape to xy-limits in planar coordinates

Examples

Get Information about Imported Planar Points

Import a shapefile containing the coordinates of locations in Boston as a geospatial table. The shapefile represents the locations using points. Get information about the points by querying the Shape variable of the table.

```
GT = readgeotable("boston_placenames.shp");
GT.Shape
ans =
    13\times1 mappointshape array with properties:
```

NumPoints: [13×1 double]
X: [13×1 double]
Y: [13×1 double]
Geometry: "point"
CoordinateSystemType: "planar"
ProjectedCRS: [1×1 projcrs]

Display the locations using black plus signs on a road map.

```
geoplot(GT,"+k")
```

geobasemap streets

Create Planar Points and Multipoints

Create an individual point as a mappointshape scalar. Specify the projected CRS as World Equidistant Cylindrical, which has the EPSG authority code 4087.

```
point = mappointshape(-113,39);
p = projcrs(4087);
point.ProjectedCRS = p
point =
    mappointshape with properties:
```

```
    NumPoints: 1
        X: -113
        Y: 39
        Geometry: "point"
CoordinateSystemType: "planar"
    ProjectedCRS: [1x1 projcrs]
```

Create a multipoint as a mappointshape scalar.

```
multipoint = mappointshape({[-66 -31 42]},{[38 -30 29]});
multipoint.ProjectedCRS = p
multipoint =
    mappointshape with properties:
    NumPoints: 3
                            X: [-66 -31 42]
                            Y: [38 -30 29]
    Geometry: "point"
        CoordinateSystemType: "planar"
                ProjectedCRS: [1x1 projcrs]
```

Create three individual points as a 1-by-3 mappointshape array.

```
pointVector = mappointshape([-66 -31 42],[38 -30 29]);
pointVector.ProjectedCRS = p
pointVector =
    1x3 mappointshape array with properties:
            NumPoints: [llll
                        X: [-66 -31 42]
                        Y: [38 -30 29]
                            Geometry: "point"
        CoordinateSystemType: "planar"
                ProjectedCRS: [1x1 projcrs]
```

Create one individual point and one multipoint as a 1-by-2 mappointshape array.
pointMultipoint = mappointshape(\{-113,[-66 -31 42]\},\{39, [38-30 29]\});
pointMultipoint.ProjectedCRS $=p$
pointMultipoint =
1x2 mappointshape array with properties:
NumPoints: [ll 1 3]
Geometry: "point"
CoordinateSystemType: "planar"
ProjectedCRS: [1x1 projcrs]

Compatibility Considerations

Points with missing coordinate data have some changed property values
Behavior changed in R2022a

When a point shape has missing coordinate data, its NumPoints property has a value of 0 and its X and Y properties each have a value of NaN .

- When you create a point by specifying both coordinates as NaN values, its NumPoints property has a value of 0 . In the previous release, the property had a value of 1.
- When a point has no coordinate data, its X and Y properties each have a value of NaN . In the previous release, the properties were each empty double values.

These changes make it easier to create and access the properties of mappointshape arrays when the input coordinates contain missing data. For example, you can now access the coordinates of a mappointshape array when the array contains a combination of points with coordinate data (NumPoints is 1) and without coordinate data (NumPoints is 0). In the previous release, MATLAB issued an error.

See Also

Functions

readgeotable

Objects

maplineshape | mappolyshape | geopointshape

Topics

"Create Geospatial Tables"
Introduced in R2021b

maplineshape

Line shape in planar coordinates

Description

A maplineshape object represents a line or multiline in planar coordinates. A multiline is an individual line shape that contains a set of separate lines.

To represent a line or multiline in geographic coordinates, use a geolineshape object instead.

Creation

To create maplineshape objects, either:

- Import line data in planar coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the maplineshape function (described here).

Syntax

shape = maplineshape(x,y)

Description

shape $=$ maplineshape (x, y) creates a maplineshape object or array of maplineshape objects with vertices at the specified x - and y-coordinates. The sizes of x, y, and the maplineshape object array shape match.

Input Arguments

$x-x$-coordinates

numeric vector | cell array of numeric vectors
x-coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a line by specifying a vector, such as [65 6253 66].
- Create a multiline by specifying a vector and including line breaks as NaN values, such as [55 34 18 NaN 141942 26].
- Create an array of lines and multilines by specifying a cell array of vectors, such as $\left\{\left[\begin{array}{ll}55 & 34\end{array}\right.\right.$ 18],[14 19 NaN 4226 31]\}.

The NaN values in x must correspond to the NaN values in y .
The size of x must match the size of y. For cell arrays, the size of the vector in each cell of x must match the size of the vector in the corresponding cell of y.
Data Types: double | cell

y - y-coordinates

numeric vector | cell array of numeric vectors
y-coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a line by specifying a vector, such as [4 59121 98].
- Create a multiline by specifying a vector and including line breaks as NaN values, such as [78 56 63 NaN 83106104 126].
- Create an array of lines and multilines by specifying a cell array of vectors, such as \{[78 56 63],[83 106 NaN 104126 131]\}.

The NaN values in x must correspond to the NaN values in y .
The size of x must match the size of y. For cell arrays, the size of the vector in each cell of x must match the size of the vector in the corresponding cell of y.

Properties

NumParts - Number of line parts

array of nonnegative integers
This property is read-only.
Number of line parts, returned as an array of nonnegative integers.
For a maplineshape scalar, the value of NumParts is 1 when the maplineshape object represents a single line and more than 1 when the object represents a multiline.

For a maplineshape array, the size of NumParts matches the size of the array.
Data Types: double

Geometry - Geometric type

"line" (default)
This property is read-only.
Geometric type, returned as "line".
Data Types: string
CoordinateSystemType - Coordinate system type
"planar" (default)
This property is read-only.
Coordinate system type, returned as "planar".
Data Types: string

ProjectedCRS - Projected coordinate reference system

```
[] (default) | projcrs object
```

Projected coordinate reference system (CRS), specified as a projcrs object. A projected CRS consists of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS.

Object Functions

geoplot Plot points, lines, and polygons in geographic axes
mapclip Clip shape to xy-limits in planar coordinates

Examples

Get Information About Imported Planar Lines

Import a shapefile containing a network of road segments in Concord, MA as a geospatial table. The shapefile represents the road segments using lines. Get information about the fourth line by querying the Shape variable of the table.

```
GT = readgeotable("concord_roads.shp");
GT.Shape(4)
ans =
    maplineshape with properties:
            NumParts: 1
                    Geometry: "line"
        CoordinateSystemType: "planar"
            ProjectedCRS: [lx1 projcrs]
```

Display the road segments on a street map.

```
geoplot(GT)
geobasemap streets
```


Create Planar Lines and Multilines

Create an individual line as a maplineshape scalar. Specify the projected CRS as World Equidistant Cylindrical, which has the EPSG authority code 4087.
$x=\left[\begin{array}{llll}4 & 59 & 121 & 98\end{array}\right] ;$
$y=[656253$ 66];
lineshp = maplineshape(x,y);
p = projcrs(4087);
lineshp. ProjectedCRS = p
lineshp =
maplineshape with properties:
NumParts: 1
Geometry: "line"
CoordinateSystemType: "planar" ProjectedCRS: [1x1 projcrs]

Create a multiline as a maplineshape scalar.
$x=\left[\begin{array}{lllllll}78 & 56 & 63 & \mathrm{NaN} & 83 & 106 & 104 \\ 126\end{array}\right] ;$
$y=\left[\begin{array}{lllllll}55 & 34 & 18 & \mathrm{NaN} & 14 & 19 & 42 \\ 26\end{array}\right] ;$

```
multiline = maplineshape(x,y);
multiline.ProjectedCRS = p
multiline =
    maplineshape with properties:
    NumParts: 2
    Geometry: "line"
    CoordinateSystemType: "planar"
                ProjectedCRS: [1x1 projcrs]
```

Create one individual line and one multiline as a 1 -by- 2 maplineshape array.

```
x = {[78 56 63],[83 106 NaN 104 126 113]};
y = {[55 34 18],[14 19 NaN 42 26 37]};
lineMultiline = maplineshape(x,y);
lineMultiline.ProjectedCRS = p
lineMultiline=1\times2 object
    1x2 maplineshape array with properties:
            NumParts: [1 2]
            Geometry: "line"
        CoordinateSystemType: "planar"
        ProjectedCRS: [1x1 projcrs]
```


See Also

Functions

readgeotable
Objects
mappointshape | mappolyshape | geolineshape
Topics
"Create Geospatial Tables"
Introduced in R2021b

mappolyshape

Polygon in planar coordinates

Description

A mappolyshape object represents a polygon or multipolygon in planar coordinates. A polygon is a region bounded by a closed curve and can include interior holes. A multipolygon is an individual polygon shape that includes multiple nonintersecting regions.

To represent a polygon or multipolygon in geographic coordinates, use a geopolyshape object instead.

Creation

To create mappolyshape objects, either:

- Import polygon data in planar coordinates as a geospatial table using the readgeotable function, and then query the Shape variable of the table.
- Use the mappolyshape function (described here).

Syntax

shape = mappolyshape(x,y)

Description

shape $=$ mappolyshape (x, y) creates a mappolyshape object or array of mappolyshape objects with vertices at the specified x - and y-coordinates. The sizes of x, y and the mappolyshape object array shape match.

The mappolyshape function assumes that x and y define polygons with valid topology. A polygon has valid topology when:

- Region interiors are to the right as you trace boundaries from vertex to vertex.
- The boundaries have no self-intersections.

In general, the outer boundaries of polygons with valid topology have vertices in a clockwise order and the interior holes have vertices in a counterclockwise order.

Input Arguments

$x-x$-coordinates
numeric vector | cell array of numeric vectors
x-coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a polygon by specifying a vector, such as [-113 -49-100 -113].
- Create a polygon with holes or a multipolygon by specifying a vector and including breaks between the hole and region boundaries as NaN values, such as [69 901057969 NaN 652 43146 NaN 183222 18].
- Create an array of polygons and multipolygons by specifying a cell array of vectors, such as \{[69 9010579 69],[6 5243146 NaN 183222 18]\}.

The NaN values in x must correspond to the NaN values in y .
The size of x must match the size of y. For cell arrays, the size of the vector in each cell of x must match the size of the vector in the corresponding cell of y.
Data Types: double | cell
$y-y$-coordinates
numeric vector | cell array of numeric vectors
y-coordinates, specified as a numeric vector or a cell array of numeric vectors.

- Create a polygon by specifying a vector, such as [$\left.\begin{array}{llll}39 & 45 & 19 & 39\end{array}\right]$.
- Create a polygon with holes or a multipolygon by specifying a vector and including breaks between the hole and region boundaries as NaN values, such as [37 46312037 NaN 4549 353245 NaN 354042 35].
- Create an array of polygons and multipolygons by specifying a cell array of vectors, such as \{[37 463120 37],[45 49353245 NaN 354042 35]\}.

The NaN values in x must correspond to the NaN values in y .
The size of x must match the size of y. For cell arrays, the size of the vector in each cell of x must match the size of the vector in the corresponding cell of y.

Properties

NumRegions - Number of regions

array of nonnegative integers
This property is read-only.
Number of regions, returned as an array of nonnegative integers. A region is a connected area such that any two points within the area can be connected by a path entirely within the area. Regions may contain holes.

For a mappolyshape scalar, the value of NumRegions is 1 when the mappolyshape object represents a single polygon and more than 1 when the object represents a multipolygon.

For a mappolyshape array, the size of NumRegions matches the size of the array.

Data Types: double

NumHoles - Number of holes

array of nonnegative integers
This property is read-only.
Number of holes in the polygon or multipolygon, returned as an array of nonnegative integers.

For a mappolyshape array, the size of NumHoles matches the size of the array.
Data Types: double

Geometry - Geometric type

"polygon" (default)
This property is read-only.
Geometric type, returned as "polygon".
Data Types: string

CoordinateSystemType - Coordinate system type

"planar" (default)
This property is read-only.
Coordinate system type, returned as "planar".
Data Types: string
ProjectedCRS - Projected coordinate reference system
[] (default) | projcrs object
Projected coordinate reference system (CRS), specified as a projcrs object. A projected CRS consists of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS.

Object Functions

geoplot Plot points, lines, and polygons in geographic axes
mapclip Clip shape to xy-limits in planar coordinates
isinterior Query geographic or planar points in polygon

Examples

Get Information About Imported Planar Polygons

Import a shapefile containing hydrographic data for Concord, MA as a geospatial table. The shapefile represents the data using polygons.

```
hydro = readgeotable("concord_hydro_area.shp");
```

Create a subtable that contains a polygon representing a pond. Get information about the polygon by querying the Shape variable of the table.

```
pond = hydro(14,:);
```

pond.Shape

```
ans =
    mappolyshape with properties:
        NumRegions: 1
        NumHoles: 3
        Geometry: "polygon"
```

```
CoordinateSystemType: "planar"
    ProjectedCRS: [1×1 projcrs]
```

Import an orthophoto of Concord, MA, along with a map cells reference object and a colormap. Display the orthophoto and polygon on a map.

```
[ortho,R,cmap] = readgeoraster("concord_ortho_w.tif");
mapshow(ortho,cmap,R)
mapshow(pond,FaceColor="c")
```


Create Planar Polygons and Multipolygons

Create an individual polygon with no holes as a mappolyshape scalar. Specify the projected CRS as World Equidistant Cylindrical, which has the EPSG authority code 4087.

```
x = [-113 -49 -100 -113];
y = [39 45 19 39];
polyshp = mappolyshape(x,y);
p = projcrs(4087);
polyshp.ProjectedCRS = p
polyshp =
    mappolyshape with properties:
```

NumRegions: 1 NumHoles: 0 Geometry: "polygon"
CoordinateSystemType: "planar"
ProjectedCRS: [1x1 projcrs]

Create a multipolygon with two regions and one hole as a mappolyshape scalar.

```
x = [69 90 105 79 69 NaN 6 52 43 14 6 NaN 18 32 22 18];
y = [37 46 31 20 37 NaN 45 49 35 32 45 NaN 35 40 42 35];
multipolygon = mappolyshape(x,y);
multipolygon.ProjectedCRS = p
multipolygon =
    mappolyshape with properties:
            NumRegions: 2
                NumHoles: 1
        Geometry: "polygon"
        CoordinateSystemType: "planar"
            ProjectedCRS: [1x1 projcrs]
```

Create two individual polygons as a 1-by-2 mappolyshape array. The second polygon contains a hole.

```
x = {[69 90 105 79 69],[6 52 43 14 6 NaN 18 32 22 18]};
y = {[37 46 31 20 37],[45 49 35 32 45 NaN 35 40 42 35]};
polyArray = mappolyshape(x,y);
polyArray.ProjectedCRS = p
polyArray=1\times2 object
    1x2 mappolyshape array with properties:
            NumRegions: [1 1]
                NumHoles: [0 1]
                            Geometry: "polygon"
        CoordinateSystemType: "planar"
            ProjectedCRS: [1x1 projcrs]
```


See Also

Functions

readgeotable

```
Objects
mappointshape|maplineshape|geopolyshape
Topics
"Create Geospatial Tables"
```

Introduced in R2021b

MapPostingsReference

Reference raster postings to map coordinates

Description

A map postings raster reference object contains information that describes the relationship between a planar map coordinate system and an intrinsic coordinate system on page 1-980 that is anchored to the columns and rows of a 2-D spatially referenced grid of point samples (or postings).

Typically, the raster is sampled regularly in the planar world x - and world y-coordinates of the map system, such that the intrinsic x and world xaxes align and the intrinsic y and world y axes align. When this is true, the relationship between the two systems is rectilinear. More generally, and much more rarely, their relationship is affine. The affine relationship allows for a possible rotation (and skew). In either case, rectilinear or affine, the sample spacing from row to row need not equal the sample spacing from column to column.

This image illustrates a 9-by-11 planar raster of postings. The postings are spaced 1 meter apart in x and y, cover x values in the range $[40,50]$ in meters, and cover y values in the range $[20,28]$ in meters. The boundary of the raster of postings is a rectangle with edges that pass through the outermost postings.

To reference a raster of cells to planar map coordinates, use a MapCellsReference object instead.

Creation

You can use these functions to create MapPostingsReference objects:

- readgeoraster - Import a raster data file as an array and a reference object.
- maprefpostings - Create a map raster reference object by specifying the x and y world limits of the raster and either the size of the raster or the spacing of the postings.
- maprasterref - Convert a world file to a map raster reference object.
- refmatToMapRasterReference - Convert a referencing matrix to a map raster reference object.

Properties

XWorldLimits - Limits of raster in world \boldsymbol{x}-coordinates
[0.5 2.5] (default)| two-element row vector
Limits of raster in world x-coordinates, specified as a two-element row vector of the form [xMin xMax].

The value of the ProjectedCRS property determines the length units for the raster. This code shows how to find the length units for a raster associated with the map postings reference object R .
R.ProjectedCRS.LengthUnit

Example: [207000 209000]
Data Types: double
YWorldLimits - Limits of raster in world \boldsymbol{y}-coordinates
[0.5 2.5] (default) | two-element row vector
Limits of raster in world y-coordinates, specified as a two-element row vector of the form [yMin yMax].

The value of the ProjectedCRS property determines the length units for the raster. This code shows how to find the length units for a raster associated with the map postings reference object R .
R.ProjectedCRS.LengthUnit

Example: [911000 913000]
Data Types: double

RasterSize - Number of rows and columns of the raster or image associated with the referencing object

[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster or image associated with the referencing object, specified as a two-element vector, [$m n$], where m represents the number of rows and n the number of columns. For convenience, you can assign a size vector having more than two elements. This enables assignments like R.RasterSize $=\operatorname{size}($ RGB), where RGB is m-by- n-by-3. In cases like this, the object stores only the first two elements of the size vector and ignores the higher (nonspatial) dimensions. m and n must be positive in all cases and must be 2 or greater.
Example: [200 300]
Data Types: double

RasterInterpretation - Geometric nature of the raster
 'postings' (default)

Geometric nature of the raster, specified as 'postings '. The value 'postings ' indicates that the raster comprises a grid of sample points, where rows or columns of samples run along the edge of the grid. For an m-by- n raster, points with an intrinsic x-coordinate of 1 or n or an intrinsic y-coordinate of 1 or m fall right on an edge (or corner) of the raster.

Cannot be set.
Data Types: char

ColumnsStartFrom - Edge from which column indexing starts
'south' (default)|'north'
Edge from which column indexing starts, specified as 'south ' or 'north'.
Example: ColumnsStartFrom: 'south'
Data Types: char
RowsStartFrom - Edge from which row indexing starts
'west' (default)|'east'
Edge from which row indexing starts, specified as 'west' or 'east'.
Example: RowsStartFrom: 'east'
Data Types: char

SampleSpacingInWorldX - East-west distance between adjacent postings
 2 (default) | positive numeric scalar

East-west distance between adjacent postings, specified as a positive numeric scalar. The value is constant throughout the raster.
Example: 2.5
Data Types: double

SampleSpacingInWorldY - North-south distance between adjacent postings

2 (default) | positive numeric scalar
North-south distance between adjacent postings, specified as a positive numeric scalar. The value is constant throughout the raster.

Example: 2.5
Data Types: double
RasterExtentInWorldX - Extent of the full raster or image as measured in the world system in a direction parallel to its rows
2 (default) | positive numeric scalar
This property is read-only.
Extent of the full raster or image as measured in the world system in a direction parallel to its rows, specified as a positive numeric scalar. In the case of a rectilinear geometry, which is most typical, this is the horizontal direction (east-west).
Data Types: double
RasterExtentInWorldY - Extent of the full raster or image as measured in the world system in a direction parallel to its columns
2 (default) | positive numeric scalar
This property is read-only.
Extent of the full raster or image as measured in the world system in a direction parallel to its columns. In the case of a rectilinear geometry, which is most typical, this is the vertical direction (north-south).

Data Types: double

XIntrinsicLimits - Raster limits in intrinsic x-coordinates
[1 2] (default) | two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic x-coordinates, specified as a two-element row vector of positive integers, [xMin xMax]. For an m-by- n raster, XIntrinsicLimits equals [1 m], because the
RasterInterpretation is 'postings'.
Example: [2 4]
Data Types: double
YIntrinsicLimits - Raster limits in intrinsic \boldsymbol{y}-coordinates
[1 2] (default) |two-element row vector of positive integers
This property is read-only.
Raster limits in intrinsic y-coordinates, specified as a two-element row vector of positive integers, [yMin yMax]. For an m-by-n raster with RasterInterpretation equal to 'postings', YIntrinsicLimits equals [1 m].

Data Types: double

TransformationType - Type of geometric relationship between intrinsic and world systems
 'rectilinear' (default) | 'affine'

This property is read-only.
Type of geometric relationship between the intrinsic coordinate system and the world coordinate system, specified as either 'rectilinear' or 'affine'. Its value is 'rectilinear' when world x depends only on intrinsic x and vice versa, and world y depends only on intrinsic y and vice versa. When the value is 'rectilinear', the image displays without rotation in the world system, although it might be flipped. Otherwise, the value is 'affine'.
Data Types: char

CoordinateSystemType - Type of coordinate system to which the image or raster is referenced
 'planar' (default)

This property is read-only.
Type of coordinate system to which the image or raster is referenced, specified as 'planar'.
Data Types: char
ProjectedCRS - Projected coordinate reference system
[] (default) | projcrs object
Projected coordinate reference system (CRS), specified as a projcrs object. A projected CRS consists of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS.

The value of ProjectedCRS determines the length units for the raster. To find the length units, query the LengthUnit property of the projers object.

Object Functions

contains
firstCornerX
firstCornerY intrinsicToWorld sizesMatch
worldFileMatrix worldGrid
worldToDiscrete
worldToIntrinsic

Determine if geographic or map raster contains points
Return world x-coordinate of map raster index $(1,1)$
Return world y-coordinate of map raster index $(1,1)$
Transform intrinsic to planar world coordinates
Determine if geographic or map raster object and image or raster are sizecompatible
Return world file parameters for transformation
World coordinates of raster elements
Transform planar world to discrete coordinates
Transform planar world to intrinsic coordinates

Examples

Display Planar Raster of Regularly Spaced Posting Points

Import elevation data as an array and a MapPostingsReference object. Then, display the data on a map.

For this example, specify the file to import by extracting a GZ file into a temporary directory. Then, set the name of the first extracted file to a variable.

```
filenames = gunzip('sanfranciscos.dem.gz',tempdir);
filename1 = filenames{1};
```

Import the data by using the readgeoraster function. Prepare the data for plotting by specifying the output type as 'double' and by replacing missing data with NaN values.

```
[Z,R] = readgeoraster(filename1,'OutputType','double');
info = georasterinfo(filenamel);
Z = standardizeMissing(Z,info.MissingDataIndicator);
```

View the properties of the MapPostingsReference object.
R

```
R =
    MapPostingsReference with properties:
            XWorldLimits: [544050 555150]
            YWorldLimits: [4164120 4178070]
                        RasterSize: [466 371]
        RasterInterpretation: 'postings'
            ColumnsStartFrom: 'north'
                RowsStartFrom: 'west'
        SampleSpacingInWorldX: 30
        SampleSpacingInWorldY: 30
        RasterExtentInWorldX: 11100
        RasterExtentInWorldY: 13950
            XIntrinsicLimits: [1 371]
            YIntrinsicLimits: [1 466]
```

```
    TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
    ProjectedCRS: [1x1 projcrs]
```

Display the elevation data as a surface on a map. Apply a colormap that is appropriate for elevation data.
mapshow(Z,R,'DisplayType','surface')
demcmap(Z)

More About

Intrinsic Coordinate System

A 2-D Cartesian system with its x-axis running parallel to the rows of a raster or image and its y-axis running parallel to the columns. x increases by 1 from column to column, and y increases by 1 from row to row.

The Mapping Toolbox and Image Processing Toolbox use the convention for the location of the origin relative to the raster cells or sampling points such that, at a sample location or at the center of a cell, x has an integer value equal to the column index. Likewise, at a sample location or at the center of a cell, y has an integer value equal to the row index. For details, see Image Coordinate Systems (Image Processing Toolbox).

See Also

Functions

maprefpostings|maprasterref|readgeoraster
Objects
GeographicCellsReference | GeographicPostingsReference | MapCellsReference
Topics
"Spatially Reference Imported Rasters"
Introduced in R2013b

mapprofile

Interpolate between waypoints on regular data grid

Syntax

```
[zi,ri,lat,lon] = mapprofile
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon)
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,units)
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,ellipsoid)
[zi,ri,lat,lon] = mapprofile(___,'trackmethod','interpmethod')
```


Description

mapprofile plots a profile of values between waypoints on a displayed regular data grid.
mapprofile uses the current object if it is a regular data grid, or the first regular data grid found on the current axes. The grid's zdata is used for the profile. The color data is used in the absence of zdata. The result is displayed in a new figure.
[zi,ri,lat,lon] = mapprofile returns the values of the profile without displaying them. The output zi contains interpolated values along great circles between the waypoints. ri is a vector of associated distances from the first waypoint in units of degrees of arc along the surface. lat and lon are the corresponding latitudes and longitudes.
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon) accepts as input a regular data grid and waypoint vectors. No displayed grid is required. Sets of waypoints may be separated by NaNs into line sequences. The output ranges are measured from the first waypoint within a sequence. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If R is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by- 3 with elements:

```
[cells/degree northern_latitude_limit western_longitude_limit]
```

If R is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:

```
[lon lat] = [row col 1] * R
```

If R is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.
[zi, ri,lat,lon] = mapprofile(Z,R,lat,lon,units) specifies the units of the output ranges along the profile. Valid range units inputs are any distance value recognized by units ratio. Surface distances are computed using the default radius of the earth. If omitted, ' degrees ' are assumed.
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,ellipsoid) uses the provided ellipsoid definition in computing the range along the profile. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The output range is reported in the same distance units as the semimajor axes of
the ellipsoid. If you do not specify ellipsoid and R is a reference object with a nonempty GeographicCRS property, then mapprofile uses the ellipsoid contained in the Spheroid property of the geocrs object in the GeographicCRS property of R. Otherwise, mapprofile uses the unit sphere.
[zi,ri,lat,lon] = mapprofile(__, 'trackmethod','interpmethod') control the interpolation methods used. Valid track methods are ' gc ' for great circle tracks between waypoints, and 'rh' for rhumb lines. Valid methods for interpolation within the matrix are 'bilinear' for linear interpolation, 'bicubic' for cubic interpolation, and 'nearest' for nearest neighbor interpolation. If omitted, 'gc' and 'bilinear' are assumed.

Examples

Interpolate Between Waypoints

Load elevation raster data and a geographic cells reference object for the Korean peninsula. Specify an elevation profile. Then, plot the profile along with coastline and city marker data. When you select more than two waypoints, the automatically generated figure displays the result in 3-D.

```
load korea5c
plat = [ 43 43 41 38];
plon = [116 120 126 128];
mapprofile(korea5c,korea5cR,plat,plon)
load coastlines
plotm(coastlat,coastlon)
geoshow('worldcities.shp','Marker','.','Color', 'red')
```


Interactively Select Waypoints

This example shows the relative sizes of the mountains in northern China (upper-left) compared to the depths of the Sea of Japan (lower-right).

First, load elevation raster data and a geographic cells reference object for the Korean peninsula. Create a map axes object with appropriate limits and display the data as a surface. Then, interactively pick waypoints by calling mapprofile without input arguments. Select the two waypoints, one in the upper-left corner and one in the lower-right corner, by clicking your mouse. Press Enter after you select the last point.

```
load korea5c
worldmap(korea5c,korea5cR)
meshm(korea5c,korea5cR)
demcmap(korea5c)
[zi,ri,lat,lon] = mapprofile;
```


When you call mapprofile using output arguments, the results do not display in a new figure. Instead, use the results in further calculations or display the results yourself. For this example, convert ranges and elevations to kilometers and display them in a new figure. Set the vertical exaggeration factor to 50 . Otherwise, the changes in elevation would be almost too small to see.
figure
plot(deg2km(ri),zi/1000)
daspect ([1 1/50 1]);
xlabel 'Range (km)'
ylabel 'Elevation (km)'

The profile you get depends on the transect locations you pick.

Specify Units and Interpolation Method

You can compute values along a path without reference to an existing figure by providing a regular data grid and vectors of waypoint coordinates. Optional arguments allow control over the units of the range output and interpolation methods between waypoints and data grid elements.

Show what land and ocean areas lie under a great circle track from Frankfurt to Seattle:

```
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Seattle = strcmp('Seattle', {cities(:).Name});
Frankfurt = strcmp('Frankfurt', {cities(:).Name});
lat = [cities(Seattle).Lat cities(Frankfurt).Lat];
lon = [cities(Seattle).Lon cities(Frankfurt).Lon];
load topo60c
[valp,rp,latp,lonp] = ...
    mapprofile(topo60c,topo60cR, ...
    lat,lon,'km','gc','nearest');
figure
worldmap([40 80],[-135 20])
land = shaperead('landareas.shp', 'UseGeoCoords', true);
faceColors = makesymbolspec('Polygon',...
    {'INDEX', [1 numel(land)], 'FaceColor', ...
    polcmap(numel(land))});
geoshow(land,'SymbolSpec',faceColors)
plotm(latp,lonp,'r')
plotm(lat,lon,'ro')
axis off
```


Compute Elevation Profile Along Straight Line

Load elevation data and a geographic cells reference object for the Korean peninsula. View the region on geographic axes using a satellite basemap.

```
load korea5c
figure
geolimits(korea5cR.LatitudeLimits,korea5cR.LongitudeLimits)
geobasemap('satellite')
```


Define endpoints for a straight-line transect through the region. Compute the elevation profile by using the mapprofile function. By default, the mapprofile function uses bilinear interpolation along a great circle track.
plat = [40.5 30.7];
plon $=[121.5$ 133.5];
[z,rng,lat,lon] = mapprofile(korea5c,korea5cR,plat,plon);
Preserve the basemap and limits by using hold on. Plot the transect on the geographic axes.
hold on
geoplot(lat,lon,'w','LineWidth',2)

Plot the transect range and elevation on Cartesian axes.
figure
plot(rng,z,'r')

See Also
geointerp|los2

maprasterref

(Not recommended) Create map raster reference object

Note The maprasterref function is not recommended, except when creating a raster reference object from a world file matrix. To specify options using name-value arguments, use the maprefcells or maprefpostings function instead. For more information, see "Compatibility Considerations".

Syntax

R = maprasterref(W, rasterSize)
R = maprasterref(W,rasterSize, rasterInterpretation)
R = maprasterref(Name,Value)

Description

$R=$ maprasterref(W, rasterSize) creates a reference object for a raster of cells referenced to planar coordinates using the world file matrix W and raster size rasterSize.

R = maprasterref(W, rasterSize, rasterInterpretation) specifies the geometric nature of the raster. When the raster contains posting point samples referenced to planar coordinates, specify rasterInterpretation as "postings". The default for rasterInterpretation is "cells", which specifies a raster of cells.
$R=$ maprasterref(Name, Value) specifies options using name-value arguments.

Examples

Create Map Reference Object from World File Matrix

Create a reference object for a raster of cells with size 1000-by-2000, cell $x y$-extents of 0.5 linear units, world x-limits of [207000, 208000] linear units, and world y-limits of [912500, 913000] linear units. Orient the raster using a convention typical for imagery, where image rows run from west to east and image columns run from north to south.

Specify the world file matrix using these values:

Value	Explanation
0.5	The rows of the raster start from the west and each cell is 0.5 linear units wide.
207000.25	World x-coordinate of the first cell center.
-0.5	The rows of the raster start from the north and each cell is 0.5 linear units tall.
912999.75	World y-coordinate of the first cell center.

$W=[0.50207000 .25 ; 0-0.5$ 912999.75];

Create the reference object.

```
R = maprasterref(W,[1000 2000],"cells")
R =
    MapCellsReference with properties:
            XWorldLimits: [207000 208000]
            YWorldLimits: [912500 913000]
                RasterSize: [1000 2000]
    RasterInterpretation: 'cells'
            ColumnsStartFrom: 'north'
            RowsStartFrom: 'west'
        CellExtentInWorldX: 1/2
        CellExtentInWorldY: 1/2
        RasterExtentInWorldX: 1000
        RasterExtentInWorldY: 500
            XIntrinsicLimits: [0.5 2000.5]
            YIntrinsicLimits: [0.5 1000.5]
        TransformationType: 'rectilinear'
        CoordinateSystemType: 'planar'
            ProjectedCRS: []
```


Input Arguments

W - World file matrix

2-by-3 numeric array
World file matrix, specified as a 2-by-3 numeric array. A world file matrix defines a transformation that maps intrinsic coordinates to world coordinates.

The form of W depends on whether the intrinsic and world axes have a rectilinear relationship, where the intrinsic and world axes align, or an affine relationship, where the intrinsic axes are rotated with respect to the world axes.

When the relationship is rectilinear, specify W using the form [xspacing $0 x$; 0 yspacing y], where

- xspacing determines the RowsStartFrom and the CellExtentInWorldX or SampleSpacingInWorldX properties of R.
- When xspacing is positive, RowsStartFrom is 'west'. When xspacing is negative, RowsStartFrom is 'east'.
- CellExtentInWorldX or SampleSpacingInWorldX is abs (xspacing).
- yspacing determines the ColumnsStartFrom and the CellExtentInWorldY or SampleSpacingInWorldY properties of R.
- When yspacing is positive, ColumnsStartFrom is 'south'. When yspacing is negative, ColumnsStartFrom is 'north'.
- CellExtentInWorldY or SampleSpacingInWorldY is abs(yspacing).
- $\quad x$ and y are the world $x y$-coordinates of the first cell center or posting point. For a spatially referenced raster A, the first cell center or posting point is the spatial location associated with A (1,1, :)

When the relationship is affine, specify W so that $\left[\begin{array}{l}x_{w} \\ y_{w}\end{array}\right]=W \cdot\left[\begin{array}{c}x_{i}-1 \\ y_{i}-1 \\ 1\end{array}\right]$, where $\left(x_{i}, y_{i}\right)$ is a location in intrinsic coordinates and $\left(x_{w}, y_{w}\right)$ is the same location in world coordinates.

rasterSize - Number of rows and columns

two-element vector
Number of rows and columns of the raster, specified as a two-element vector of the form [m n], where m is the number of rows and n is the number of columns.

For convenience, you can specify this argument as a vector with more than two elements, such as the size of an RGB image (m-by- n-by-3). The maprasterref function uses only the first two elements of the size vector.

rasterInterpretation - Geometric nature of raster
 "cells" (default) | "postings"

Geometric nature of the raster, specified as one of these options:

- "cells" - The raster is a grid of quadrangular cells. The boundary of the raster is made up of the outermost boundaries of the outermost cells.
- "postings" - The raster is a grid of posting point samples. The boundary of the raster is made up of sampling points along the edge of the raster.

For more information about cells and posting points, see "Spatially Reference Imported Rasters".
The corresponding property of the reference object, RasterInterpretation, is read-only after you create the object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: maprasterref("XWorldLimits", [207000 208000], "YWorldLimits", [912500 913000]) creates a map cells reference object with x-values in the range [207000, 208000] linear units and y-values in the range [912500, 913000] linear units.

XWorldLimits $-x$-limits in world coordinates
[0.5 2.5] (default) | two-element vector
x-limits in world coordinates of the rectangle that bounds the georeferenced raster, specified as a two-element vector of the form [xMin xMax].

YWorldLimits $\boldsymbol{-} \boldsymbol{y}$-limits in world coordinates
[0.5 2.5] (default)| two-element vector
y-limits in world coordinates of the rectangle that bounds the georeferenced raster, specified as a two-element vector of the form [yMin yMax].

RasterSize - Number of rows and columns

[2 2] (default) | two-element vector of positive integers
Number of rows and columns of the raster, specified as a two-element vector [m n], where m is the number of rows and n is the number of columns.

For convenience, you can specify RasterSize as a vector with more than two elements, such as the size of an RGB image (m-by-n-by-3). The maprasterref function uses only the first two elements of the size vector.

RasterInterpretation - Geometric nature of raster

"cells" (default)|"postings"
Geometric nature of the raster, specified as one of these options:

- "cells" - The raster is a grid of quadrangular cells. The boundary of the raster is made up of the outermost boundaries of the outermost cells.
- "postings" - The raster is a grid of posting point samples. The boundary of the raster is made up of sampling points along the edge of the raster.

For more information about cells and posting points, see "Spatially Reference Imported Rasters".
The corresponding property of the raster reference object is read-only after you create the object.
Data Types: char | string

ColumnsStartFrom - Edge from which column indexing starts
 "south" (default)|"north"

Edge from which column indexing starts, specified as "south" or "north".
Data Types: char | string
RowsStartFrom - Edge from which row indexing starts
"west" (default)| "east"
Edge from which row indexing starts, specified as "west" or "east".
Data Types: char | string

Output Arguments

R - Map raster reference object

MapCellsReference object | MapPostingsReference object
Map raster reference object, returned as a MapCellsReference or MapPostingsReference object. The value of R depends on the value of the rasterInterpretation argument or RasterInterpretation name-value argument.

rasterInterpretation or RasterInterpretation	\mathbf{R}
"cells"	MapCellsReference object
"postings"	MapPostingsReference object

Tips

- When you create a reference object by using the $\mathrm{R}=$ maprasterref (Name, Value) syntax, the function assumes the raster has a rectilinear relationship between the intrinsic and world systems and sets the read-only property TransformationType to 'rectilinear'. If your raster is rotated with respect to the world system, set the TransformationType property to 'affine' by specifying a world matrix or by using the maprefcells or maprefpostings function instead.

Compatibility Considerations

maprasterref is not recommended

Not recommended starting in R2015b
The maprasterref function is not recommended, except when creating a reference object from a world file matrix. To specify options using name-value arguments, use the maprefcells or maprefpostings function instead.

- Create a reference object for a grid of rectangular cells referenced to world xy-coordinates by using the maprefcells function.
- Create a reference object for a grid of posting point samples referenced to world coordinates by using the maprefpostings function.

See Also

Functions

worldfileread | maprefcells |maprefpostings | georasterref | worldFileMatrix

Topics

"Spatially Reference Imported Rasters"

Introduced in R2011a

maprefcells

Reference raster cells to map coordinates

Syntax

R = maprefcells()
R = maprefcells(xlimits, y limits, rasterSize)
R = maprefcells(xlimits, ylimits, x cellextent, $y c e l l e x t e n t)$
$R=$ maprefcells(xlimits, y limits, \qquad ,Name, Value)

Description

$\mathrm{R}=$ maprefcells() returns a default referencing object for a regular raster of cells in planar (map) coordinates.
$\mathrm{R}=$ maprefcells(xlimits, y limits, rasterSize) constructs a referencing object for a raster of cells spanning the specified limits in planar coordinates, with the numbers of rows and columns specified by rasterSize.
$R=$ maprefcells(xlimits,ylimits, x cellextent, $y c e l l e x t e n t)$ allows the cell extents to be set precisely. If necessary, maprefcells adjusts the limits of the raster slightly to ensure an integer number of cells in each dimension.

R = maprefcells(xlimits,ylimits, \qquad ,Name, Value) allows the directions of the columns and rows to be specified via name-value pairs.

Examples

Construct Referencing Object with Raster Interpretation of Cells

Define latitude and longitude limits and dimensions of the image. The image follows the popular convention in which world x coordinates increase from column to column and world y coordinates decrease from row to row.

```
xlimits = [207000 208000];
ylimits = [912500 913000];
rasterSize = [1000 2000]
rasterSize = 1×2
1000

Create the referencing object specifying the raster size.
```

R = maprefcells(xlimits,ylimits,rasterSize, ...
'ColumnsStartFrom','north')
R =
MapCellsReference with properties:

```

XWorldLimits: [207000 208000]
YWorldLimits: [912500 913000]
RasterSize: [1000 2000]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
CellExtentInWorldX: 1/2
CellExtentInWorldY: 1/2
RasterExtentInWorldX: 1000
RasterExtentInWorldY: 500
XIntrinsicLimits: [0.5 2000.5]
YIntrinsicLimits: [0.5 1000.5]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

Obtain the same result by specifying the cell extents. For this example, the pixels are \(1 / 2\) meter square, referenced to a planar map coordinate system (the "world" system).
```

extent = 1/2;
R = maprefcells(xlimits,ylimits,extent,extent, ...
'ColumnsStartFrom','north')
R =
MapCellsReference with properties:
XWorldLimits: [207000 208000]
YWorldLimits: [912500 913000]
RasterSize: [1000 2000]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
CellExtentInWorldX: 1/2
CellExtentInWorldY: 1/2
RasterExtentInWorldX: 1000
RasterExtentInWorldY: 500
XIntrinsicLimits: [0.5 2000.5]
YIntrinsicLimits: [0.5 1000.5]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

```

\section*{Input Arguments}

\section*{xlimits - Limits in the \(x\) direction}
[0.5 2.5] (default)|1-by-2 numeric vector
Limits in the \(x\) direction, specified as a 1-by-2 numeric vector. The value of \(x\) limits determines the XWorldLimits property of R.
Example: xlimits = [207000 208000];

\section*{ylimits - Limits in the \(\boldsymbol{y}\) direction}
[0.5 2.5] (default)| 1-by-2 numeric vector
Limits in the \(y\) direction, specified as a 1-by-2 numeric vector. The value of \(y\) limits determines the YWorldLimits property of R.
Example: ylimits = [912500 913000];

\section*{rasterSize - Size of the raster}
[2 2] (default)| 1-by-2 numeric vector
Size of the raster, specified as a 1-by-2 numeric vector.
Example: rasterSize = [180 360];
xcellextent - Width of cells
1 (default) | numeric scalar
Width of cells, specified as a numeric scalar. The value of xcellextent determines the CellExtentInWorldX property of R.
Example: xcellextent \(=1.5\)

\section*{ycellextent - Height of cells}

1 (default) | numeric scalar
Height of cells, specified as a numeric scalar. The value of ycellextent determines the CellExtentInWorldY property of R.
Example: ycellextent = 1.5

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: R = maprefcells(latlim,lonlim, rasterSize,'ColumnsStartFrom','north')

\section*{ColumnsStartFrom - Edge from which column indexing starts}
'south' (default)|'north'
Edge from which column indexing starts, specified as 'north ' or 'south'.
Example: R = maprefcells(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
Data Types: char \| string

\section*{RowsStartFrom - Edge from which row indexing starts}
'west' (default)|'east'
Edge from which column indexing starts, specified as 'west' or 'east'.
Example: R = maprefcells(latlim, lonlim, rasterSize,'RowsStartFrom','east')
Data Types: char|string

\section*{Output Arguments}

\section*{R - Object that references raster cells to map coordinates \\ MapCellsReference raster reference object}

Object that references raster cells to map coordinates, returned as a MapCellsReference raster reference object.

\section*{Tips}
- To construct a map raster reference object from a world file matrix, use the maprasterref function.

\section*{See Also}
maprefpostings|MapCellsReference| georefcells
Introduced in R2015b

\section*{maprefpostings}

Reference raster postings to map coordinates

\section*{Syntax}
\(\mathrm{R}=\) maprefpostings()
\(R=\) maprefpostings(xlimits, \(y\) limits, rasterSize)
\(R=\) maprefpostings(xlimits, ylimits, xspacing, yspacing)
\(R=\) maprefpostings(xlimits,ylimits, \(\qquad\) , Name,Value)

\section*{Description}
\(\mathrm{R}=\) maprefpostings() returns a default referencing object for a raster of regularly posted samples in planar (map) coordinates.
\(\mathrm{R}=\) maprefpostings(xlimits,ylimits, rasterSize) constructs a referencing object for a raster spanning the specified limits in planar coordinates, with the numbers of rows and columns specified by rasterSize.

R = maprefpostings(xlimits,ylimits,xspacing,yspacing) allows the sample spacings to be set precisely. If necessary, maprefpostings adjusts the limits of the raster slightly to ensure an integer number of samples in each dimension.

R = maprefpostings(xlimits,ylimits,__, Name, Value) allows the directions of the columns and rows to be specified via name-value pairs.

\section*{Examples}

\section*{Construct Referencing Object for Grid}

Define latitude and longitude limits and dimension of a grid. The example uses postings separated by \(1 / 2\) meter, referenced to a planar map coordinate system (the "world" system).
```

xlimits = [207000 208000];
ylimits = [912500 913000];
rasterSize = [1001 2001]
rasterSize = 1×2
1 0 0 1
2 0 0 1

```

Create the referencing object specifying the raster size.
```

R = maprefpostings(xlimits,ylimits,rasterSize)
R =
MapPostingsReference with properties:
XWorldLimits: [207000 208000]

```
```

 YWorldLimits: [912500 913000]
 RasterSize: [1001 2001]
 RasterInterpretation: 'postings'
ColumnsStartFrom: 'south'
RowsStartFrom: 'west'
SampleSpacingInWorldX: 1/2
SampleSpacingInWorldY: 1/2
RasterExtentInWorldX: 1000
RasterExtentInWorldY: 500
XIntrinsicLimits: [1 2001]
YIntrinsicLimits: [1 1001]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

```

Obtain the same result by specifying the sample spacing.
```

spacing = 1/2;
R = maprefpostings(xlimits,ylimits,spacing,spacing)
R =
MapPostingsReference with properties:
XWorldLimits: [207000 208000]
YWorldLimits: [912500 913000]
RasterSize: [1001 2001]
RasterInterpretation: 'postings'
ColumnsStartFrom: 'south'
RowsStartFrom: 'west'
SampleSpacingInWorldX: 1/2
SampleSpacingInWorldY: 1/2
RasterExtentInWorldX: 1000
RasterExtentInWorldY: 500
XIntrinsicLimits: [1 2001]
YIntrinsicLimits: [1 1001]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

```

\section*{Input Arguments}

\section*{xlimits - Limits in the \(x\) direction}
[0.5 2.5] (default)| 1-by-2 numeric vector
Limits in the \(x\) direction, specified as a 1-by-2 numeric vector. The value of \(x\) limits determines the XWorldLimits property of R.

Example: xlimits = [207000 208000];
ylimits - Limits in the \(\boldsymbol{y}\) direction
[0.5 2.5] (default)| 1-by-2 numeric vector

Limits in the \(y\) direction, specified as a 1-by-2 numeric vector. The value of ylimits determines the YWorldLimits property of R.

Example: ylimits = [912500 913000];
rasterSize - Size of the raster
[2 2] (default) | 1-by-2 numeric vector
Size of the raster, specified as a 1-by-2 numeric vector.
Example: rasterSize = [180 360];

\section*{xspacing - Horizontal spacing of posting}

1 (default) | numeric scalar
Horizontal spacing of posting, specified as a numeric scalar. The value of xspacing determines the SampleSpacingInWorldX property of R.
Example: xspacing = 1.5

\section*{yspacing - Vertical spacing of postings}

1 (default) | numeric scalar
Vertical spacing of postings, specified as a numeric scalar. The value of yspacing determines the SampleSpacingInWorldY property of R.
Example: yspacing = 1.5

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
```

Example: R =
maprefpostings(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')

```

\section*{ColumnsStartFrom - Edge from which column indexing starts}
```

'south' (default)|'north'

```

Edge from which column indexing starts, specified as 'north' or 'south'.
Example: R =
maprefpostings(latlim,lonlim, rasterSize,'ColumnsStartFrom','north')
Data Types: char | string

\section*{RowsStartFrom - Edge from which row indexing starts \\ 'west' (default)|'east'}

Edge from which row indexing starts, specified as 'east' or 'west'.
Example: R = maprefpostings(latlim,lonlim,rasterSize,'RowsStartFrom','east')
Data Types: char | string

\section*{Output Arguments}

\section*{R - Object that references raster postings to map coordinates \\ MapPostingsReference raster reference object}

Object that references raster postings to map coordinates, returned as a MapPostingsReference raster reference object.

\section*{Tips}
- To construct a map raster reference object from a world file matrix, use the maprasterref function.

\author{
See Also \\ maprefcells|MapPostingsReference | georefpostings \\ Introduced in R2015b
}

\section*{mapresize}

Resize projected raster

\section*{Syntax}
[ \(B, R B]=\) mapresize( \(A, R A\), scale \()\)
\([B, R B]=\) mapresize( ___ , method)
[B,RB] = mapresize(__, 'Antialiasing',TF)

\section*{Description}
\([B, R B]=\) mapresize \((A, R A, s c a l e)\) returns a raster \(B\) that is scale times the size of raster \(A\). \(R A\) is a raster reference object that specifies the location and extent of data in A. mapresize returns the raster reference object RB that is associated with the returned raster B. By default, mapresize uses cubic interpolation.
\([B, R B]=\) mapresize( ___ , method) returns a resized raster where method specifies the interpolation method.
\([B, R B]=\) mapresize( __ ,'Antialiasing',TF) specifies whether to perform antialiasing when shrinking a raster. When true, mapresize performs antialiasing. The default value depends on the type of interpolation specified. For nearest-neighbor interpolation, the default value is false. For all other interpolation methods, the default is true.

\section*{Examples}

\section*{Resize Projected Raster}

Import a sample projected raster and map cells reference object.
```

[Z,R] = readgeoraster('map_sample.tif');

```

Resize the raster using mapresize. Double the length and width of the raster by specifying the scale as 2 . Use nearest neighbor interpolation by specifying the interpolation method as 'nearest'.
```

[Z2,R2] = mapresize(Z,R,2,'nearest');

```

Verify the raster has been resized by comparing the size of the original raster with the size of the updated raster.
```

R.RasterSize

```
ans \(=1 \times 2\)
    \(2 \quad 2\)

R2.RasterSize
ans \(=1 \times 2\)

If the rasters are small, you can compare them directly.

Z
\(Z=2 \times 2\)
\(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\)

Z2
\(Z 2=4 \times 4\)
\begin{tabular}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2 \\
3 & 3 & 4 & 4 \\
3 & 3 & 4 & 4
\end{tabular}

\section*{Resize Projected Raster Data Set}

Read a projected raster data set and map cells reference object into the workspace.
[boston,R] = readgeoraster('boston.tif');
Display the raster with mapshow.
mapshow(boston,R)


Resize the projected raster data set. For this example, reduce the raster to one sixteenth of the original size.
```

[resizedBoston,resizedR] = mapresize(boston,R,1/16);

```

Display the resized raster. Note that mapshow preserves the original limits of the map in the display so that, at first glance, the resized raster appears to be the same size as the original. A closer look reveals that the size of pixels in the resized raster are larger than the pixels in the original.
```

figure
mapshow(resizedBoston,resizedR)

```


\section*{Input Arguments}

\section*{A - Raster to be resized}
numeric or logical array
Raster to be resized, specified as a numeric or logical array. If A has more than two dimensions, mapresize only resizes the first two dimensions.
Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64 | logical

\section*{RA - Information about location and extent of raster}
map raster reference object
Information about location and extent of raster, specified as a map raster reference object. To convert a raster matrix into a map raster reference object, use the refmatToMapRasterReference function.

\section*{scale - Amount of resizing}
numeric scalar
Amount of resizing, specified as numeric scalar. If scale is in the range [0 1], \(B\) is smaller than \(A\). If scale is greater than \(1, B\) is larger than \(A\).
Example: 0.5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64

\section*{method - Interpolation method}
cubic (default)|'nearest' | 'bilinear'
Interpolation method, specified as one of the following values.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 'nearest' & Nearest-neighbor interpolation \\
\hline 'bilinear' & Bilinear interpolation \\
\hline 'cubic' & Cubic interpolation \\
\hline
\end{tabular}

Data Types: char|string

\section*{Output Arguments}

\section*{B - Resized raster}
numeric or logical array
Resized raster, returned as a numeric or logical array.

\section*{RB - Information about location and extent of raster}
map raster reference object
Information about location and extent of raster, returned as a map raster reference object.

\section*{Tips}
- Use mapresize with raster data in \(x\) - and \(y\)-coordinates. To work with geographic raster data in latitude and longitude coordinates, use georesize.

\section*{See Also}
georesize | maprefcells|mapinterp|maprefpostings

\section*{Introduced in R2019a}

\section*{maps}

List map projections for map axes and map projection structures

\section*{Syntax}
```

strmat = maps('namelist')
strmat = maps('idlist')
stdstr = maps('proj_id_abbrev')

```

\section*{Description}
maps displays in the Command Window a table describing all projections available for use with map axes and map projection structures.
strmat \(=\) maps('namelist') returns the English names for the available projections as a matrix of character vectors.
strmat = maps('idlist') returns the standard projection identifiers for the available projections as a matrix of character vectors.
stdstr = maps('proj_id_abbrev') returns the specific standard projection identification associated with a unique abbreviation.

\section*{Examples}

To show the first five entries of the projections name list,
```

str1 = maps('namelist');
str1(1:5,:)
ans =
Balthasart Cylindrical
Behrmann Cylindrical
Bolshoi Sovietskii Atlas Mira
Braun Perspective Cylindrical
Cassini Cylindrical

```

The corresponding shorthand names are
```

str2 = maps('idlist');
str2(1:5,:)
ans =
balthsrt
behrmann
bsam
braun
cassini

```

These shorthand names can be used, for example, when setting the axesm property MapProjection.
The functions setm and axesm recognize unique abbreviations (truncations) of these names. The maps function can be used to convert such an abbreviation to the standard ID:
```

stdstr = maps('merc')
stdstr =
mercator

```

When the function name alone is used,
\begin{tabular}{lll} 
maps & \\
MapTools Projections & \\
CLASS & NAME & ID STRING \\
Cylindrical & Balthasart Cylindrical & balthsrt \\
Cylindrical & Behrmann Cylindrical & behrmann \\
Cylindrical & Bolshoi Sovietskii Atlas Mira* & bsam \\
Cylindrical & Braun Perspective Cylindrical* & braun \\
Cylindrical & Cassini Cylindrical & cassini \\
Cylindrical & Central Cylindrical* & Ccylin \\
Cylindrical & Equal Area Cylindrical & eqacylin \\
Cylindrical & Equidistant Cylindrical & eqdcylin \\
Cylindrical & Gall Isographic & giso...
\end{tabular}

The actual result contains all defined projections.

\section*{See Also}
axesm| setm

\section*{mapshape}

Planar shape vector

\section*{Description}

A mapshape vector is an object that represents planar vector features with either point, line, or polygon topology. The features consist of \(x\) - and \(y\)-coordinates and associated attributes.

Attributes that vary spatially are termed Vertex properties. These elements of the mapshape vector are coupled such that the length of the \(x\) - and \(y\)-coordinate property values are always equal in length to any additional dynamic Vertex properties.

Attributes that only pertain to the overall feature (point, line, polygon) are termed Feature properties. Feature properties are not linked to the autosizing mechanism of the Vertex properties. Both property types can be added to a mapshape vector after construction using standard dot (.) notation.

To create a planar point, line, or polygon shape for use with a geospatial table, create a mappointshape, maplineshape, or mappolyshape object instead.

\section*{Creation}

\section*{Syntax}
```

s = mapshape()
s = mapshape(x,y)
s = mapshape(x,y,Name,Value)
s = mapshape(structArray)
s = mapshape(x,y,structArray)

```

\section*{Description}
```

s = mapshape() constructs an empty mapshape vector, s, with these default property settings.
s =
0x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: []
Y: []

```

S is always a column vector.
\(\mathrm{s}=\) mapshape \((\mathrm{x}, \mathrm{y})\) constructs a mapshape vector and sets the X and Y property values equal to vectors \(x\) and \(y\).
\(s\) = mapshape ( \(x, y\), Name, Value) constructs a mapshape vector, then adds dynamic properties to the mapshape vector using Name, Value argument pairs. You can specify several name-value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.
\(\mathrm{s}=\) mapshape(structArray) constructs a mapshape vector, assigning the fields of the structure array, structArray, as dynamic properties. Field values in structArray that are not numeric, logical, string scalars, string arrays, character vectors, cell arrays of character vectors, or cell arrays of numeric, logical, or cell array of character vectors values are ignored. You can specify vectors within cell arrays as either row or column vectors.
\(s=\) mapshape ( \(x, y\), structArray) constructs a new mapshape vector, sets the \(X\) and \(Y\) properties equal to vectors \(x\) and \(y\), and sets dynamic properties from the field values of structArray.

\section*{Properties}
mapshape class is a general class that represents a variety of planar features. The class permits features to have more than one vertex and can thus represent lines and polygons in addition to multipoints. For more about the property types in mapshape, see "Collection Properties" on page 11027, "Vertex Properties" on page 1-1027, and "Feature Properties" on page 1-1027.

Dynamic properties are new features and vertices that are added to a mapshape vector. You can attach dynamic Feature and Vertex properties to a mapshape vector during construction with a Name, Value pair or after construction using dot (.) notation after construction. This is similar to adding new fields to a structure. For an example of adding dynamic Feature properties, see "Construct a Mapshape Vector with Dynamic Properties" on page 1-1014.

\section*{Geometry - Shape of all the features in the mapshape vector}

\section*{'line' (default)|'point'|'polygon'}

Shape of all the features in the mapshape vector, specified as 'line', 'point', or 'polygon'. As a Collection Property there can be only one value per object instance and its purpose is purely informational. The three allowable values for Geometry do not change class behavior. The class does not provide validation for line or polygon topologies.
Data Types: char | string

\section*{Metadata - Information for the entire set of features}

\section*{scalar structure}

Information for all the features, specified as a scalar structure. You can add any data type to the structure. As a Collection Property type, only one instance per object is allowed.
- If Metadata is provided as a dynamic property Name in the constructor, and the corresponding Value is a scalar structure, then Value is copied to the Metadata property. Otherwise, an error is issued.
- If a Metadata field is provided by structArray, and both Metadata and structArray are scalar structures, then the Metadata field value is copied to the Metadata property value. If structArray is a scalar but the Metadata field is not a structure, then an error is issued. If structArray is not scalar, then the Metadata field is ignored.

\section*{Data Types: struct}

\section*{X - Planar \(\mathbf{x}\)-coordinates}
numeric row or column vector

Planar x-coordinates, specified as a numeric row or column vector, stored as a row vector.
Data Types: double|single

\section*{Y - Planar y-coordinates}
numeric row or column vector
Planar \(y\)-coordinates, specified as a numeric row or column vector, stored as a row vector.
Data Types: double | single

\section*{Object Functions}
\begin{tabular}{ll} 
append & Append features to geographic or planar vector \\
cat & Concatenate geographic or planar vector \\
disp & Display geographic or planar vector \\
fieldnames & Return dynamic property names of geographic or planar vector \\
isempty & Determine if geographic or planar vector is empty \\
isfield & Determine if dynamic property exists in geographic or planar vector \\
isprop & Determine if property exists in geographic or planar vector \\
length & Return number of elements in geographic or planar vector \\
properties & Return property names of geographic or planar vector \\
rmfield & Remove dynamic property from geographic or planar vector \\
rmprop & Remove property from geographic or planar vector \\
size & Return size of geographic or planar vector \\
struct & Convert geographic or planar vector to scalar structure \\
vertcat & Vertically concatenate geographic or planar vectors
\end{tabular}

\section*{Examples}

\section*{Construct a Default Mapshape Vector and Set and Add Properties}

Create default mapshape vector.
```

s = mapshape()
0x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: []
Y: []

```

Set the values of the existing \(X\) and \(Y\) properties and dynamically add the Vertex property \(Z\).
```

s(1).X = 0:45:90;
s(1).Y= [10 10 10];
s(1).Z = [10 20 30]
S =
1x1 mapshape vector with properties:

```
```

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [0 45 90]
Y: [10 10 10]
Z: [10 20 30]

```

\section*{Construct a Mapshape Vector Specifying X and Y Values}

Create a mapshape vector specifying x and y .
```

x = [40, 50, 60];
y = [10, 20, 30];
shape = mapshape(x, y)
shape =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [40 50 60]
Y: [10 20 30]

```

\section*{Construct a Mapshape Vector with Dynamic Properties}

Create mapshape vector specifying a Name-Value pair.
```

x = 1:10;
y = 21:30;
temperature = {61:70};
shape = mapshape(x, y, 'Temperature', temperature)
shape =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [1 2 3 4 5 6 7 8 9 10]
Y: [21 22 23 24 25 26 27 28 29 30]
Temperature: [61 62 63 64 65 66 67 68 69 70]

```

When Value is a cell array containing numeric, logical, or cell array of character vectors, it is designated as a Vertex property. Otherwise the Name-Value pair is designated as being a Feature property.

\section*{Construct a Mapshape Vector from a Structure Array}

Create structure array and then create mapshape vector with array.
```

structArray = shaperead('concord_roads');
shape = mapshape(structArray)

```
shape =
    609x1 mapshape vector with properties:
    Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
    Vertex properties:
        (609 features concatenated with 608 delimiters)
            X: [1x5422 double]
            Y: [1x5422 double]
    Feature properties:
    STREETNAME: \(\{1 \times 609\) cell\}
        RT_NUMBER: \{1x609 cell\}
            CLASS: [1x609 double]
    ADMIN TYPE: [1x609 double]
            LĒNGTH: [1x609 double]

\section*{Construct a Mapshape Vector Using Cell Arrays and Structures to Define Multiple Features and Properties}

Read data from a shapefile into a structure.
```

[structArray, A] = shaperead('concord_hydro_area');
structArray =
98x1 struct array with fields:
Geometry
BoundingBox
X
Y
A =
98x1 struct array with fields:
AREA
PERIMETER

```

Create a mapshape vector specifying the structure.
shape = mapshape(\{structArray.X\}, \{structArray.Y\}, A); shape.Geometry = structArray(1).Geometry
shape =
98x1 mapshape vector with properties:
```

Collection properties:
Geometry: 'polygon'
Metadata: [1x1 struct]
Vertex properties:
(98 features concatenated with 97 delimiters)
X: [1x4902 double]
Y: [1x4902 double]
Feature properties:
AREA: [1x98 double]
PERIMETER: [1x98 double]

```

\section*{Construct a Mapshape Vector and Add a Feature Property}

This example shows how to add a single feature after construction of the mapshape vector using dot (.) notation.

Create a mapshape vector.
```

x = 0:10:100;
y = 0:10:100;
shape = mapshape(x, y)
shape =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]
Y: [0 10 20 30 40 50 60 70 80 90 100]

```

Add a dynamic Feature property.
```

shape.FeatureName = 'My Feature'
shape =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]
Y: [0 10 20 30 40 50 60 70 80 90 100]
Feature properties:
FeatureName: 'My Feature'

```

Add a dynamic Vertex property to the first feature.
```

shape(1).Temperature = [60 61 63 65 66 68 69 70 72 75 80];
shape =

```
```

1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]
Y: [0 10 20 30 40 50 60 70 80 90 100]
Temperature: [60 61 63 65 66 68 69 70 72 75 80]
Feature properties:
FeatureName: 'My Feature

```

\section*{Construct a Mapshape Vector and Manipulate Features}

This extended example adds multiple features that are both Vertex and Feature properties. It also demonstrates property behaviors when vector lengths are either changed or set to [ ].

Create a mapshape vector.
```

x = {1:3, 4:6};
y = {[0 0 0], [l 1 1 1]};
shape = mapshape(x, y)
shape =
2x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)
X: [1 2 3 NaN 4 5 6]
Y: [[0 0 0 NaN 1 1 1 1]

```

Add a two element dynamic Feature property.
```

shape.FeatureName = {'Feature 1', 'Feature 2'}
shape =
2x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)
X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]
Feature properties:
FeatureName: {'Feature 1' 'Feature 2'}

```

Add a dynamic Vertex property.
```

z = {101:103, [115, 114, 110]}
shape.Z = z
z =
[1x3 double] [1x3 double]
shape =
2x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)
X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]
Z: [101 102 103 NaN 115 114 110]
Feature properties:
FeatureName: {'Feature 1' 'Feature 2'}

```

Display the second feature.
```

shape(2)
ans =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: [$$
\begin{array}{lll}{4}&{5}&{6}\end{array}
$$]
Y: [llll
Z: [115 114 110]
Feature properties:
FeatureName: 'Feature 2'

```

Add a third feature. The lengths of all the properties are synchronized.
```

shape(3).X = 5:9
shape =
3x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(3 features concatenated with 2 delimiters)
X: [1 2 3 NaN 4 5 6 NaN 5 6 7 8 9]
Y: [0 0 0 NaN 1 1 1 NaN 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 0 0 0 0 0]
Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

```

Set the values for the \(Z\) vertex property with fewer values than contained in \(X\) or \(Y\). The \(Z\) values expand to match the length of \(X\) and \(Y\).
```

shape(3).Z = 1:3
shape =
3x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(3 features concatenated with 2 delimiters)
X: [1 2 3 NaN 4 5 6 NaN 5 6 7 8 9]
Y: [0 0 0 NaN 1 1 1 NaN 0 0 0 0 0)
Z: [101 102 103 NaN 115 114 110 NaN 1 2 3 0 0]
Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

```

Set the values for either coordinate property ( X or Y ) and all properties shrink in size to match the new vertex length of that feature.
```

shape(3).Y = 1
shape =
3x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(3 features concatenated with 2 delimiters)
X: [1 2 3 NaN 4 5 6 NaN 5]
Y: [0 0 0 NaN 1 1 1 NaN 1]
Z: [101 102 103 NaN 115 114 110 NaN 1]
Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

```

Set the values for the Z vertex property with more values than contained in X or Y . All properties expand in length to match \(Z\).
```

shape(3).Z = 1:6

```
shape =
\(3 \times 1\) mapshape vector with properties:
Collection properties:
            Geometry: 'line'
            Metadata: [1x1 struct]
Vertex properties:
    (3 features concatenated with 2 delimiters)
                            \(\mathrm{X}: ~[123 \mathrm{NaN} 456 \mathrm{NaN} 500000]\)
                            Y: [0 0 0 NaN 111 NaN 1000000\(]\)
                            Z: [101 102103 NaN 115114110 NaN 123486\(]\)
Feature properties:
        FeatureName: \{'Feature 1' 'Feature 2' ''\}

Remove the FeatureName property.
```

shape.FeatureName = []
shape =
3x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(3 features concatenated with 2 delimiters)
X: [1 2 3 NaN 4 5 6 NaN 5 0 0 0 0 0]
Y: [0 0 0 NaN 1 1 1 NaN 1 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 1 2 3 4 5 6]

```

Remove all dynamic properties and set the object to empty.
```

shape.X = []
shape =
0x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
X: []
Y: []

```

\section*{Construct a Mapshape Vector Specifying Several Name-Value Pairs}

This example shows how to include multiple dynamic features during object construction.
Create a mapshape vector specifying several name-value pairs.
```

x = {1:3, 4:6};
y = {[0 0 0], [1 1 1]};
z = {41:43, [56 50 59]};
name = {'Feature 1', 'Feature 2'};
id = [1 2];
shape = mapshape(x, y, 'Z', z, 'Name', name, 'ID', id)
shape =
2x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)
X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]
Z: [41 42 43 NaN 56 50 59]

```
```

Feature properties:
Name: {'Feature 1' 'Feature 2'}
ID: [1 2]

```

\section*{Construct a Mapshape Vector Containing Multiple Features and Indexing Behaviors}

Load the data and create \(\mathrm{x}, \mathrm{y}\), and z arrays. Create a level list to use to bin the z values.
```

seamount = load('seamount');
x = seamount.x; y = seamount.y; z = seamount.z;
levels = [unique(floor(seamount.z/1000)) * 1000; 0];

```

Construct a mapshape object and assign the \(X\) and \(Y\) Vertex properties to the binned \(x\) and \(y\) values. Create a new \(Z\) Vertex property to contain the binned \(z\) values. Add a Levels Feature property to contain the lowest level value per feature.
```

shape = mapshape;
for k = 1:length(levels) - 1
index = z >= levels(k) \& z < levels(k+1);
shape(k).X = x(index);
shape(k).Y = y(index);
shape(k).Z = z(index);
shape(k).Level = levels(k);
end

```

Add a Color Feature property to denote a color for that feature, and specify that the geometry is 'point'
```

shape.Color = {'red', 'green', 'blue', 'cyan', 'black'};
shape.Geometry = 'point'
shape =
5x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
(5 features concatenated with 4 delimiters)
X: [1x298 double]
Y: [1x298 double]
Z: [1x298 double]
Feature properties:
Level: [-5000 -4000 -3000 -2000 -1000]
Color: {'red' 'green' 'blue' 'cyan' 'black'}

```

Add metadata information. Metadata is a scalar structure containing information for the entire set of properties. Any type of data may be added to the structure.
```

shape.Metadata.Caption = seamount.caption;
shape.Metadata
ans =
Caption: [1x229 char]

```

Display the point data in 2-D.
```

figure
for k=1:length(shape)
mapshow(shape(k).X, shape(k).Y, ...
'MarkerEdgeColor', shape(k).Color, ...
'Marker', 'o', ...
'DisplayType', shape.Geometry)
end
legend(num2str(shape.Level'))

```


Display data as a 3-D scatter plot.
figure
scatter3(shape.X, shape.Y, shape.Z)


\section*{Construct a Mapshape Vector and Add Metadata and Indexing}

This example shows how to use selective indexing behavior of a mapshape vector, and how to add a Metadata property.

Construct a mapshape vector from a structure array
filename = 'concord_roads.shp';
S = shaperead(filename);
shape = mapshape(S)
shape =
```

 609x1 mapshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (609 features concatenated with 608 delimiters)
 X: [1x5422 double]
 Y: [1x5422 double]
 Feature properties:
 STREETNAME: {1x609 cell}
 RT_NUMBER: {1x609 cell}
 CLASS: [1x609 double]
    ```
```

ADMIN_TYPE: [1x609 double]
LENGTH: [1x609 double]

```

Add a Filename field to the Metadata structure and then construct a new mapshape object with only CLASS 4 (major road) designation.
```

shape.Metadata.Filename = filename;
class4 = shape(shape.CLASS == 4)
class4 =
26x1 mapshape vector with properties:
Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]
Vertex properties:
(26 features concatenated with 25 delimiters)
X: [1x171 double]
Y: [1x171 double]
Feature properties:
STREETNAME: {1x26 cell}
RT_NUMBER: {1x26 cell}
CLASS: [4 4]
ADMIN_TYPE: [0 0]
LENGTH: [1x26 double]

```

\section*{Construct a Mapshape Vector and Sort the Dynamic Properties}

This example show how features can be sorted by using the indexing behavior of the mapshape class.
You can create a new mapshape vector that contains a subset of dynamic properties by adding the name of a property or a cell array of property names to the last index in the () operator.

Read data from file directly in mapshape constructor.
```

shape = mapshape(shaperead('tsunamis'))
shape =
162x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
(162 features concatenated with 161 delimiters)
X: [1x323 double]
Y: [1x323 double]
Feature properties:
Cause: {1x162 cell}
Cause Code: [1x162 double]
Country: {1x162 cell}
Day: [1x162 double]
Desc Deaths: [1x162 double]
Eq_Mag: [1x162 double]

```
```

 Hour: [1x162 double]
 Iida_Mag: [1x162 double]
 Intensity: [1\times162 double]
 Location: {1x162 cell}
 Max_Height: [1x162 double]
Minute: [1x162 double]
Month: [1\times162 double]
Num_Deaths: [1x162 double]
Second: [1x162 double]
Val_Code: [1x162 double]
Validity: {1x162 cell}
Year: [1x162 double]

```

\section*{Alphabetize the Feature properties.}
```

shape = shape(:, sort(fieldnames(shape)))
shape =
162x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
(162 features concatenated with 161 delimiters)
X: [1x323 double]
Y: [1x323 double]
Feature properties:
Cause: {1x162 cell}
Cause_Code: [1x162 double]
Country: {1x162 cell}
Day: [1x162 double]
Desc Deaths: [1x162 double]
Eq_Mag: [1x162 double]
Hour: [1x162 double]
Iida Mag: [1x162 double]
Intensity: [1x162 double]
Location: {1x162 cell}
Max Height: [1x162 double]
Minute: [1x162 double]
Month: [1x162 double]
Num Deaths: [1x162 double]
Second: [1\times162 double]
Val Code: [1x162 double]
Validity: {1x162 cell}
Year: [1x162 double]

```

Modify the mapshape vector to contain only the specified dynamic properties.
```

shape = shape(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})
shape =
162x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

```
```

Vertex properties:
(162 features concatenated with 161 delimiters)
X: [1\times323 double]
Y: [1x323 double]
Feature properties:
Year: [1x162 double]
Month: [1x162 double]
Day: [1x162 double]
Hour: [1x162 double]
Minute: [1\times162 double]

```

Create a new mapshape vector in which each feature contains the points for the same year. Copy the data from a mappoint vector to ensure that NaN feature separators are not included. Create a subsection of data to include only Year and Country dynamic properties.
```

points = mappoint(shaperead('tsunamis'));
points = points(:, {'Year', 'Country'});
years = unique(points.Year);
multipoint = mapshape();
multipoint.Geometry = 'point';
for k = 1:length(years)
index = points.Year == years(k);
multipoint(k).X = points(index).X;
multipoint(k).Y = points(index).Y;
multipoint(k).Year = years(k);
multipoint(k).Country = points(index).Country;
end
multipoint % Display
multipoint =
53x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
(53 features concatenated with 52 delimiters)
X: [1x214 double]
Y: [1x214 double]
Country: {1\times214 cell}
Feature properties:
Year: [1x53 double]

```

Display the third from the end feature.
```

multipoint(end-3)
ans =
1x1 mapshape vector with properties:
Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Vertex properties:
X: [3.6340 -62.1800 143.9100]
Y: [36.9640 16.7220 41.8150]

```

Country: \{'ALGERIA' 'MONTSERRAT' 'JAPAN'\}
Feature properties:
Year: 2003

\section*{More About}

\section*{Collection Properties}

Collection properties contain only one value per class instance. In contrast, the Feature and Vertex property types have attribute values associated with each feature or with each vertex in a set that defines a feature. Geometry and Metadata are the only two Collection properties.

\section*{Vertex Properties}

Vertex properties provide a scalar number or a character vector for each vertex in a mapshape object. Vertex properties are suitable for attributes that vary spatially from point to point (vertex to vertex) along a line. Examples of such spatially varying attributes could be elevation, speed, temperature, or time. \(X\) and \(Y\) are Vertex properties since they contain a scalar number for each vertex in a mapshape vector.

Attribute values are associated with each vertex during construction or by using dot notation after construction. This process is similar to adding dynamic fields to a structure. Dynamic Vertex property values of an individual feature match its \(X\) and \(Y\) values in length.

\section*{Feature Properties}

Feature properties provide one value (a scalar number, string scalar, or a character vector) for each feature in a mapshape vector. They are suitable for properties, such as name, owner, serial number, or age, that describe a given feature (an element of a mapshape vector) as a whole. Like Vertex properties, Feature properties can be added during construction or by using dot notation after construction.

\section*{Tips}
- The mapshape function separates features using NaN values. If you display a feature by using a scalar to index into the mapshape vector, such as s(1), then NaN values that separate the features do not display.
- If \(X, Y\), or a dynamic property is set with more values than features in the mapshape vector, then all other properties expand in size using 0 for numeric values and an empty character vector (' ' ) for cell values.
- If a dynamic property is set with fewer values than the number of features, then this dynamic property expands to match the size of the other properties.
- If the \(X\) or \(Y\) property of the mapshape vector is set with fewer values than contained in the object, then all other properties shrink in size.
- If either X or Y is set to [ ], then both coordinate properties are set to [ ] and all dynamic properties are removed.
- If a dynamic property is set to [ ], then it is removed from the object.
- The mapshape vector can be indexed like any MATLAB vector. You can access any element of the vector to obtain a specific feature. The following example demonstrates this behavior:
"Construct a Mapshape Vector Containing Multiple Features and Indexing Behaviors" on page 11021

This example builds a mapshape vector from a structure array; adds a Metadata property and demonstrates selective indexing behavior. "Construct a Mapshape Vector and Add Metadata and Indexing" on page 1-1023
"Construct a Mapshape Vector and Sort the Dynamic Properties" on page 1-1024

\section*{See Also}

\section*{Functions}
gpxread | shaperead

\section*{Objects}
geopoint | geoshape | mappoint

\section*{Topics}
"Create and Display Polygons"
Introduced in R2012a

\section*{mapshow}

Display map data without projection

\section*{Syntax}
```

mapshow(x,y)
mapshow(S)
mapshow(x,y,z)
mapshow(Z,R)
mapshow(x,y,I)
mapshow(x,y,X,cmap)
mapshow(I,R)
mapshow(X,cmap,R)
mapshow(filename)
mapshow(___,Name,Value)
mapshow(ax,
_)
h = mapshow(___)

```

\section*{Description}
mapshow ( \(\mathrm{x}, \mathrm{y}\) ) displays the coordinate vectors x and y as lines. You can optionally display the coordinate vectors as points or polygons by using the DisplayType name-value pair argument.
mapshow(S) displays the vector geographic features stored in S as points, multipoints, lines, multilines, polygons, or multipolygons according to the geometry of S .

You can optionally specify symbolization rules using the SymbolSpec name-value pair argument.
mapshow ( \(x, y, Z\) ) displays a geolocated data grid, \(Z\). You can optionally display the data as a surface, mesh, texture map, or contour by using the DisplayType name-value pair argument.
mapshow ( \(Z, R\) ) displays a regular data grid, \(Z\), with referencing object \(R\). You can optionally display the data as a surface, mesh, texture map, or contour by using the DisplayType name-value pair argument. If DisplayType is 'texturemap', then mapshow displays the image as a texture map on a zero-elevation surface (by setting ZData values to 0 ).
mapshow ( \(x, y, I\) ) and
mapshow ( \(\mathrm{x}, \mathrm{y}, \mathrm{X}, \mathrm{cmap}\) ) display a geolocated image as a texture map on a zero-elevation surface. The geolocated image can be a truecolor, grayscale, or binary image, I , or an indexed image X with colormap cmap. x and y are geolocation arrays in map coordinates. Examples of geolocated images include a color composite from a satellite swath or an image originally referenced to a different coordinate system.
mapshow(I,R) and
mapshow ( \(\mathrm{X}, \mathrm{cmap}, \mathrm{R}\) ) display an image georeferenced to map coordinates through the referencing object R. The mapshow function constructs an image object if the display geometry permits.

Otherwise, mapshow displays the image as a texture map on a zero-elevation surface (by setting ZData values to 0 ).
mapshow(filename) displays data from the file specified according to the type of file format.
mapshow( \(\qquad\) ,Name, Value) modifies the displayed map by using name-value pair arguments to set the DisplayType and SymbolSpec parameters. You can also use name-value pairs to set any MATLAB graphics properties. Parameter names can be abbreviated, and case does not matter.
mapshow(ax, \(\qquad\) ) sets the parent axes to ax.
h = mapshow( \(\qquad\) ) returns a handle to a MATLAB graphics object.

\section*{Examples}

\section*{Overlay Vector on Orthophoto}

Overlay Boston roads on an orthophoto. Note that mapshow draws a new layer in the axes rather than replacing its contents.

Display image.
figure
mapshow boston.tif
axis image off manual


Convert Boston roads to units of survey feet and overlay on orthophoto.
```

S = shaperead('boston roads.shp');
surveyFeetPerMeter = unitsratio('sf','meter');
x = surveyFeetPerMeter * [S.X];
y = surveyFeetPerMeter * [S.Y];
mapshow(x,y)

```


\section*{Display Vector Data Customizing Line Style}

Import a shapefile containing a network of road segments in Concord, MA as a geospatial table. Display the road segments using dotted lines.
```

roads = readgeotable("boston_roads.shp");
figure
mapshow(roads,"LineStyle",":")

```


\section*{Display Vector Data Using Symbol Specification}

Create a symbol specification to distinguish between different types of roads. For example, you can hide very minor roads (CLASS=6) by turning off their visibility and make major roads (CLASS=1-4) more visible by increasing their line widths. This symbol specification also uses color to distinguish between types of roads.
```

roadspec = makesymbolspec('Line',...
{'ADMIN_TYPE',0,'Color','cyan'}, ...
{'ADMIN_TYPE',3,'Color','red'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

```

Display the vector data using the symbol specification.
```

figure
mapshow('boston_roads.shp','SymbolSpec',roadspec);

```


\section*{Override Default Properties of the Line}

Create a symbol specification and specify the default color used for lines. As seen in the previous example, the default is blue. This example sets the default to black.
```

roadspec = makesymbolspec('Line',...
{'Default', 'Color', 'black'}, ...
{'ADMIN_TYPE',0,'Color','c'}, ...
{'ADMIN_TYPE',3,'Color','r'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

```

Display the vector data, using the symbol specification. Note how the major roads displayed in blue in the previous example are now black.
```

figure
mapshow('boston_roads.shp','SymbolSpec',roadspec);

```


\section*{Override Symbol Specification on Command Line}

Create a symbol specification, setting various properties.
roadspec \(=\) makesymbolspec('Line',. .
\{'Default', 'Color', 'yellow'\}, ...
\{'ADMIN_TYPE',0,'Color','c'\}, ...
\{'ADMIN-TYPE', 3,'Color','r'\},...
\{'CLASS', 6, 'Visible','off'\},...
\{'CLASS',[1 4],'LineWidth',2\});
Display the vector data, specifying the color on the command line.
figure
mapshow('boston_roads.shp', 'Color', 'black', 'SymbolSpec', roadspec);


\section*{Display Polygon Over Orthophoto}

Import an orthophoto of Concord, MA, along with a map cells reference object and a colormap. Display the orthophoto using the mapshow function.
```

[ortho,R,cmap] = readgeoraster("concord_ortho_w.tif");
mapshow(ortho,cmap,R)

```


Import and display a polygon representing a pond in the middle of the orthophoto.
Import a shapefile containing hydrographic data for Concord as a geospatial table. Create a subtable that contains the 14th row of the table, which is the row containing the pond. Verify that the subtable contains polygon data by querying the Shape variable of the table.
```

hydro = readgeotable("concord hydro area.shp");
pond = hydro(14,:);
pond.Shape
ans =
mappolyshape with properties:
NumRegions: 1
NumHoles: 3
Geometry: "polygon"
CoordinateSystemType: "planar"
ProjectedCRS: [1x1 projcrs]

```

Display the polygon over the orthophoto.
```

mapshow(pond,"FaceColor","c")

```


\section*{Display Terrain Data as Mesh, Surface, and 3-D Surface}

Read SDTS terrain data for Mount Washington. Get information such as missing data indicators using georasterinfo. Replace the missing data with NaN values using standardizeMissing.
[Z,R] = readgeoraster('sdts/9129CATD.DDF','OutputType','double');
info = georasterinfo('sdts/9129CATD.DDF');
Z = standardizeMissing(Z,info.MissingDataIndicator);
View the terrain data as a mesh. Apply a colormap appropriate for terrain data using demcmap.
figure
mapshow(Z,R,'DisplayType','mesh');
demcmap(Z)


View the terrain data as a surface.
figure
mapshow(Z,R,'DisplayType','surface'); demcmap(Z)


View the terrain data as a 3-D surface.
view(3);
axis normal


\section*{Display Grid and Contour Lines}

Read the terrain data files for Mount Washington and Mount Dartmouth. To plot the data as a surface using mapshow, the raster must be of type single or double. Specify the data type for the raster using the 'OutputType' name-value pair.
[ZWash,RWash] = readgeoraster('MtWashington-ft.grd','OutputType','double');
[ZDart,RDart] = readgeoraster('MountDartmouth-ft.grd','OutputType','double');
Find missing data using the georasterinfo function. The function returns an object with a MissingDataIndicator property that indicates which value represents missing data. Replace the missing data with NaN values using the standardizeMissing function.
```

infoWash = georasterinfo('MtWashington-ft.grd');
ZWash = standardizeMissing(ZWash,infoWash.MissingDataIndicator);
infoDart = georasterinfo('MountDartmouth-ft.grd');
ZDart = standardizeMissing(ZDart,infoDart.MissingDataIndicator);

```

Display the terrain data under the contour lines and labels by specifying the 'ZData' name-value pair as a matrix of zeros. Apply a colormap appropriate for terrain data using demcmap.
hold on
mapshow(ZWash,RWash, 'DisplayType','surface','ZData', zeros(RWash.RasterSize))
mapshow(ZDart,RDart,'DisplayType','surface','ZData',zeros(RDart.RasterSize)) axis equal demcmap(ZWash)


Overlay black contour lines and labels.
```

mapshow(ZWash,RWash,'DisplayType','contour',...

```
'LineColor','k','ShowText','on');
mapshow(ZDart,RDart,'DisplayType','contour',...
'LineColor','k','ShowText','on');


\section*{Input Arguments}

\section*{\(\mathbf{x}, \mathbf{y}-\mathbf{x}\) - or \(\boldsymbol{y}\)-coordinates}
numeric vector \(\mid M\)-by- \(N\) numeric matrix
\(x\) - or \(y\) coordinates, specified as a numeric vector or an \(M\)-by- \(N\) numeric matrix. x and y must be the same size. If \(x\) and \(y\) are matrices, they represent coordinate arrays or a geolocation array in map coordinates. x and y may contain embedded NaNs to delimit individual lines or polygon parts.

\section*{S - Geographic features}
geospatial table | mappoint vector | mapshape vector | map structure array
Geographic features, specified as one of the following:
- A geospatial table. The Shape variable of the table must contain mappointshape, maplineshape, or mappolyshape objects. The mapshow function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A mappoint vector.
- A mapshape vector.
- A map structure array (mapstruct) with \(X\) and \(Y\) coordinate fields.

The mapshow function assumes the coordinates are map coordinates.

If you specify a geopoint vector, a geoshape vector, or a geographic structure array (geostruct) with Lat and Lon coordinate fields, then the mapshow function projects the coordinates using a Plate Carrée projection and issues a warning. If you specify a geospatial table containing geopointshape, geolineshape, or geopolyshape objects, then the mapshow function throws an error. In these cases, use the geoshow function instead.

\section*{Z - Data grid \\ M-by- \(N\) array}

Data grid, specified as an \(M\)-by- \(N\) array that may contain \(N a N\) values. \(Z\) is either a georeferenced data grid, or a regular data grid associated with a geographic reference R. The size of \(x\) and \(y\) must match the size of \(Z\).

\section*{Data Types: double}

\section*{R - Map reference}
map raster reference object | matrix
Map reference, specified as one of the following. For more information about referencing matrices, see "Georeferenced Raster Data".
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline Map raster reference object & \begin{tabular}{l} 
MapCellsReference or MapPostingsReference or \\
GeographicPostingsReference map raster reference object \\
that relates the subscripts of Z to map coordinates. The \\
RasterSize property must be consistent with the size of the \\
data grid, size(Z). \\
If R is a MapPostingsReference object, then the 'image ' and \\
'texturemap' values of DisplayType are not accepted.
\end{tabular} \\
\hline Matrix & \begin{tabular}{l} 
3-by-2 numeric matrix that transforms raster row and column \\
indices to or from map coordinates according to: \\
{\([x \quad y]=[r o w ~ c o l ~ 1] * R\)}
\end{tabular} \\
\hline
\end{tabular}

\section*{I - Truecolor, grayscale, or binary image}
\(M\)-by- \(N\)-by-3 array | \(M\)-by- \(N\) array
Truecolor, grayscale, or binary image, specified as an \(M\)-by- \(N\)-by- 3 array for truecolor images, or an \(M\)-by- \(N\) array for grayscale or binary images. x and y must be \(M\)-by- \(N\) arrays.

\section*{X - Indexed image}
\(M\)-by- \(N\) array
Indexed image with color map defined by cmap, specified as an \(M\)-by- \(N\) array. x and y must be \(M\)-by\(N\) arrays.

\section*{cmap - Color map}
c-by-3 matrix
Color map of indexed image \(X\), specified as an \(c\)-by- 3 numeric matrix. There are \(c\) colors in the color map, each represented by a red, green, and blue pixel value.

File name, specified as a string scalar or character vector. mapshow automatically sets the DisplayType parameter according to the format of the data.
\begin{tabular}{|l|l|}
\hline Format & DisplayType \\
\hline Shape file & 'point ', 'multipoint ', 'line ', or 'polygon ' \\
\hline GeoTIFF & 'image' \\
\hline TIFF/JPEG/PNG with a world file & 'image ' \\
\hline ARC ASCII GRID & 'surface' (can be overridden) \\
\hline SDTS raster & 'surface ' (can be overridden) \\
\hline
\end{tabular}

Data Types: char \| scalar
ax - Parent axes
axes object
Parent axes, specified as an axes object.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DisplayType','point'

\section*{DisplayType - Display type}
'point'|'multipoint'|'line'|'polygon'|'image'|'surface'|'mesh'|
'texturemap'|'contour'
Type of graphic display for the data, specified as the comma-separated pair consisting of 'DisplayType' and one of the following values.
\begin{tabular}{|l|l|l|}
\hline Data Format & Display Type & Type of Property \\
\hline \multirow{4}{*}{ Vector } & 'point' & line marker \\
\cline { 2 - 3 } & 'multipoint' & line marker \\
\cline { 2 - 3 } & 'line' & line \\
\cline { 2 - 3 } & 'polygon' & patch \\
\hline \multirow{4}{*}{ Image } & 'image' & surface \\
\hline \multirow{4}{*}{} & 'surface' & surface \\
\cline { 2 - 3 } & 'mesh' & surface \\
\cline { 2 - 3 } & 'texturemap ' & surface \\
\cline { 2 - 3 } & 'contour' & contour \\
\hline
\end{tabular}

Valid values of DisplayType depend on the format of the map data. For example, if the map data is a geolocated image or georeferenced image, then the only valid value of DisplayType is 'image'.

Different display types support different map data class types:
\begin{tabular}{|l|l|}
\hline Display Type & Supported Class Types \\
\hline Image & \\
\hline Surface & single and double \\
\hline Texture map & All numeric types and logical \\
\hline
\end{tabular}

\section*{SymbolSpec - Symbolization rules}

\section*{structure}

Symbolization rules to be used for displaying vector data, specified as a symbolSpec structure returned by makesymbolspec. When both SymbolSpec and one or more graphics properties are specified, the graphics properties will override any settings in the symbolSpec structure.

To change the default symbolization rule for a Name, Value pair in the symbolSpec structure, prefix the word 'Default' to the graphics property name.

\section*{Output Arguments}

\section*{h - Parent axes}
handle object | modified patch object
Parent axes, returned as a handle to a MATLAB graphics object or, in the case of polygons, a modified patch object. If a mapstruct or shapefile name is input, mapshow returns the handle to an hggroup object with one child per feature in the mapstruct or shapefile. In the case of a polygon mapstruct or shapefile, each child is a modified patch object; otherwise it is a line object.

\section*{Tips}
- If you do not want mapshow to draw on top of an existing map, create a new figure or subplot before calling it.
- You can use mapshow to display vector data in an axesm figure. However, you should not subsequently change the map projection using setm.
- If you display a polygon, do not set 'EdgeColor' to either 'flat' or 'interp'. This combination may result in a warning.

\section*{See Also}

\section*{Functions}
geoshow | makesymbolspec | shaperead

\section*{Objects}

MapCellsReference | MapPostingsReference

\section*{Topics}
"Create and Display Polygons"
Introduced before R2006a

\section*{maptriml}

Trim lines to latitude-longitude quadrangle

\section*{Syntax}
[lat,lon] = maptriml(lat0,lon0,latlim,lonlim)

\section*{Description}
[lat,lon] = maptriml(lat0,lon0,latlim, lonlim) returns filtered NaN-delimited vector map data sets from which all points lying outside the desired latitude and longitude limits have been discarded. These limits are specified by the two-element vectors latlim and lonlim, which have the form [south-limit north-limit] and [west-limit east-limit], respectively.

\section*{Examples}

\section*{Trim Lines to Region of Interest}

It is not unusual for vector data to extend beyond the geographic region currently of interest. For example, you might have coastline data for the entire world, but are interested in mapping Australia only. In this and other situations, you might want to eliminate unnecessary data from the workspace and from calculations in order to save memory or to speed up processing and display. You can trim line data by simply removing points outside the region of interest by clipping lines at the map frame or to some other defined region. The maptriml function returns variables containing only those points that lie within the defined region.

Load the coastlines MAT-file. This file contains data for the entire world.
```

load coastlines

```

Define a region of interest centered on Australia.
```

latlim = [-50 0];
lonlim = [105 160];

```

Delete all line data outside these limits, producing line vectors, by using the maptriml function.
[linelat,linelon] = maptriml(coastlat,coastlon,latlim,lonlim);
Examine the variables to see how much data has been reduced. The clipped data is only \(10 \%\) as large as the original data set.
whos
\begin{tabular}{lrrlr} 
Name & Size & Bytes & Class & Attributes \\
& & & & \\
coastlat & \(9865 \times 1\) & 78920 & double \\
coastlon & \(9865 \times 1\) & 78920 & double \\
latlim & \(1 \times 2\) & 16 & double \\
linelat & \(977 \times 1\) & 7816 & double
\end{tabular}
linelon
977x1
lonlim
\(1 \times 2\)
7816 double
16 double

Plot the trimmed line data using a Miller projection.
axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', lonlim)
geoshow(linelat,linelon)


\section*{See Also}
mapclip|geoclip|maptrimp|geocrop
Introduced before R2006a

\section*{maptrimp}

Trim polygons to latitude-longitude quadrangle

\section*{Syntax}
[latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim)

\section*{Description}
[latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim) trims the polygons in lat and lon to the quadrangle specified by latlim and lonlim. latlim and lonlim are two-element vectors, defining the latitude and longitude limits respectively. lat and lon must be vectors that represent valid polygons.

\section*{Examples}

\section*{Trim Dataset to Specific Geographic Area}

Read coastline data and display it on a map.
```

load coastlines
figure
mapshow(coastlon,coastlat,'DisplayType','polygon');

```


Trim the dataset.
latlim = [-50 50];
lonlim = [-100 50];
[latTrimmed,lonTrimmed] = maptrimp(coastlat, coastlon, ... latlim, lonlim);

Display the trimmed dataset.
figure
mapshow(lonTrimmed,latTrimmed, 'DisplayType', 'polygon');


\section*{Tips}
maptrimp conditions the longitude limits such that:
- lonlim(2) always exceeds lonlim(1)
- lonlim(2) never exceeds lonlim(1) by more than 360
- lonlim(1) < 180 or lonlim(2) > -180
- Ensure that if the quadrangle span the Greenwich meridian, then that meridian appears at longitude 0.

\section*{See Also}
mapclip|geoclip|maptriml|geocrop
Introduced before R2006a

\section*{maptrims}
(To be removed) Trim regular data grid to latitude-longitude quadrangle

Note maptrims will be removed in a future release. Use the geocrop function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[Z_trimmed] = maptrims(Z,R,latlim,lonlim)
[Z_trimmed] = maptrims(Z,R,latlim,lonlim,cellDensity)
[Z_trimmed, R_trimmed] = maptrims(...)

\section*{Description}
[Z_trimmed] = maptrims(Z,R,latlim,lonlim) trims a regular data grid \(Z\) to the region specified by latlim and lonlim. By default, the output grid \(Z_{\text {_ }}\) trimmed has the same sample size as the input. \(R\) can be a geographic raster reference object, a referencing vector, or a referencing matrix. If \(R\) is a geographic raster reference object, its RasterSize property must be consistent with size(Z) and its RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1 -by- 3 vector with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If \(R\) is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If \(R\) is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. lat lim and lonlim are two-element vectors, defining the latitude and longitude limits, respectively. The latlim vector has the form:
[southern_limit northern_limit]
Likewise, the lonlim vector has the form:
[western_limit eastern_limit]
When an individual value in latlim or lonlim corresponds to a parallel or meridian that runs precisely along cell boundaries, the output grid will extend all the way to that limit. But if a limiting parallel or meridian cuts through a column or row of input cells, then the limit will be adjusted inward. In other words, the requested limits will be truncated as necessary to avoid partial cells.
[Z_trimmed] = maptrims(Z,R,latlim,lonlim,cellDensity) uses the scalar cellDensity to reduce the size of the output. If \(R\) is a referencing vector, then \(R(1)\) must be evenly divisible by cellDensity. If \(R\) is a referencing matrix, then the inverse of each element in the first two rows (containing "deltaLat" and "deltaLon") must be evenly divisible by cellDensity.
[Z_trimmed, R_trimmed] = maptrims(...) returns a referencing vector, matrix, or object for the trimmed data grid. If \(R\) is a referencing vector, then \(R _t r i m m e d\) is a referencing vector. If \(R\) is a referencing matrix, then \(R\) trimmed is a referencing matrix. If \(R\) is a geographic raster reference object, then \(R\) trimmed is either a geographic raster reference object (when \(Z_{-}\)trimmed is nonempty) or [] (when Z_trimmed is empty).

\section*{Examples}

Load elevation raster data and a geographic cells reference object. Then, trim the data to the specified latitude and longitude limits.
```

load topo60c
[subgrid,subR] = maptrims(topo60c,topo60cR,...
[80.25 85.3],[165.2 170.7])
subgrid =
-2826 -2810 -2802 -2793
2915 -2913 -2905 -2884
-3192 -3186 -3165 -3122
-3399 -3324 -3273 -3214
subR =
GeographicCellsReference with properties:
LatitudeLimits: [81 85]
LongitudeLimits: [166 170]
RasterSize: [4 4]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'south'
RowsStartFrom: 'west'
CellExtentInLatitude: 1
CellExtentInLongitude: 1
RasterExtentInLatitude: 4
RasterExtentInLongitude: 4
XIntrinsicLimits: [0.5 4.5]
YIntrinsicLimits: [0.5 4.5]
CoordinateSystemType: 'geographic'
AngleUnit: 'degree'

```

The upper left corner of the grid might differ slightly from that of the requested region. The mapt rims function uses the corner coordinates of the first cell inside the limits.

\section*{Compatibility Considerations}

\section*{maptrims will be removed}

Warns starting in R2022a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the maptrims function. Use a geographic reference object and the geocrop function instead. Reference objects have several advantages over referencing vectors and matrices.
- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- Manipulate the limits of geographic rasters associated with reference objects using the geocrop function.
- Manipulate the size and resolution of geographic rasters associated with reference objects using the georesize function.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, replace instances of the maptrims function with the geocrop function using these patterns.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [ \(\mathrm{B}, \mathrm{RB}]=\) maptrims \((\mathrm{A}, \mathrm{R}, \mathrm{latlim}\), lonlim) ; & [ \(\mathrm{B}, \mathrm{RB}]=\) geocrop( \(\mathrm{A}, \mathrm{R}, \mathrm{latlim}\), lonlim) \\
\hline [ \(\mathrm{B}, \mathrm{RB}\) ] = maptrims \((\mathrm{A}, \mathrm{R}, \mathrm{latlim}\), lonlim, cellden & ```
$Bt,贮\ = geocrop(A,R,latlim,lonlim)
latscale = cellDensity * RB.CellExtentInLati
lonscale = cellDensity * RB.CellExtentInLon
[B,RB] = georesize(B,RB,latscale,lonscale,
``` \\
\hline
\end{tabular}

The limits of the reference object returned by the geocrop function may be larger than the limits returned by the maptrims function.

\section*{See Also}
mapclip|geoclip|maptriml|maptrimp|geocrop

\section*{Introduced before R2006a}

\section*{mapview}
(To be removed) Interactive map viewer

Note The mapview function will be removed in a future release.

\section*{Syntax}
mapview

\section*{Description}
mapview opens the Map Viewer app in an empty state. Use the Map Viewer to view geospatial data in map (\(x-y\)) coordinates. The Map Viewer works with vector, image, and raster data grids in a map coordinate system. You can load data, pan and zoom on the map, control the map scale of your screen display, control the order, visibility, and symbolization of map layers, annotate your map, and click to learn more about individual vector features. mapview complements mapshow and geoshow, which are for constructing maps in ordinary figure windows in a less interactive, script-oriented way.

For usage information, see the following sections.

\section*{Importing Data}

The Map Viewer opens with no data loaded and an empty map display window. The first step is to import a data set. Use the options in the File menu to select data from a file or from the MATLAB workspace:

\section*{Import From File}

Use the file browsing dialog to open a file in one of the following formats: Shapefile, GeoTIFF, SDTS DEM, Arc ASCII Grid, TIFF, JPEG, or PNG with world file. This option imports the data into the viewer but does not add it to your workspace.

To view standard-format geodata files provided with the toolbox, set your working folder or navigate the Map Viewer Open dialog to matlabroot/examples/map/data or matlabroot/toolbox/map/ mapdata.

\section*{Import From Workspace}

Images. Use the Raster Data > Image import dialog to select a Referencing matrix or object name and Raster data name for the image from the list of workspace variables. If the image type is truecolor (RGB), specify which band represents the red, green, and blue intensities. (The RasterInterpretation of the referencing object must be 'cells'.)

Data grids. Use the Raster Data > Grid import dialog to select X and Y geolocation and data grid array names from the list of workspace variables.

Vector data. Use the Vector Data > Map coordinates import dialog to select \(X\) and \(Y\) variables for map coordinates from the list of workspace variables and identify the type of geometry to be
displayed (Point, Line, or Polygon). The X and Y variables can specify multiple line segments or multiple polygons if they contain NaNs at matching locations in the coordinate vectors.

Vector geographic data structure. Use the Vector Data > Geographic data structure import dialog to select the structure that contains vector map data from the list of workspace variables.

Once you import your first data set, the Map Viewer automatically sets the limits of its map display window to the spatial extent of the imported data.

\section*{Working in Map Coordinates}

As you move any of the Map Viewer cursors across the map display area, the coordinate readout in the lower left corners shows you the cursor position in map X and Y coordinates.

The Map Viewer requires that all currently viewed data sets possess the same coordinate system and length units. This is likely to be the case for data sets that originated from a common source. If it is not the case, you will need to adjust coordinates before importing data into the Map Viewer.

If some or all of your data is in geographic coordinates, use proj fwd to project latitudes and longitudes to your desired map coordinate system before you import it. When starting from a different projection, you must first unproject to latitude and longitude using projinv, then reproject with proj fwd. You might also need to adjust the horizontal datum of your data using, for example, the free GEOTRANS (Geographic Translator) application from the Geospatial Sciences Division of the U.S. National Geospatial-Intelligence Agency (NGA). If you simply need a change of units, multiply by the appropriate conversion factor obtained from units ratio.
mapview can also display data in unprojected geographic coordinates, if you consistently substitute longitude for map X and latitude for map Y. Geographic coordinates must be consistently expressed in either degrees or radians (not both at once). When using geographic coordinates, do not specify the viewer's map units (see below); you can only use the Map Viewer's map scale display when working in linear units of length.

\section*{Setting Map Units and Scale}

If you tell the Map Viewer which length unit you are using, it can calculate an approximate map scale for your onscreen display. Set the map units with either the drop-down menu at the bottom of the display or the Set Map Units item in the Tools menu.

The scale computed by the Map Viewer is displayed in the window just above the map units dropdown. To change your display scale while keeping the center of the map display fixed, simply edit this text box.

Make sure to format your text in the standard way (\(1: N\), where \(N\) is a positive number such that a distance on the ground is \(N\) times the same distance on your screen, e.g., 1:24000).

The scale is approximate because it depends on the MATLAB estimate of the size of your screen pixels. It is also approximate if your projection introduces significant distortion. If your data falls in a fairly small area and you use a conformal projection (e.g., UTM with all data in a single zone), the scale will be very consistent across your entire map.

\section*{Navigating Your Map}

By default, the Map Viewer sets the limits of your map window to match the extent of the first data set that you load. You will probably want to adjust this to see some areas in greater detail.

The Map Viewer provides several tools to control the limits of your map window and the map scale of the data display. Some are familiar from standard MATLAB figure windows.
- Zoom in: Drag a box to zoom in on a specific area or click a point to zoom in with that point centered in the map display.
- Zoom out: Click a point to zoom out with that point centered in the map display.
- Pan tool: Click, hold, and drag to reposition the selected point in the display window, while holding the map scale fixed. Release when you are satisfied with new display limits.
- Fit to window: Set the map display to enclose all currently loaded data layers. This is equivalent to selecting Fit to Window in the View menu.
- Back to previous view: Click this button once to return the map scale and display center to their values prior to the most recent zoom, pan, or scale change. Click repeatedly to undo earlier changes. This is equivalent to selecting Previous View in the View menu.

Another way to zoom in or out while keeping the center of the view fixed at the same map coordinates is to directly edit the map scale box at the bottom of the screen.

\section*{Managing Map Layers}

Each time you import a set of vectors, an image, or a data grid into the Map Viewer, the new data is stored in a new map layer. The layers form an ordered stack. Each layer is listed as an item in the Layers menu, with its position in the menu indicating its position in the stack.

When you import a new layer, the Map Viewer automatically places it at the top of the layer stack. To reposition a layer in the stack, select it in the Layers menu, slide right, and select To Top, To Bottom, Move Up, or Move Down from the pop-up submenu.

The vector features or raster in a given layer obscure coincident elements of any underlying layers. To control layers that are obscuring one another, you can also toggle layer visibility on and off. Use the item Visible in the slide-right menu. Or, simply remove a layer from the Map Viewer via the Remove item in the slide-right menu. Remember that even if a layer's visibility is on, the layer does not appear if its contents are located completely outside the current display limits or are obscured by another layer.

\section*{Symbolizing Vector Features}

When point, line, and polygon layers are loaded, the Map Viewer initializes their graphics properties as follows:
\begin{tabular}{|l|l|}
\hline Geometry & Properties \\
\hline Point (line objects) & \begin{tabular}{l}
LineStyle \(=\) 'none \\
Marker = x' \\
MarkerEdgeColor = <randomly generated value> \\
MarkerFaceColor = 'none'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Geometry & Properties \\
\hline Line (line objects) & \begin{tabular}{l}
Color = <randomly generated value> \\
LineStyle = '- \\
Marker = 'none'
\end{tabular} \\
\hline Polygon (patch objects) & \begin{tabular}{l}
EdgeColor = \(\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]\) FaceColor = <randomly generated \\
value>
\end{tabular} \\
\hline
\end{tabular}

To override symbolism defaults for a vector layer, use makesymbolspec to create a symbol specification in the workspace. A symbolspec contains a set of rules for setting vector graphics properties based on the values of feature attributes. For instance, if you have a line layer representing roads of various classes (e.g., major highway, secondary road, etc.), you can create a symbolspec to use a different color, line width, or line style for each road class. See the makesymbolspec help for examples and to learn how to construct a symbolspec. If you regularly work with data sets sharing a common set of feature attributes, you might want to save one or more symbolspecs in a MAT-file (or save calls to makesymbolspec in a MATLAB program file).

Once you have a symbolspec in your workspace, select your vector layer in the Layers menu, then slide right and click Set Symbol Spec, which opens a dialog box. Use the dialog box to select the symbolspec from your workspace.

\section*{Getting Information About Vector Features}

The Datatip tool and the Info tool provide different ways to check the attributes of vector features that you select graphically. Before using either tool you must designate one of your vector layers as active. (The default active layer is the first one that you imported.) Either use the Active Layer dropdown menu at the bottom of your screen or select the layer in the Layers menu, slide right, and select Active. Having a designated active layer ensures that when you click a feature you don't inadvertently select an overlapping feature from a different layer.
- Datatip tool: The Datatip tool displays a feature attribute in a text label each time you click a vector feature. By default the attribute is the first one in the layer's attribute list. To change which attribute is used, select the layer in the Layers menu, slide right, and click Set Layer Attribute. In the dialog that follows, select a different attribute, or Index. If you choose Index, the Map Viewer displays the one-based index value corresponding to a given feature-based on its position in the input file or workspace array. To remove a text label, right-click it and choose Delete datatip from the context menu. Or choose Delete all datatips from the context menu or the Tools menu.
- Info tool: The Info tool opens a separate text window each time you click a vector feature. The window displays all the attribute names and values for that feature, in contrast to the Datatip tool, which displays only the value of a single attribute. If you need to compare two or more features, simply click each one and view the info windows together. Use its close button to close an info window when you're done with it, or choose Close All Info Windows from the Tools menu.

\section*{Annotating Your Map}

Use the text, line, or arrow annotation tools to mark and highlight points of interest on your map, or select the corresponding items in the Insert menu. Use the Select annotations tool and Edit menu to modify or remove your annotations. The Map Viewer manages annotations separately from data layers; annotations always stay on top. Note that annotations cannot be saved as graphic objects, although you can export maps containing annotations to an image format as described below.

\section*{Creating and Using Additional Views}

Use New View on the File menu to create an additional Map Viewer window linked to an existing window. Consider using an additional window when you want to see your map at different scales at the same time (e.g., a detailed view plus an overview), or when you want to simultaneously see different areas of the map at large scale. You can create as many additional windows as you need, and close them when you want. Your mapview session ends when you close the last window.

Options for creating a new viewer window include: Duplicate Current View, Full Extent, Full Extent of Active Layer, and Selected Area. Click and drag with the Select area tool to define a selected area.

A new viewer window differs from existing windows mainly in terms of the visible map extent and scale (it also omits annotations and any labels you added with the datatip tool). You will see the same layers in the same order with the same settings (including the active layer). Updates to layers (insertion/removal, order, visibility, label attribute, and symbolization) in one viewer window are propagated automatically to all the windows with which it is linked. Updates to annotations and datatip labels are not propagated between viewers. If you need two different layer configurations in different windows, launch a second mapview from the command line instead of creating an additional window. The views it contains will not be linked to previous ones.

\section*{Exporting Your Map}

The Map Viewer allows you to export all or part of your map for use in a publication or on a Web page. Use File > Save As Raster Map to export an image of either the current display extent or an area outlined with the Select area tool. Select a format (PNG, TIFF, JPEG) from the drop-down menu in the export dialog. For maps including vector layers, PNG (Portable Network Graphics) is often the best choice. This format provides excellent quality, good compression, and is well supported by modern Web browsers. The export process automatically creates a world file (ending with suffix tf w , jgw, or pgw) as well; the pair of files constitute a georeferenced image that itself can be displayed with mapview, mapshow, and many external GIS packages.

\section*{Limitations}

The Select area tool \({ }^{[-}\)-. is not supported in MATLAB Online. To view a particular region on the map, use the Zoom in, Zoom out, and Pan tools instead.

\section*{See Also}
geoshow | readgeoraster | makesymbolspec|mapshow | shaperead | updategeostruct | worldfileread

\section*{Introduced before R2006a}

\section*{mdistort}

Display contours of constant map distortion

\section*{Syntax}
```

mdistort
mdistort off
mdistort parameter
mdistort(parameter,levels)
mdistort(parameter,levels,gsize)
h = mdistort(...)

```

\section*{Description}
mdistort, with no input arguments, toggles the display of contours of projection-induced distortion on the current map axes. The magnitude of the distortion is reported in percent.
mdistort off removes the contours.
mdistort parameter displays contours of distortion for the specified parameter. Units are in percent deviation (except for angles for which degrees are used).
\begin{tabular}{|l|l|}
\hline Parameter & Value \\
\hline 'area' & \\
\hline 'angles' & maximum angular distortion of right angles \\
\hline 'scale' or 'maxscale' & maximum scale (the default) \\
\hline 'minscale' & minimum scale \\
\hline 'parscale' & scale along the parallels \\
\hline 'merscale' & scale along the meridians \\
\hline 'scaleratio' & ratio of maximum and minimum scale \\
\hline
\end{tabular}
mdistort (parameter, levels) specifies the levels for which the contours are drawn. levels is a vector of values as used by contour. If empty, the default levels are used.
mdistort (parameter, levels,gsize) controls the size of the underlying graticule matrix used to compute the contours. gsize is a two-element vector containing the number of rows and columns. If omitted, the default Mapping Toolbox graticule size of [50 100] is assumed.
\(\mathrm{h}=\) mdistort(...) returns a handle to the contour group object containing the contours and text.

\section*{Background}

Map projections inevitably introduce distortions in the shape and size of objects as they are transformed from three-dimensional spherical coordinates to two-dimensional Cartesian coordinates. The amount and type of distortion vary between projections, over the projection, and with the selection of projection parameters such as standard parallels. This function provides a quantitative graphical display of distortion parameters.
mdistort is not intended for use with UTM. Distortion is minimal within a given UTM zone. mdistort issues a warning if a UTM projection is encountered.

\section*{Examples}

\section*{View Extreme Area Distortion of Mercator Projection}

The extreme area distortion of the Mercator projection. This makes it ill-suited for global displays.
figure
axesm mercator
load coastlines
framem;
plotm(coastlat, coastlon,'color',.5*[11 1])
mdistort('area', [1 30100200500 1000])

\section*{View Lines of Zero Distortion for Bonne Projection}

The lines of zero distortion for the Bonne projection follow the central meridian and the standard parallel.
figure
axesm bonne
load coastlines
framem;
plotm(coastlat,coastlon,'color',.5*[11 1 1 1])
mdistort('angles', 0:15:90)
parallelui

\section*{View Distortion of Conic Projection with Properly Chosen Parallels}

An equidistant conic projection with properly chosen parallels can map the conterminous United States with less than 1.5\% distortion.
figure
usamap conus
load conus
patchm(uslat, uslon, [1 0.7 0])
plotm(statelat, statelon)
patchm(gtlakelat, gtlakelon, 'cyan')
framem off; gridm off; mlabel off; plabel off
mdistort('parscale', -2:.5:2)
parallelui

\section*{View Contours of Scale Ratios}

Create a Hammer projection map axes in normal aspect and plot a graticule and frame. Load the coast data set and plot it as gray patches.
```

figure
axesm('MapProjection','hammer','Grid','on','Frame','on')
load coastlines
patchm(coastlat,coastlon,'FaceColor',[0.95 0.95 0.95])

```

Plot contours of minimum-to-maximum scale ratios by using the mdistort function. Notice that the region of minimum distortion is centered around \((0,0)\).
mdistort('scaleratio')

Repeat this diagram with a Bonne projection in a new figure window. Notice that the region of minimum distortion is centered around \((30,0)\) which is where the single standard parallel is.
```

figure
axesm('MapProjection','bonne','Grid','on','Frame','on')
patchm(coastlat,coastlon,'FaceColor',[0.95 0.95 0.95])
mdistort('scaleratio')

```


\section*{Tips}
mdistort can help in the placement of standard parallels for projections. Standard parallels are generally placed to minimize distortion over the region of interest. The default parallel locations might not be appropriate for maps of smaller regions. By using mdistort and parallelui, you can immediately see how the movement of parallels reduces distortion.

\section*{See Also}
tissot|distortcalc|vfwdtran

\section*{meanm}

Mean location of geographic coordinates

\section*{Syntax}
[latmean,lonmean] = meanm(lat,lon)
[latmean,lonmean] = meanm(lat,lon,units)
[latmean,lonmean] = meanm(lat,lon,ellipsoid)

\section*{Description}
[latmean,lonmean] = meanm(lat,lon) returns row vectors of the geographic mean positions of the columns of the input latitude and longitude points.
[latmean, lonmean] = meanm(lat,lon, units) indicates the angular units of the data. The default angle unit is 'degrees'.
[latmean,lonmean] = meanm(lat,lon,ellipsoid) specifies the shape of the Earth using ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The default ellipsoid model is a spherical Earth, which is sufficient for most applications.

If a single output argument is used, then geomeans = [latmean,longmean]. This is particularly useful if the original lat and lon inputs are column vectors.

\section*{Background}

Finding the mean position of geographic points is more complicated than simply averaging the latitudes and longitudes. meanm determines mean position through three-dimensional vector addition. See "Geographic Statistics for Point Locations on a Sphere" in the Mapping Toolbox User's Guide.

\section*{Examples}

\section*{Find Mean Position of Geographic Points}

Create some random latitudes.
```

rng(0,'twister')
lats = rand(3)
lats = 3\times3
0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

```

Create some random longitudes.
```

lons = rand(3)

```
```

lons = 3\times3
0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

```

Calculate the mean positions of the input geographic positions.
```

[latmean,lonmean] = meanm(lats,lons,'radians');

```
[latmean,lonmean]
```

ans = 1\times6

```
\begin{tabular}{llllll}
0.6519 & 0.5581 & 0.6146 & 0.7587 & 0.7351 & 0.4250
\end{tabular}

\section*{See Also}
filterm|hista|histr|stdist|stdm

\section*{meridianarc}

Ellipsoidal distance along meridian

\section*{Syntax}
s = meridianarc(phi1,phi2,ellipsoid)

\section*{Description}
\(\mathrm{s}=\) meridianarc(phi1,phi2,ellipsoid) calculates the (signed) distance s between latitudes phil and phi2 along a meridian on the ellipsoid defined by ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. Latitudes phil and phi2 are in radians. The distance s has the same units as the semimajor axis of the ellipsoid. If phi2 is less than phil, s is negative.

\section*{See Also}
meridianfwd

Introduced in R2007a

\section*{meridianfwd}

Reckon position along meridian

\section*{Syntax}
phi2 \(=\) meridianfwd(phi1,s,ellipsoid)

\section*{Description}
phi2 \(=\) meridianfwd(phi1,s,ellipsoid) determines the geodetic latitude phi2 reached by starting at geodetic latitude phil and traveling distance s north (positive s) or south (negative s) along a meridian on the specified ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. Latitudes phil and phi2 are in radians, and \(s\) has the same units as the semimajor axis of the ellipsoid.

\section*{See Also}
meridianarc

Introduced in R2007a

\section*{meshgrat}
(To be removed) Construct map graticule for surface object display

Note The meshgrat function will be removed in a future release. Use the geographicGrid, linspace, or ndgrid function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[lat, lon] = meshgrat(Z, R)
[lat, lon] = meshgrat(Z, R, gratsize)
[lat, lon] = meshgrat(lat, lon)
[lat, lon] = meshgrat(latlim, lonlim, gratsize)
[lat, lon] = meshgrat(lat, lon, angleunits)
[lat, lon] = meshgrat(latlim, lonlim, angleunits)
[lat, lon] = meshgrat(latlim, lonlim, gratsize, angleunits)

\section*{Description}
[lat, lon] = meshgrat (\(\mathrm{Z}, \mathrm{R}\)) constructs a graticule for use in displaying a regular data grid, Z . In typical usage, a latitude-longitude graticule is projected, and the grid is warped to the graticule using MATLAB graphics functions. In this two-argument calling form, the graticule size is equal to the size of \(Z\). R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If \(R\) is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If \(R\) is a referencing vector, it must be 1-by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If \(R\) is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] \(=[\) row col 1] * R
If \(R\) is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.
[lat, lon] = meshgrat(Z, R, gratsize) produces a graticule of size gratsize. gratsize is a two-element vector of the form [number_of_parallels number_of_meridians]. If gratsize \(=[]\), then the graticule returned has the default size 50-by-100. (But if gratsize is omitted, a graticule of the same size as \(Z\) is returned.) A finer graticule uses larger arrays and takes more memory and time but produces a higher fidelity map.
[lat, lon] = meshgrat(lat, lon) takes the vectors lat and lon and returns graticule arrays of size numel (lat)-by-numel (lon). In this form, meshgrat is similar to the MATLAB function meshgrid.
[lat, lon] = meshgrat(latlim, lonlim, gratsize) returns a graticule mesh of size gratsize that covers the geographic limits defined by the two-element vectors latlim and lonlim.
[lat, lon] = meshgrat(lat, lon, angleunits), [lat, lon] = meshgrat(latlim, lonlim, angleunits), and [lat, lon] = meshgrat(latlim, lonlim, gratsize, angleunits) where angleunits can be either 'degrees' (the default) or 'radians'.

The graticule mesh is a grid of points that are projected on a map axes and to which surface map objects are warped. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticules in the longitudinal direction, while complex curve-generating projections require more.

\section*{Examples}

Make a (coarse) graticule for the entire world:
```

latlim = [-90 90];
lonlim = [-180 180];
[lat,lon] = meshgrat(latlim,lonlim,[3 6])
lat =

-90.0000	-90.0000	-90.0000	-90.0000	-90.0000	-90.0000
0	0	0	0	0	0
90.0000	90.0000	90.0000	90.0000	90.0000	90.0000

lon =

-180.0000	-108.0000	-36.0000	36.0000	108.0000	180.0000
-180.0000	-108.0000	-36.0000	36.0000	108.0000	180.0000
-180.0000	-108.0000	-36.0000	36.0000	108.0000	180.0000

```

These paired coordinates are the graticule vertices, which are projected according to the requirements of the desired map projection. Then data such as the elevation data in topo60c can be warped to the grid.

\section*{Compatibility Considerations}

\section*{meshgrat will be removed}

Not recommended starting in R2021a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the meshgrat function. Depending on the meshgrat function syntax, use the geographicGrid, linspace, or ndgrid function instead.
- If your code uses the meshgrat function and a referencing vector or referencing matrix, replace the code by using a geographic raster reference object and the geographicGrid function.
Reference objects have several advantages over referencing vectors and matrices.
- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors or matrices as inputs also accept reference objects.

Create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the
refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.
Replace uses of the meshgrat function with the geographicGrid function according to these patterns.
\begin{tabular}{|l|l|}
\hline Will Be Removed & Recommended \\
\hline\([\) lat,lon \(]=\) meshgrat \((A, R) ;\) & {\([\) lat,lon] = geographicGrid(R); } \\
\hline\([\) lat,lon \(]=\) meshgrat \((A, R\), gratsize \() ;\) & \begin{tabular}{l}
\(\mathrm{Rg}=\mathrm{R} ;\) \\
\(\mathrm{Rg} . \operatorname{RasterSize~=~gratsize;~}\) \\
{\([\) lat,lon]= geographicGrid(Rg) ; }
\end{tabular} \\
\hline
\end{tabular}
- If your code uses the meshgrat function and latitude and longitude vectors, replace the code by using the ndgrid function.
\begin{tabular}{|l|l|}
\hline Will Be Removed & Recommended \\
\hline\([\) lat, lon] \(=\) meshgrat (lat,lon); & {\([\) lat,lon \(]=\) ndgrid(lat,lon); } \\
\hline
\end{tabular}
- If your code uses the meshgrat function, latitude and longitude limits, and a graticule size, replace the code by using the linspace and ndgrid functions.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [lat,lon] = meshgrat(latlim,lonlim,grats] & \[
\begin{aligned}
& \text { llad) } ;=\text { linspace(latlim(1), latlim(2), gratsize(1)); } \\
& \text { lonv = linspace(lonlim(1),lonlim(2), gratSize(2)); } \\
& {[\text { lat,lon] = ndgrid(latv,lonv); }}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{See Also}
meshgrid | meshm | surfacem | surfm | geographicGrid|ndgrid| linspace

\section*{meshlsrm}

3-D lighted shaded relief of regular data grid

\section*{Syntax}
```

meshlsrm(Z,R)
meshlsrm(Z,R,[azim elev])
meshlsrm(Z,R,[azim elev],cmap)
meshlsrm(Z,R,[azim elev],cmap,clim)
h = meshlsrm(...)

```

\section*{Description}
meshlsrm(\(Z, R\)) displays the regular data grid \(Z\) colored according to elevation and surface slopes. \(R\) can be a referencing vector, a referencing matrix, or a geographic raster reference object.

If \(R\) is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If \(R\) is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If R is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. By default, shading is based on a light to the east (90 deg .) at an elevation of 45 degrees. Also by default, the colormap is constructed from 16 colors and 16 grays. Lighting is applied before the data is projected. The current axes must have a valid map projection definition.
meshlsrm(Z,R,[azim elev]) displays the regular data grid \(Z\) with the light coming from the specified azimuth and elevation. Angles are specified in degrees, with the azimuth measured clockwise from North, and elevation up from the zero plane of the surface.
meshlsrm(Z,R,[azim elev],cmap) displays the regular data grid \(Z\) using the specified colormap. The number of grayscales is chosen to keep the size of the shaded colormap below 256. If the vector of azimuth and elevation is empty, the default locations are used. Color axis limits are computed from the data.
meshlsrm(Z,R,[azim elev],cmap,clim) uses the provided color axis limits, which by default are computed from the data.
\(h=\) meshlsrm(...) returns the handle to the surface drawn.

\section*{Examples}

Load elevation data and a geographic cells reference object for the Korean peninsula. Create a world map using appropriate latitude and longitude limits for the peninsula. Then, display a lighted shaded relief map. By default, meshlsrm applies a colormap appropriate for elevation data.
```

load korea5c
worldmap(korea5c,korea5cR)
meshlsrm(korea5c,korea5cR,[45 65])

```


\section*{Tips}

This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new colormap. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

\section*{See Also}
geographicGrid|ndgrid|meshm|pcolorm|surfacem|surflm|surflsrm
Introduced before R2006a

\section*{meshm}

Project regular data grid on map axes

\section*{Syntax}
```

meshm(Z,R)
meshm(Z,R,gratsize)
meshm(Z,R,gratsize,alt)
meshm(___,param1,val1,param2,val2,...)
H = meshm(

```
\(\qquad\)

\section*{Description}
meshm (\(Z, R\)) will display the regular data grid \(Z\) warped to the default projection graticule. \(R\) can be a referencing vector, a referencing matrix, or a geographic raster reference object.

If \(R\) is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If \(R\) is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If \(R\) is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If \(R\) is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. The current axes must have a valid map projection definition.
meshm(Z,R,gratsize) displays a regular data grid warped to a graticule mesh defined by the 1-by-2 vector gratsize. gratsize(1) indicates the number of lines of constant latitude (parallels) in the graticule, and gratsize(2) indicates the number of lines of constant longitude (meridians).
meshm(\(Z, R\), gratsize, alt \()\) displays the regular surface map at the altitude specified by alt. If \(a l t\) is a scalar, then the grid is drawn in the \(z=a l t\) plane. If alt is a matrix, then size (alt) must equal gratsize, and the graticule mesh is drawn at the altitudes specified by alt. If the default graticule is desired, set gratsize = [].
meshm(\(\qquad\) ,param1,val1,param2,val2,...) uses optional parameter name-value pairs to control the properties of the surface object constructed by meshm. (If data is placed in the UserData property of the surface, then the projection of this object cannot be altered once displayed.)

H = meshm(\(\qquad\)) returns the handle to the surface drawn.

\section*{Examples}

Load elevation data and a geographic cells reference object for the Korean peninsula. Then, display the data on a world map. Apply a colormap appropriate for elevation data using demcmap.
load korea5c
worldmap (korea5c, korea5cR)
meshm(korea5c, korea5cR)
demcmap(korea5c)

\author{
See Also \\ ndgrid | geoshow | mapshow | geographicGrid | pcolorm | surfacem | surfm Introduced before R2006a
}

\section*{mfwdtran}
(To be removed) Project geographic features to map coordinates

Note mfwdtran will be removed in a future release. In most cases, use the projfwd function instead. If the mapprojection property of the current map axes or specified map projection structure is 'globe', then use the geodetic2ecef function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[\(x, y\)] = mfwdtran(lat,lon)
[x,y,z] = mfwdtran(lat,lon,alt)
[...] = mfwdtran(mstruct,...)

\section*{Description}
\([\mathrm{x}, \mathrm{y}]=\mathrm{mfwdtran}(\) lat,lon \()\) applies the forward transformation defined by the map projection in the current map axes. You can use this function to convert point locations and line and polygon vertices given in latitudes and longitudes to a planar, projected map coordinate system.
\([x, y, z]=m f w d t r a n(l a t, l o n, a l t)\) applies the forward projection to 3-D input, resulting in 3-D output. If the input alt is empty or omitted, then alt \(=0\) is assumed.
[...] = mfwdtran(mstruct,...) requires a valid map projection structure as the first argument. In this case, no map axes is needed.

\section*{Examples}

\section*{Transform Geographic Data into Map Coordinates}

Get geographic location data for the District of Columbia.
```

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});
lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =
38.9000 -77.0700
38.9500 -77.1200
39.0000 -77.0300
38.9000 -76.9000
38.7800 -77.0300
38.8000 -77.0200
38.8700 -77.0200
38.9000 -77.0700

```
```

38.9000 -77.0700
NaN NaN

```

Obtain the UTM zone for this point.
```

dczone = utmzone(mean(lat,'omitnan'),mean(lon,'omitnan'))

```
dczone =
 '18S'

Set up the UTM coordinate system based on this information.
```

utmstruct = defaultm('utm');
utmstruct.zone = dczone;
utmstruct.geoid = wgs84Ellipsoid;
utmstruct = defaultm(utmstruct);

```

Project the District of Columbia data from geographic coordinates into map coordinates for UTM zone 18 S .
```

[x,y] = mfwdtran(utmstruct,lat,lon)
x =
1.0e+05 *
3.2049
3.1629
3.2421
3.3524
3.2367
3.2459
3.2476
3.2049
3.2049
NaN
y =
1.0e+06 *
4.3077
4.3134
4.3187
4.3074
4.2943
4.2965
4.3043
4.3077
4.3077
NaN

```

\section*{Compatibility Considerations}

The mfwdtran function will be removed in a future release. In most cases, use the projfwd function instead. If the mapprojection field of the current map axes or specified map projection structure is 'globe', then use the geodetic2ecef function instead.

This table shows some typical usages of the mfwdtran function and how to update your code to use the proj fwd function instead.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [x,y,z] = mfwdtran(lat,lon) ; & ```
mstruct = gcm;
[x,y] = projfwd(mstruct,lat,lon);
``` \\
\hline [ \(\mathrm{x}, \mathrm{y}, \mathrm{z}]=\) mfwdtran(mstruct,lat,lon) ; & [ \(x, y\) ] = projfwd(mstruct,lat,lon) ; \\
\hline
\end{tabular}

This table shows some typical usages of the mfwdtran function and how to update your code to use the geodetic2ecef function instead.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [x,y,z] = mfwdtran(lat,lon,alt) ; & ```
mstruct = gcm;
[x,y,z] = geodetic2ecef(lat,lon,alt,mstruct.
``` \\
\hline [x,y,z] = mfwdtran(mstruct,lat,lon,alt) ; & [\(x, y, z\)] \(=\) geodetic2ecef(lat, lon, alt,mstruct \\
\hline
\end{tabular}

If the value of the mapprojection field of the map projection structure is listed in this table, then all linear units in the map projection structure must be in meters. In addition, the projfwd function returns coordinates in meters. You can convert the coordinates to other units using the units ratio function.
\begin{tabular}{|l|l|}
\hline Value & Projection Name \\
\hline 'tranmerc' & Transverse Mercator \\
\hline 'mercator' & Mercator \\
\hline 'lambertstd ' & Lambert Conformal Conic \\
\hline 'eqaazim' & Lambert Azimuthal Equal Area \\
\hline 'eqaconicstd' & Albers Equal-Area Conic \\
\hline 'eqdazim' & Azimuthal Equidistant \\
\hline 'eqdconicstd' & Equidistant Conic \\
\hline 'ups ' & Polar Stereographic \\
\hline 'stereo' & Oblique Stereographic \\
\hline 'eqdcylin' & Equirectangular \\
\hline 'cassinistd ' & Cassini-Soldner \\
\hline 'gnomonic' & Gnomonic \\
\hline 'miller' & Miller Cylindrical \\
\hline 'ortho' & Orthographic \\
\hline 'polyconstd' & Polyconic \\
\hline 'robinson' & Robinson \\
\hline 'sinusoid' & Sinusoidal \\
\hline 'vgrint1' & Van der Grinten \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Value & Projection Name \\
\hline 'eqacylin' & Equal Area Cylindrical \\
\hline
\end{tabular}

\section*{See Also}
defaultm|gcm|projfwd|projinv|vfwdtran|vinvtran|geodetic2ecef

Introduced before R2006a

\section*{minaxis}

Semiminor axis of ellipse

\section*{Syntax}
b = minaxis(semimajor,e)

\section*{Description}
b = minaxis(semimajor,e) computes the semiminor axis length bof an ellipse or an ellipsoid of revolution given the semimajor axis length semimajor and eccentricity e.

\section*{Examples}

\section*{Semiminor Axis of Ellipse from Semimajor Axis and Eccentricity}

Find the semiminor axis length of an ellipse from the eccentricity and length of the semimajor axis.
b \(=\) minaxis \((6378137,0.0818)\)
b \(=6.3568 \mathrm{e}+06\)

\section*{Input Arguments}
semimajor - Semimajor axis length
numeric scalar
Semimajor axis length, specified as a numeric scalar.
e-Eccentricity of ellipse
numeric scalar
Eccentricity of the ellipse, specified as a numeric scalar. The value of ecc must be in the range \([0,1]\).
Data Types: single | double

\section*{Output Arguments}
b - Semiminor axis length
numeric scalar
Semiminor axis length, returned as a numeric scalar. The units of \(b\) are the same as those of semimajor.

\section*{Compatibility Considerations}

Only numeric scalars will be accepted as input
Not recommended starting in R2013b

The minaxis function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

\section*{See Also \\ axes2ecc|flat2ecc|majaxis|n2ecc}

Introduced before R2006a

\section*{minvtran}
(To be removed) Unproject features from map to geographic coordinates

Note minvtran will be removed in a future release. In most cases, use the projinv function instead. If the mapprojection field of the current map axes or specified map projection structure is 'globe', then use the ecef2geodetic function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[lat,lon] = minvtran(x,y)
[lat,lon,alt] = minvtran(x,y,z)
[...] = minvtran(mstruct,...)

\section*{Description}
[lat,lon] = minvtran \((x, y)\) applies the inverse transformation defined by the map projection in the current map axes. Using minvtran, you can convert point locations and line and polygon vertices in a planar, projected map coordinate system to latitudes and longitudes.
[lat,lon, alt] = minvtran (\(x, y, z\)) applies the inverse projection to 3-D input, resulting in 3-D output. If the input \(Z\) is empty or omitted, then \(Z=0\) is assumed.
[...] = minvtran(mstruct,...) takes a valid map projection structure as the first argument. In this case, no map axes is needed.

\section*{Examples}

Before using minvtran, it is necessary to create a map projection structure. You can do this with axesm or the defaultm function:
```

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

```

The following latitude and longitude data for the District of Columbia is obtained from the usastatelo shapefile:
```

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});
lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]
ans =
38.9000 -77.0700
38.9500 -77.1200
39.0000 -77.0300

```
\begin{tabular}{rr}
38.9000 & -76.9000 \\
38.7800 & -77.0300 \\
38.8000 & -77.0200 \\
38.8700 & -77.0200 \\
38.9000 & -77.0700 \\
38.9000 & -77.0700 \\
NaN & NaN
\end{tabular}

This data can be projected into Cartesian coordinates of the Mercator projection using the proj fwd function:
```

[x,y] = projfwd(mstruct,lat,lon);
[x y]
ans =
-0.0004 0.5745
-0.0011 0.5753
0.0001 0.5762
0.0019 0.5745
0.0001 0.5724
0.0003 0.5727
0.0003 0.5739
-0.0004 0.5745
-0.0004 0.5745
NaN NaN

```

To transform the projected \(x-y\) data back into the unprojected geographic system, use the minvtran function:
```

[lat2,lon2] = minvtran(mstruct,x,y);
[lat2 lon2]
ans =
70.1302 -77.0987
70.1729 -77.1969
70.2157 -77.0204
70.1300 -76.7659
70.0276 -77.0205
70.0447 -77.0010
70.1046 -77.0009
70.1302 -77.0987
70.1302 -77.0987
NaN NaN

```

\section*{Compatibility Considerations}

\section*{minvtran will be removed}

Not recommended starting in R2020b
The minvtran function will be removed in a future release. In most cases, use the projinv function instead. If the mapprojection field of the current map axes or specified map projection structure is 'globe', then use the ecef2geodetic function instead.

This table shows some typical uses of the minvtran function and how to update your code to use the projinv function instead.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [lat,lon,alt] = minvtran(x,y) ; & ```
mstruct = gcm;
[lat,lon] = projinv(mstruct,x,y);
``` \\
\hline [lat,lon,alt] = minvtran(mstruct, \(\mathrm{x}, \mathrm{y}\) ) ; & [lat,lon] = projinv(mstruct, \(x\), y) ; \\
\hline
\end{tabular}

This table shows some typical uses of the minvtran function and how to update your code to use the ecef2geodetic function instead.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [lat,lon,alt] = minvtran(x,y,z) ; & ```
mstruct = gcm;
[lat,lon,alt] = ecef2geodetic(x,y,z,mstruct
``` \\
\hline [lat, lon,alt] = minvtran(mstruct, \(\mathrm{x}, \mathrm{y}, \mathrm{z})\); & [lat,lon,alt] = ecef2geodetic (x,y,z,mstruct \\
\hline
\end{tabular}

If the value of the mapprojection field of the map projection structure is listed in this table, then you must specify all linear units in meters, including coordinates and map projection structure fields. After you have projected the coordinates, you can convert them to other units using the units ratio function.
\begin{tabular}{|l|l|}
\hline Value & Projection Name \\
\hline 'tranmerc' & Transverse Mercator \\
\hline 'mercator' & Mercator \\
\hline ' lambertstd ' & Lambert Conformal Conic \\
\hline 'eqaazim' & Lambert Azimuthal Equal Area \\
\hline 'eqaconicstd' & Albers Equal-Area Conic \\
\hline 'eqdazim' & Azimuthal Equidistant \\
\hline 'eqdconicstd' & Equidistant Conic \\
\hline 'ups' & Polar Stereographic \\
\hline 'stereo' & Oblique Stereographic \\
\hline 'eqdcylin' & Equirectangular \\
\hline ' cassinistd ' & Cassini-Soldner \\
\hline 'gnomonic' & Gnomonic \\
\hline 'miller' & Miller Cylindrical \\
\hline 'ortho' & Orthographic \\
\hline 'polyconstd ' & Polyconic \\
\hline 'robinson' & Robinson \\
\hline 'sinusoid' & Sinusoidal \\
\hline 'vgrintl' & Van der Grinten \\
\hline 'eqacylin' & Equal Area Cylindrical \\
\hline
\end{tabular}

\section*{See Also}
axesm|defaultm|gcm|projfwd|projinv|vfwdtran|vinvtran|ecef2geodetic

Introduced before R2006a

\section*{mlabel}

Toggle and control display of meridian labels

\section*{Syntax}
```

mlabel
mlabel('on')
mlabel('off')
mlabel('reset')
mlabel(parallel)
mlabel(MapAxesPropertyName,PropertyValue,...)

```

\section*{Description}
ml abel toggles the visibility of meridian labeling on the current map axes.
mlabel('on') sets the visibility of meridian labels to 'on'.
mlabel('off') sets the visibility of meridian labels to 'off'.
mlabel('reset') resets the displayed meridian labels using the currently defined meridian label properties.
mlabel (parallel) sets the value of the MLabelParallel property of the map axes to the value of parallel. This determines the parallel upon which the labels are placed (see axesm). The options for parallel are a scalar latitude or 'north', 'south', or 'equator'.
mlabel(MapAxesPropertyName,PropertyValue, ...) allows paired map axes' property names and property values to be passed in. For a complete description of map axes properties, see the axesm reference page in this guide.

Meridian label handles can be returned in h if desired.

\section*{See Also}
axesm|mlabelzero22pi|plabel|setm
Introduced before R2006a

\section*{mlabelzero22pi}

Convert meridian labels to 0-360 degree range

\section*{Syntax}
mlabelzero22pi

\section*{Description}
ml abelzero22pi displays longitude labels in the range of 0 to 360 degrees east of the prime meridian.

\section*{Examples}
```

% create a map
figure('color','w'); axesm('miller','grid','on'); tightmap;
mlabel on; plabel on

```

\% Display longitude labels in the range of 0 to 360 degrees mlabelzero22pi

\section*{See Also}
mlabel

Introduced before R2006a

\section*{n2ecc}

Eccentricity of ellipse from third flattening

\section*{Syntax}
ecc \(=n 2 e c c(n)\)

\section*{Description}
ecc \(=\mathrm{n} 2 \mathrm{ecc}(\mathrm{n})\) computes the eccentricity ecc of an ellipse or an ellipsoid of revolution given the third flattening n .

\section*{Examples}

\section*{Eccentricity of Ellipse from Third Flattening}

Find the eccentricity of an ellipse from the third flattening.
```

ecc = n2ecc(0.0017)
ecc = 0.0823

```

\section*{Input Arguments}

\section*{n - Third flattening of ellipse}
numeric scalar
Third flattening of the ellipse, specified as a numeric scalar. The input n is defined as \((a-b) /(a+b)\), where \(a\) is the semimajor axis and \(b\) is the semiminor axis.
Data Types: single | double

\section*{Output Arguments}

\section*{ecc - Eccentricity of ellipse}
numeric scalar
Eccentricity of the ellipse, returned as a numeric scalar in the range [0, 1].

\section*{Compatibility Considerations}

Only numeric scalars will be accepted as input
Not recommended starting in R2013b
The n2ecc function will not accept vectors or matrices as input in a future release. To update your code, specify a numeric scalar instead.

\section*{See Also}
axes2ecc|ecc2n
Introduced before R2006a

\section*{namem}

Names of graphics objects

\section*{Syntax}
obj_names = namem
obj_names \(=\) namem \((\mathrm{h})\)

\section*{Description}
obj_names = namem returns the names of all the objects on the current axes. The name of an object is the value of its Tag property, if specified. Otherwise, the name of the object is the value of its Type property. The values of these properties are either set at object creation or defined using the tagm function.
obj_names \(=\) namem (h) returns the name of the object (or objects) specified by the array, h .

\section*{Examples}

\section*{Get List of Graphics Objects in Map Display}

Load elevation data and a geographic cells reference object for the Korean peninsula. Then, display the data on a world map.
```

load korea5c
worldmap(korea5c,korea5cR);
geoshow(korea5c,korea5cR,'DisplayType','texturemap')
demcmap(korea5c)

```


Find the names of graphics objects in the figure. The namem function returns the names as a character array. Convert the array into a cell array of character vectors using cellstr.
```

namesChar = namem

```
```

namesChar = 6x8 char array

```
'PLabel '
'MLabel
'Parallel'
'Meridian'
'surface '
' Frame
```

namesCell = cellstr(namesChar)
namesCell = 6x1 cell
{'PLabel' }
{'MLabel' }
{'Parallel'}
{'Meridian'}
{'surface' }
{'Frame' }

```

\section*{Input Arguments}
h - Graphics objects
array
Graphics objects, specified as an array.

\section*{Output Arguments}
obj_names - Names of graphics objects
character array
Names of graphics objects, returned as a character array. namem removes duplicate object names from the array.

Note: Use cellstr(obj_names) to convert obj_names to a cell array of character vectors.

\section*{See Also}
clma | clmo | handlem | hidem | showm | tagm

\section*{Introduced before R2006a}

\section*{nanclip}

Clip vector data with NaNs at specified pen-down locations

\section*{Syntax}
```

dataout = nanclip(datain)
dataout = nanclip(datain,pendowncmd)

```

\section*{Description}
dataout \(=\) nanclip(datain) and dataout \(=\) nanclip(datain, pendowncmd) return the pendown delimited data in the matrix datain as NaN-delimited data in dataout. When the first column of datain equals pendowncmd, a segment is started and a NaN is inserted in all columns of dataout. The default pendowncmd is -1 .

Pen-down delimited data is a matrix with a first column consisting of pen commands. At the beginning of each segment in the data, this first column has an entry corresponding to a pen-down command. Other entries indicate that the segment is continuing. NaN-delimited data consists of columns of data, each segment of which ends in a NaN in every data column. Since there is no pen command column, the NaN-delimited format can represent the same data in one fewer columns; the remaining columns have more entries, one for each NaN (that is, for each segment).

\section*{Examples}
```

datain = [-1 45 67; 0 23 54; 0 28 97; -1 47 89; 0 56 12]
datain =

-1	45	67	\% Begin first segment
0	23	54	
0	28	97	\% Begin second segment
-1	47	89	
0	56	12	

```


\section*{See Also}

Introduced before R2006a

\section*{nanm}
(To be removed) Construct regular data grid of NaNs

Note nanm will be removed in a future release. Use the georefcells and NaN functions instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[Z,refvec] = nanm(latlim,lonlim,scale)

\section*{Description}
[Z, refvec] = nanm(latlim, lonlim,scale) returns a regular data grid consisting entirely of NaNs and a three-element referencing vector for the returned Z. The two-element vectors latlim and lonlim define the latitude and longitude limits of the geographic region. They should be of the form [south north] and [west east], respectively. The scalar scale specifies the number of rows and columns per degree of latitude and longitude.

\section*{Examples}
[Z, refvec] \(=\) nanm([46,51],[-79,-75],1)
\begin{tabular}{cccc}
\(Z=\) & & & \\
NaN & NaN & NaN & NaN \\
refvec & & & \\
1 & 51 & -79 &
\end{tabular}

\section*{Compatibility Considerations}

\section*{nanm will be removed}

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the nanm function. Instead, create a geographic raster reference object using the georefcells function and a matrix of NaN values using the NaN function. Reference objects have several advantages over referencing vectors.
- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows how to update your code to use the georefcells and NaN functions instead of the nanm function.
\begin{tabular}{|l|l|}
\hline Will Be Removed & Recommended \\
\hline\([Z\), refvec \(]=\) nanm(latlim,lonlim,scale); & \begin{tabular}{l}
R = georefcells(latlim,lonlim,1/scale,1/scale); \\
\(Z=\) NaN(R.RasterSize);
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
ones | sparse \| zeros | NaN | georefcells
Introduced before R2006a

\section*{navfix}

Mercator-based navigational fix

\section*{Syntax}
[latfix,lonfix] = navfix(lat,long,az)
[latfix,lonfix] = navfix(lat,long, range, casetype)
[latfix,lonfix] = navfix(lat,long,az_range, casetype)
[latfix,lonfix] = navfix(lat,long,az_range, casetype,drlat,drlon)

\section*{Description}
[latfix,lonfix] = navfix(lat,long,az) returns the intersection points of rhumb lines drawn parallel to the observed bearings, az, of the landmarks located at the points lat and long and passing through these points. One bearing is required for each landmark. Each possible pairing of the n landmarks generates one intersection, so the total number of resulting intersection points is the combinatorial \(n\) choose 2 . The calculation time therefore grows rapidly with \(n\).
[latfix,lonfix] = navfix(lat,long, range, casetype) returns the intersection points of Mercator projection circles with radii defined by range, centered on the landmarks located at the points lat and long. One range value is required for each landmark. Each possible pairing of the \(n\) landmarks generates up to two intersections (circles can intersect twice), so the total number of resulting intersection points is the combinatorial 2 times (\(n\) choose 2). The calculation time therefore grows rapidly with \(n\). In this case, the variable casetype is a vector of 0 s the same size as the variable range.
[latfix,lonfix] = navfix(lat,long,az_range, casetype) combines ranges and bearings. For each element of casetype equal to 1 , the corresponding element of az_range represents an azimuth to the associated landmark. Where casetype is a 0 , az_range is a range.
[latfix,lonfix] = navfix(lat,long,az_range,casetype,drlat,drlon) returns for each possible pairing of landmarks only the intersection that lies closest to the dead reckoning position indicated by drlat and drlon. When this syntax is used, all included landmarks' bearing lines or range arcs must intersect. If any possible pairing fails, the warning No Fix is displayed.

\section*{Background}

This is a navigational function. It assumes that all latitudes and longitudes are in degrees and all distances are in nautical miles. In navigation, piloting is the practice of fixing one's position based on the observed bearing and ranges to fixed landmarks (points of land, lighthouses, smokestacks, etc.) from the navigator's vessel. In conformance with navigational practice, bearings are treated as rhumb lines and ranges are treated as the radii of circles on a Mercator projection.

In practice, at least three azimuths (bearings) and/or ranges are required for a usable fix. The resulting intersections are unlikely to coincide exactly. Refer to "Navigation" in the Mapping Toolbox User's Guide for a more complete description of the use of this function.

\section*{Examples}

For a fully illustrated example of the application of this function, refer to the "Navigation" section in the Mapping Toolbox User's Guide.

Imagine you have two landmarks, at \(\left(15^{\circ} \mathrm{N}, 30.4^{\circ} \mathrm{W}\right)\) and \(\left(14.8^{\circ} \mathrm{N}, 30.1^{\circ} \mathrm{W}\right)\). You have a visual bearing to the first of \(280^{\circ}\) and to the second of \(160^{\circ}\). Additionally, you have a range to the second of 12 nm . Find the intersection points:
```

[latfix,lonfix] = navfix([15 14.8 14.8],[-30.4 -30.1 -30.1],...
[280 160 12],[1 1 0])
latfix =
14.9591
14.9680
14.9879
lonfix =
-30.1599 NaN
-30.2121 -29.9352
-30.1708 NaN

```

Here is an illustration of the geometry:

\section*{Limitations}

Traditional plotting and the navfix function are limited to relatively short distances. Visual bearings are in fact great circle azimuths, not rhumb lines, and range arcs are actually arcs of small circles, not of the planar circles plotted on the chart. However, the mechanical ease of the process and the practical limits of visual bearing ranges and navigational radar ranges (\(\sim 30 \mathrm{~nm}\)) make this limitation moot in practice. The error contributed because of these assumptions is minuscule at that scale.

\section*{Tips}

The outputs of this function are matrices providing the locations of the intersections for all possible pairings of the n entered lines of bearing and range arcs. These matrices therefore have \(n\)-choose- 2 rows. In order to allow for two intersections per combination, these matrices have two columns. Whenever there are fewer than two intersections for that combination, one or two NaNs are returned in that row.

When a dead reckoning position is included, these matrices are column vectors.

\section*{See Also}
crossfix|gcxgc|gcxsc|scxsc|rhxrh|polyxpoly|dreckon|gcwaypts|legs|track Introduced before R2006a

\section*{ned2aer}

Transform local north-east-down coordinates to local spherical

\section*{Syntax}
[az,elev,slantRange] = ned2aer(xNorth,yEast,zDown)
[___] = ned2aer(___, angleUnit)

\section*{Description}
[az,elev, slantRange] = ned2aer(xNorth,yEast,zDown) transforms the local north-eastdown (NED) Cartesian coordinates specified by xNorth, yEast, and zDown to the local azimuth-elevation-range (AER) spherical coordinates specified by az, elev, and slantRange. Both coordinate systems use the same local origin. Each input argument must match the others in size or be scalar.
[__] = ned2aer (__, angleUnit) specifies the units for azimuth and elevation. Specify angleUnit as 'degrees' (the default) or 'radians'.

\section*{Examples}

\section*{Calculate AER Coordinates from NED Coordinates}

Find the AER coordinates of a landmark with respect to an aircraft, using the NED coordinates of the landmark with respect to the same aircraft.

First, specify the NED coordinates of the landmark. For this example, specify the coordinate values in kilometers.
```

xNorth = -9.1013;
yEast = 4.1617;
zDown = 4.2812;

```

Then, calculate the AER coordinates of the landmark. The azimuth and elevation are specified in degrees. The units for the slant range match the units specified by the NED coordinates. Thus, the slant range is specified in kilometers.
```

[az,elev,slantRange] = ned2aer(xNorth,yEast,zDown)
az = 155.4271
elev = -23.1609
slantRange = 10.8849

```

Reverse the transformation using the aer2ned function.
```

[xNorth,yEast,zDown] = aer2ned(az,elev,slantRange)
xNorth = -9.1013

```
```

yEast = 4.1617
zDown = 4.2812

```

\section*{Input Arguments}

\section*{xNorth - NED x-coordinates}
scalar | vector | matrix | N-D array
NED \(x\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array.

Data Types: single|double

\section*{yEast - NED y-coordinates}
scalar | vector | matrix | N-D array
NED \(y\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double

\section*{zDown - NED z-coordinates}
scalar | vector | matrix | N-D array
NED \(z\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double
angleUnit - Angle units
'degrees' (default) | 'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

\section*{Output Arguments}

\section*{az - Azimuth angles}
scalar | vector | matrix | N-D array
Azimuth angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N-D array. Azimuths are measured clockwise from north. Values are specified in degrees within the half-open interval [0360). To use values in radians, specify the angleUnit argument as 'radians '.

\section*{elev - Elevation angles}
scalar | vector | matrix | N-D array
Elevation angles of one or more points in the local AER system, returned as a scalar, vector, matrix, or N-D array. Elevations are calculated with respect to the xNorth-yEast plane that contains the local origin. If the local origin is on the surface of the spheroid, then the xNorth-yEast plane is tangent to the spheroid.

Values are specified in degrees within the closed interval [-90 90]. Positive elevations correspond to negative zDown values, and negative elevations correspond to positive zDown values. An elevation of

0 indicates that the point lies in the xNorth-yEast plane. To use values in radians, specify the angleUnit argument as 'radians'.
slantRange - Distances from local origin
scalar | vector | matrix | N-D array
Distances from the local origin, returned as a scalar, vector, matrix, or N-D array. Each distance is calculated along a straight, 3-D, Cartesian line. Values are returned in the units specified by xNorth, yEast, and zDown.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}
aer2ned | enu2aer | ned2geodetic | ned2ecef
Topics
"Choose a 3-D Coordinate System"

Introduced in R2012b

\section*{ned2ecef}

Transform local north-east-down coordinates to geocentric Earth-centered Earth-fixed

\section*{Syntax}
```

[X,Y,Z] = ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,spheroid)
[___] = ned2ecef(___,angleUnit)

```

\section*{Description}
[X,Y,Z] = ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,spheroid) transforms the local north-east-down (NED) Cartesian coordinates specified by xNorth, yEast, and zDown to the geocentric Earth-centered Earth-fixed (ECEF) Cartesian coordinates specified by X, Y, and Z. Specify the origin of the local NED system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[] = ned2ecef(___ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

\section*{Examples}

\section*{Calculate ECEF Coordinates from NED Coordinates}

Find the ECEF coordinates of Mount Mansfield with respect to a nearby aircraft, using the NED coordinates of Mount Mansfield with respect to the geodetic coordinates of the aircraft.

First, specify the reference ellipsoid as WGS84 with length units measured in kilometers. For more information about WGS84, see "Reference Spheroids". The units for ellipsoidal height, NED coordinates, and ECEF coordinates must match the units specified by the LengthUnit property of the reference spheroid.
```

wgs84 = wgs84Ellipsoid('kilometer');

```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the aircraft. Specify h0 as ellipsoidal height in kilometers.
```

lat0 = 44.532;
lon0 = -72.782;
h0 = 1.699;

```

Specify the NED coordinates of the point of interest. In this example, the point of interest is Mount Mansfield.
```

xNorth = 1.3343;
yEast = -2.5444;
zDown = 0.3600;

```

Then, calculate the ECEF coordinates of Mount Mansfield. In this example, the results display in scientific notation.
```

[x,y,z] = ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,wgs84)
x = 1.3457e+03
y = -4.3509e+03
z = 4.4523e+03

```

Reverse the transformation using the ecef2ned function.
```

[xNorth,yEast,zDown] = ecef2ned(x,y,z,lat0,lon0,h0,wgs84)
xNorth = 1.3343
yEast = -2.5444
zDown = 0.3600

```

\section*{Input Arguments}
xNorth - NED x-coordinates
scalar | vector | matrix | N-D array
NED \(x\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single | double

\section*{yEast - NED y-coordinates}
scalar | vector | matrix | N-D array
NED \(y\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

\section*{zDown - NED z-coordinates}
scalar | vector | matrix | N-D array
NED \(z\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

\section*{lat0 - Geodetic latitude of local origin}
scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

\section*{Data Types: single |double}

\section*{lon0 - Geodetic longitude of local origin \\ scalar | vector | matrix | N-D array}

Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

\section*{Data Types: single | double}

\section*{h0 - Ellipsoidal height of local origin}
scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

\section*{spheroid - Reference spheroid \\ referenceEllipsoid object|oblateSpheroid object | referenceSphere object}

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

\section*{Output Arguments}

X - ECEF x-coordinates
scalar | vector | matrix | N-D array
ECEF \(x\)-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

\section*{Y - ECEF \(\boldsymbol{y}\)-coordinates}
scalar | vector | matrix | N-D array
ECEF \(y\)-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid
argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

\section*{Z - ECEF z-coordinates}
scalar | vector | matrix | N-D array
ECEF \(z\)-coordinates of one or more points in the geocentric ECEF system, returned as a scalar, vector, matrix, or N-D array. Units are specified by the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

\section*{Tips}

To transform vectors instead of coordinate locations, use the ned2ecefv function.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}
aer2ecef | ned2geodetic|ecef2ned | enu2ecef

\section*{Topics}
"Choose a 3-D Coordinate System"
Introduced in R2012b

\section*{ned2ecefv}

Rotate local north-east-down vector to geocentric Earth-centered Earth-fixed

\section*{Syntax}
[U,V,W] = ned2ecefv(uNorth,vEast,wDown,lat0,lon0)
[___] = ned2ecefv(___ , angleUnit)

\section*{Description}
\([\mathrm{U}, \mathrm{V}, \mathrm{W}]=\) ned2ecefv(uNorth, vEast, WDown, lat0, lon0) returns vector components \(\mathrm{U}, \mathrm{V}\), and \(W\) in a geocentric Earth-centered Earth-fixed (ECEF) system corresponding to vector components uNorth, vEast, and wDown in a local north-east-down (NED) system. Specify the origin of the system with the geodetic coordinates lat0 and lon0. Each coordinate input argument must match the others in size or be scalar.
[___] = ned2ecefv(__ , angleUnit as 'degrees' (the default) or 'radians'.

\section*{Examples}

\section*{Calculate ECEF Vector Components from NED Components}

Find the ECEF velocity components of an aircraft using its NED velocity components.
Specify the geodetic coordinates of the aircraft in degrees and the NED velocity components in kilometers per hour.
```

lat0 = 61.64;
lon0 = 30.70;
uNorth = -434.0403;
vEast = 152.4451;
wDown = -684.6964;

```

Calculate the ECEF components of the aircraft. The units for the ECEF components match the units for the NED components. Thus, the ECEF components are returned in kilometers per hour. The rotation performed by ned2ecefv does not affect the speed of the aircraft.
```

[U,V,W] = ned2ecefv(uNorth,vEast,wDown,lat0,lon0)
U = 530.2445
V = 492.1283
W = 396.3459

```

Reverse the rotation using the ecef2nedv function.
```

[uNorth,vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0)

```
```

uNorth = -434.0403
vEast = 152.4451
wDown = -684.6964

```

\section*{Input Arguments}
uNorth - NED x-components
scalar value | vector | matrix | N-D array
NED \(x\)-components of one or more vectors in the local NED system, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

\section*{vEast - NED y-components}
scalar value | vector | matrix | N-D array
NED \(y\)-components of one or more vectors in the local NED system, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

\section*{wDown - NED z-components}
scalar value | vector | matrix | N-D array
NED \(z\)-components of one or more vectors in the local NED system, specified as a scalar value, vector, matrix, or N-D array.
Data Types: single | double

\section*{lat0 - Geodetic latitude of local origin}
scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.
Data Types: single | double

\section*{Lon0 - Geodetic longitude of local origin}
scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.
Data Types: single | double
angleUnit - Angle units
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

\section*{Output Arguments}

U - ECEF x-components
scalar value | vector | matrix | N-D array
ECEF \(x\)-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uNorth, vEast, and wDown.

\section*{V - ECEF y-components}
scalar value | vector | matrix | N-D array
ECEF y-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uNorth, vEast, and wDown.

W - ECEF z-components
scalar value | vector | matrix | N-D array
ECEF \(z\)-components of one or more vectors, returned as a scalar value, vector, matrix, or N-D array. Values are returned in the units specified by uNorth, vEast, and wDown.

\section*{Tips}

To transform coordinate locations instead of vectors, use the ned2ecef function.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ enu2ecefv \| ecef2nedv \| ecef2enuv \\ Topics \\ "Vectors in 3-D Coordinate Systems"
}

Introduced in R2012b

\section*{ned2geodetic}

Transform local north-east-down coordinates to geodetic

\section*{Syntax}
[lat,lon,h] = ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0,spheroid) [___] = ned2geodetic(__, angleUnit)

\section*{Description}
[lat,lon,h] = ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0, spheroid) transforms the local north-east-down (NED) Cartesian coordinates specified by xNorth, yEast, and zDown to the geodetic coordinates specified by lat, lon, and h. Specify the origin of the local NED system with the geodetic coordinates lat0, lon0, and h0. Each coordinate input argument must match the others in size or be scalar. Specify spheroid as the reference spheroid for the geodetic coordinates.
[___] = ned2geodetic (__ , angleUnit) specifies the units for latitude and longitude. Specify angleUnit as 'degrees' (the default) or 'radians'.

\section*{Examples}

\section*{Calculate Geodetic Coordinates from NED Coordinates}

Find the geodetic coordinates of Mount Mansfield with respect to a nearby aircraft, using the NED coordinates of Mount Mansfield with respect to the geodetic coordinates of the aircraft.

First, specify the reference spheroid as WGS84. For more information about WGS84, see "Reference Spheroids". The units for ellipsoidal height and NED coordinates must match the units specified by the LengthUnit property of the reference spheroid. The default length unit for the reference spheroid created by wgs84Ellipsoid is 'meter'.
```

wgs84 = wgs84Ellipsoid;

```

Specify the geodetic coordinates of the local origin. In this example, the local origin is the aircraft. Specify h0 as ellipsoidal height in meters.
```

lat0 = 44.532;
lon0 = -72.782;
h0 = 1699;

```

Specify the NED coordinates of the point of interest. In this example, the point of interest is Mount Mansfield.
```

xNorth = 1334.3;
yEast = -2543.6;
zDown = 359.65;

```

Then, calculate the geodetic coordinates of Mount Mansfield. The result h is the ellipsoidal height of the mountain in meters. To view the results in standard notation, specify the display format as shortG.
```

format shortG
[lat,lon,h] = ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0,wgs84)
lat =
44.544
lon =
-72.814
h =
1340

```

Reverse the transformation using the geodetic2ned function.
```

[xNorth,yEast,zDown] = geodetic2ned(lat,lon,h,lat0,lon0,h0,wgs84)
xNorth =
1334.3
yEast =
-2543.6
zDown =
359.65

```

\section*{Input Arguments}

\section*{xNorth - NED x-coordinates}
scalar | vector | matrix | N-D array
NED \(x\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

\section*{yEast - NED y-coordinates}
scalar | vector | matrix | N-D array
NED \(y\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.
Data Types: single | double

\section*{zDown - NED z-coordinates}
scalar | vector | matrix | N-D array
NED \(z\)-coordinates of one or more points in the local NED system, specified as a scalar, vector, matrix, or N-D array. Specify values in units that match the LengthUnit property of the spheroid
argument. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

Data Types: single | double

\section*{lat0 - Geodetic latitude of local origin}
scalar | vector | matrix | N-D array
Geodetic latitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians'.

\section*{Data Types: single | double}

\section*{Lon0 - Geodetic longitude of local origin}
scalar | vector | matrix | N-D array
Geodetic longitude of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify the values in degrees. To use values in radians, specify the angleUnit argument as 'radians '.

\section*{Data Types: single | double}

\section*{h0 - Ellipsoidal height of local origin}
scalar | vector | matrix | N-D array
Ellipsoidal height of the local origin, specified as a scalar, vector, matrix, or N-D array. The local origin can refer to one point or a series of points (for example, a moving platform). Specify values in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".
Data Types: single | double

\section*{spheroid - Reference spheroid \\ referenceEllipsoid object|oblateSpheroid object | referenceSphere object}

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

\section*{angleUnit - Angle units}
'degrees' (default)|'radians'
Angle units, specified as 'degrees ' (the default) or 'radians '.

\section*{Output Arguments}

\section*{lat - Geodetic latitude}
scalar | vector | matrix | N-D array

Geodetic latitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-90 90]. To use values in radians, specify the angleUnit argument as 'radians'.

\section*{Lon - Geodetic longitude}
scalar | vector | matrix | N-D array
Geodetic longitude of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in degrees within the interval [-180 180]. To use values in radians, specify the angleUnit argument as 'radians'.
h - Ellipsoidal height
scalar | vector | matrix | N-D array
Ellipsoidal height of one or more points, returned as a scalar, vector, matrix, or N-D array. Values are specified in units that match the LengthUnit property of the spheroid object. For example, the default length unit for the reference ellipsoid created by wgs84Ellipsoid is 'meter'.

For more information about ellipsoidal height, see "Find Ellipsoidal Height from Orthometric Height".

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using MATLAB® \({ }^{\circledR}\) Coder \(^{\text {TM }}\).

\section*{See Also}
aer2geodetic|enu2geodetic|geodetic2ned|ned2ecef
Topics
"Choose a 3-D Coordinate System"
Introduced in R2012b

\section*{neworig}

Orient regular data grid to oblique aspect

\section*{Syntax}
[Z,lat,lon] = neworig(Z0,R,origin)
[Z,lat,lon] = neworig(Z0,R,origin,'forward')
[Z,lat,lon] = neworig(Z0,R,origin,'inverse')

\section*{Description}
[Z,lat,lon] = neworig(Z0,R,origin) and [Z,lat,lon] = neworig(Z0,R,origin, 'forward') will transform regular data grid Z0 into an oblique aspect, while preserving the matrix storage format. In other words, the oblique map origin is not necessarily at \((0,0)\) in the Greenwich coordinate frame. This allows operations to be performed on the matrix representing the oblique map. For example, azimuthal calculations for a point in a data grid become row and column operations if the data grid is transformed so that the north pole of the oblique map represents the desired point on the globe.
\(R\) can be a geographic raster reference object, a referencing vector, or a referencing matrix. If \(R\) is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If \(R\) is a referencing matrix, it must be 3 -by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] \(=[\) row \(\operatorname{col} 1] * \mathrm{R}\)
If \(R\) is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN. All angles are in units of degrees.
[Z,lat,lon] = neworig(Z0,R,origin,'inverse') transforms the regular data grid from the oblique frame to the Greenwich coordinate frame.

The neworig function transforms a regular data grid into a new matrix in an altered coordinate system. An analytical use of the new matrix can be realized in conjunction with the newpole function. If a selected point is made the north pole of the new system, then when a new matrix is created with neworig, each row of the new matrix is a constant distance from the selected point, and each column is a constant azimuth from that point.

\section*{Limitations}
neworig only supports data grids that cover the entire globe.

\section*{Examples}

Load elevation raster data and a geographic cells reference object. Then, transform the map so that Sri Lanka is at the North Pole.
```

load topo60c
origin = newpole(7,80);
Z = neworig(topo60c,topo60cR,origin);
axesm miller
gridm on
lat = linspace(-90,90,90);
lon = linspace(-180,180,180);
surfm(lat,lon,Z)
demcmap(topo60c)
tightmap

```


\section*{See Also}
org2pol| rotatem | geographicToDiscrete

\section*{Introduced before R2006a}

\section*{newpole}

Origin vector to place specific point at pole

\section*{Syntax}
origin = newpole(polelat, polelon)
origin \(=\) newpole(polelat, polelon, units)

\section*{Description}
origin = newpole(polelat, polelon) provides the origin vector for a transformed coordinate system based upon moving the point (polelat, polelon) to become the north pole singularity in the new system. The origin is a three-element vector of the form [latitude longitude
orientation], where the latitude and longitude are the coordinates the new center (origin) had in the untransformed system, and the orientation is the azimuth of the true North Pole from the new origin point. For the newpole calculation, this orientation is constrained to be always \(0^{\circ}\).
origin = newpole(polelat, polelon, units) specifies the units of the inputs and output, where units is any valid angle unit. The default is 'degrees '.

When developing transverse or oblique projections, you need transformed coordinate systems. One way to define these systems is to establish the point in the original (untransformed) system that will become the new (transformed) north pole.

\section*{Examples}

Take a point and make it the new North Pole:
```

origin = newpole(60,180)
origin =
30.0000 0 0

```

This makes sense: as a point \(30^{\circ}\) beyond the true North Pole on the original origin's meridian is pulled up to become the pole, the point originally 30 above the origin is pulled down into the origin spot.

\section*{See Also}
neworig|org2pol|putpole

\section*{nm2deg}

Convert spherical distance from nautical miles to degrees

\section*{Syntax}
```

deg = nm2deg(nm)
deg = nm2deg(nm,radius)
deg = nm2deg(nm,sphere)

```

\section*{Description}
deg \(=\mathrm{nm} 2 \mathrm{deg}(\mathrm{nm})\) converts distances from nautical miles to degrees, as measured along a great circle on a sphere with a radius of 3440.065 nm , the mean radius of the Earth.
deg \(=\mathrm{nm} 2 \mathrm{deg}(\mathrm{nm}\), radius) converts distances from nautical miles to degrees, as measured along a great circle on a sphere having the specified radius.
deg \(=\mathrm{nm} 2 \mathrm{deg}(\mathrm{nm}\), sphere) converts distances from nautical miles to degrees, as measured along a great circle on a sphere approximating an object in the Solar System.

\section*{Examples}

\section*{Convert Nautical Miles to Degrees on Earth}

Convert 500 nautical miles to degrees, as measured along a great circle on the Earth. By default, the nm 2 deg function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3440.065 nautical miles.
```

deg = nm2deg(500)
deg = 8.3277

```

\section*{Convert Nautical Miles to Degrees on Sphere with Specified Radius}

Convert 500 nautical miles to degrees, as measured along a great circle on a sphere with a radius of 3432 nautical miles.
```

deg = nm2deg(500,3432)
deg = 8.3473

```

\section*{Input Arguments}
nm - Distance in nautical miles
numeric array

Distance in nautical miles, specified as a numeric array.
Data Types: single | double

\section*{radius - Radius}
3440.065 (default) | numeric scalar

Radius of sphere in units of nautical miles, specified as a numeric scalar.
sphere - Sphere
'sun' | 'moon' | 'mercury' | 'venus' | 'earth' | ...
Sphere approximating an object in the Solar System, specified as one of the following values: 'sun', 'moon','mercury', 'venus','earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

\section*{Output Arguments}

\section*{deg - Distance in degrees}
numeric array
Distance in degrees, returned as a numeric array.
Data Types: single | double

\section*{See Also}
deg2rad | rad2deg \| deg2nm \| km2deg | sm2deg | nm2rad
Introduced in R2007a

\section*{nm2km}

Convert nautical miles to kilometers

\section*{Syntax}
\(\mathrm{km}=\mathrm{nm} 2 \mathrm{~km}(\mathrm{~nm})\)

\section*{Description}
\(\mathrm{km}=\mathrm{nm} 2 \mathrm{~km}(\mathrm{~nm})\) converts distances from nautical miles to kilometers.

\section*{Examples}

\section*{Convert Nautical Miles to Kilometers}

Convert 500 nautical miles to kilometers.
\(\mathrm{km}=\mathrm{nm} 2 \mathrm{~km}(500)\)
km = 926

\section*{Input Arguments}
nm - Distance in nautical miles
numeric array
Distance in nautical miles, specified as a numeric array.

\section*{Output Arguments}
km - Distance in kilometers
numeric array
Distance in kilometers, returned as a numeric array of the same size as nm .

\section*{See Also}

Functions
km2nm | deg2km | km2deg | deg2nm | nm2deg

Introduced in R2007a

\section*{nm2rad}

Convert spherical distance from nautical miles to radians

\section*{Syntax}
```

rad = nm2rad(nm)
rad = nm2rad(nm,radius)
rad = nm2rad(nm,sphere)

```

\section*{Description}
\(\operatorname{rad}=\mathrm{nm} 2 \mathrm{rad}(\mathrm{nm})\) converts distances from nautical miles to radians, as measured along a great circle on a sphere with a radius of 3440.065 nm , the mean radius of the Earth.
rad \(=\mathrm{nm} 2 \mathrm{rad}(\mathrm{nm}\), radius) converts distances from nautical miles to radians, as measured along a great circle on a sphere having the specified radius.
rad \(=\mathrm{nm} 2 \operatorname{rad}(\mathrm{~nm}, \mathrm{sphere})\) converts distances from nautical miles to radians, as measured along a great circle on a sphere approximating an object in the Solar System.

\section*{Examples}

\section*{Convert Nautical Miles to Radians on Earth}

Convert 500 nautical miles to radians, as measured along a great circle on the Earth. By default, the nm 2 rad function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3440.065 nautical miles.
```

rad = nm2rad(500)
rad = 0.1453

```

\section*{Convert Nautical Miles to Radians on Sphere with Specified Radius}

Convert 500 nautical miles to radians, as measured along a great circle on a sphere with a radius of 3432 nautical miles.
```

rad = nm2rad(500,3432)
rad = 0.1457

```

\section*{Input Arguments}
nm - Distance in nautical miles
numeric array

Distance in nautical miles, specified as a numeric array.
Data Types: single | double

\section*{radius - Radius}
3440.065 (default) | numeric scalar

Radius of sphere in units of nautical miles, specified as a numeric scalar.

\section*{sphere - Sphere}
'sun' | 'moon' | 'mercury' | 'venus' | 'earth' | ...
Sphere approximating an object in the Solar System, specified as one of the following values: 'sun', 'moon','mercury', 'venus','earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

\section*{Output Arguments}

\section*{rad - Distance in radians}
numeric array
Distance in radians, returned as a numeric array.
Data Types: single | double

\section*{See Also}
deg2rad | rad2deg | rad2nm | nm2deg | sm2rad | km2rad
Introduced in R2007a

\section*{nm2sm}

Convert nautical to statute miles

\section*{Syntax}
\(\mathrm{sm}=\mathrm{nm} 2 \mathrm{sm}(\mathrm{nm})\)

\section*{Description}
\(\mathrm{sm}=\mathrm{nm} 2 \mathrm{sm}(\mathrm{nm})\) converts distances from nautical miles to statute miles.

\section*{Examples}

\section*{Convert Nautical Miles to Statute Miles}

Convert 500 nautical miles to statute miles.
\(\mathrm{sm}=\mathrm{nm} 2 \mathrm{sm}(500)\)
sm \(=575.3886\)

\section*{Input Arguments}
nm - Distance in nautical miles
numeric array
Distance in nautical miles, specified as a numeric array.

\section*{Output Arguments}

\section*{sm - Distance in statute miles}
numeric array
Distance in statute miles, returned as a numeric array of the same size as nm .

\section*{See Also}

Functions
sm2nm | deg2nm | nm2deg | deg2sm | sm2deg

Introduced in R2007a

\section*{northarrow}

Add graphic element pointing to geographic North Pole

\section*{Syntax}
northarrow
northarrow('property', value,...)

\section*{Description}
northarrow creates a default north arrow.
northarrow('property', value, ...) creates a north arrow using the specified property/value pairs. Valid entries for properties are 'latitude', 'longitude', 'facecolor', 'edgecolor', 'linewidth', and 'scaleratio'. The 'latitude' and 'longitude' properties specify the location of the north arrow. The 'facecolor', 'edgecolor', and 'linewidth' properties control the appearance of the north arrow. The 'scaleratio' property represents the size of the north arrow as a fraction of the size of the axes. A 'scaleratio' value of 0.10 creates a north arrow onetenth (1/10) the size of the axes. You can change the appearance ('facecolor', 'edgecolor', and ' linewidth') of the north arrow using the set command.

The northarrow function creates a north arrow symbol at the map origin on the displayed map. You can reposition the north arrow symbol by clicking and dragging its icon. Alternatively, open a dialog box that you can use to change the location of the north arrow by right-clicking or Ctrl-clicking the arrow. The orientation of the north arrow is computed for you, and does not need manual adjustment, no matter where you move the symbol.

Modifying some of the properties of the north arrow results in replacement of the original object. Use HANDLEM ('NorthArrow') to get the handles associated with the north arrow.

\section*{Examples}

\section*{Add North Arrow to Map of Texas}

Create a map of Texas. Add the north arrow in the lower left of the map.
```

figure
usamap("texas")
states = readgeotable("usastatelo.shp");
faceColors = makesymbolspec("Polygon",...
{'INDEX',[1 numel(states)],'FaceColor',polcmap(height(states))});
geoshow(states,"DisplayType","polygon", "SymbolSpec", faceColors)
northarrow("Latitude",25,"Longitude",-105,"LineWidth",1.5);

```


Change the edge and face colors of the north arrow.
h = handlem("NorthArrow");
set(h,"FaceColor",[1 0.8431 0],"EdgeColor",[0.01 0.01 0.9])

\section*{Add North Arrows to Map of South Pole}

Create a map centered at the South Pole. Add a north arrow at a specified geographic position.
```

GT = readgeotable("landareas.shp");
antarctica = GT(GT.Name == "Antarctica",:);
figure
worldmap("south pole")
geoshow(antarctica)
northarrow("latitude",-57,"longitude",135);

```


Change the appearance of the north arrow.
h = handlem("NorthArrow");
set(h,"FaceColor", [1.000 0.8431 0.0000], ...
"EdgeColor", [0.0100 0.0100 0.9000])

Show that every direction from the South Pole is north by creating three more north arrows. Note that north arrows are objects in the axes with Cartesian coordinates, not mapping objects. As a result, if you create more than one north arrow, any Mapping Toolbox \({ }^{\mathrm{TM}}\) function that manipulates a north arrow will affect only the last one drawn.
```

northarrow("latitude",-57,"longitude", 45);
northarrow("latitude",-57,"longitude",225);
northarrow("latitude",-57,"longitude",315);

```


\section*{Limitations}

You can draw multiple north arrows on the map. However, the callbacks will only work with the most recently created north arrow. In addition, since it can be displayed outside the map frame limits, the north arrow is not converted into a "mapped" object. Hence, the location and orientation of the north arrow have to be updated manually if the map origin or projection changes.

\section*{See Also}
scaleruler
Introduced before R2006a

\section*{npi2pi}
(To be removed) Wrap longitudes to [-180 180] degree interval

Note The npi2pi function will be removed in a future release. Use the wrapTo180 or wrapToPi function instead..

\section*{Syntax}
```

anglout = npi2pi(anglin)
anglout = npi2pi(anglin,units)
anglout = npi2pi(anglin,units,method)

```

\section*{Description}
anglout \(=\) npi2pi(anglin) wraps the input angle anglin (typically representing a longitude) to lie on the range -180 to 180 (e.g., 270 \({ }^{\circ}\) is renamed \(-90^{\circ}\)).
anglout = npi2pi(anglin, units) specifies the angle units with any valid angle units character vector units. The default is 'degrees'.
anglout \(=\) npi2pi(anglin, units, method) allows special alternative computations to be used when npi2pi is called from within certain Mapping Toolbox functions. method can be one of the following:
- 'exact', for exact wrapping (the default value)
- 'inward', where angles are scaled by a factor of (1-deg2rad(1.0E-6)) before wrapping
- 'outward', where angles are scaled by a factor of \((1+\operatorname{deg} 2 \operatorname{rad}(1.0 \mathrm{E}-6))\) before wrapping

\section*{Examples}
```

npi2pi(315)
ans =
-45
npi2pi(181)
ans =
-179

```

\section*{See Also}
wrapToPi | wrapTo180

\section*{Introduced before R2006a}

\section*{oblateSpheroid}

Oblate ellipsoid of revolution

\section*{Description}

An oblateSpheroid object encapsulates the interrelated intrinsic properties of an oblate ellipsoid of revolution. An oblate spheroid is symmetric about its polar axis and flattened at the poles, and includes the perfect sphere as a special case.

\section*{Creation}

You can create an oblateSpheroid object, \(s\), by entering:
s = oblateSpheroid;
on the command line.

\section*{Properties}

\section*{SemimajorAxis - Equatorial radius of spheroid}

1 (default) | positive, finite scalar
Equatorial radius of spheroid, specified as a positive, finite scalar. The value of SemimajorAxis is expressed in meters.

When the SemimajorAxis property is changed, the SemiminorAxis property scales as needed to preserve the shape of the spheroid and the values of shape-related properties including InverseFlattening and Eccentricity. The only way to change the SemimajorAxis property is to set it directly, using dot notation.

\section*{Example: 6378137}

Data Types: double

\section*{SemiminorAxis - Distance from center of spheroid to pole}

1 (default) | nonnegative, finite scalar
Distance from center of spheroid to pole, specified as a nonnegative, finite scalar. The value of SemiminorAxis is always less than or equal to SemimajorAxis, and is expressed in meters.

When the SemiminorAxis property is changed, the SemimajorAxis property remains unchanged, but the shape of the spheroid changes, which is reflected in changes in the values of InverseFlattening, Eccentricity, and other shape-related properties.

Example: 6356752
Data Types: double

\section*{InverseFlattening - Reciprocal of flattening}

Inf (default) | positive scalar in the range [1, Inf]

Reciprocal of flattening, specified as positive scalar in the range [1, Inf].
The value of inverse flattening, \(1 / f\), is calculated using SemimajorAxis value \(a\) and SemiminorAxis value \(b\) according to \(1 / f=a /(a-b)\). A value \(1 / f\) of Inf designates a perfect sphere. As \(1 / f\) approaches 1 , the reference spheroid approaches a flattened disk.

When the InverseFlattening property is changed, other shape-related properties update, including Eccentricity. The SemimajorAxis property remains unchanged, but the value of SemiminorAxis adjusts to reflect the new shape.

Example: 300
Data Types: double

\section*{Eccentricity - First eccentricity of spheroid}

0 (default) | nonnegative scalar in the range [0,1]
First eccentricity of the spheroid, specified as nonnegative scalar in the range [0, 1].
The value of eccentricity, ecc, is calculated using SemimajorAxis value \(a\) and SemiminorAxis value \(b\) according to \(e c c=\operatorname{sqrt}\left(a^{2}-b^{2}\right) / a\). A value ecc of 0 designates a perfect sphere.

When the Eccentricity property is changed, other shape-related properties update, including InverseFlattening. The SemimajorAxis property remains unchanged, but the value of SemiminorAxis adjusts to reflect the new shape.

Example: 0.08
Data Types: double

\section*{Flattening - Flattening of spheroid}
nonnegative scalar in the range [0, 1]
This property is read-only.
Flattening of the spheroid, specified as nonnegative scalar in the range [0, 1].
The value of flattening, \(f\), is calculated using SemimajorAxis value \(a\) and SemiminorAxis value \(b\) according to \(f=(a-b) / a\).

Data Types: double

\section*{ThirdFlattening - Third flattening of spheroid}
nonnegative scalar in the range \([0,1]\)
This property is read-only.
Third flattening of the spheroid, specified as nonnegative scalar in the range \([0,1]\).
The value of the third flattening, \(n\), is calculated using SemimajorAxis value \(a\) and SemiminorAxis value \(b\) according to \(n=(a-b) /(a+b)\).
Data Types: double

\section*{MeanRadius - Mean radius of the spheroid}
positive, finite scalar
This property is read-only.

Mean radius of the spheroid, specified as positive, finite scalar. The MeanRadius property is expressed in meters.

The mean radius of the spheroid, \(r\), is calculated using SemimajorAxis value \(a\) and SemiminorAxis value \(b\) according to \(r=(2 a+b) / 3\).
Data Types: double

\section*{SurfaceArea - Surface area of the spheroid \\ positive, finite scalar}

This property is read-only.
Surface area of the spheroid, specified as positive, finite scalar. The SurfaceArea property is expressed in square meters.
Data Types: double

\section*{Volume - Volume of the spheroid}
positive, finite scalar
This property is read-only.
Volume of the spheroid, specified as positive, finite scalar. The Volume property is expressed in cubic meters.
Data Types: double

\section*{Examples}

\section*{Create GRS 80 Ellipsoid}

Create a GRS 80 ellipsoid using the oblateSpheroid class.
Start with a unit sphere by default.
```

s = oblateSpheroid
s =
oblateSpheroid with defining properties:
SemimajorAxis: 1
SemiminorAxis: 1
InverseFlattening: Inf
Eccentricity: 0
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

```

Reset the semimajor axis to match the equatorial radius of the GRS 80 reference ellipsoid.
```

s.SemimajorAxis = 6378137
s =
oblateSpheroid with defining properties:
SemimajorAxis: 6378137
SemiminorAxis: 6378137
InverseFlattening: Inf
Eccentricity: 0
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

```

The result is a sphere with radius \(6,378,137\) meters.
Reset the inverse flattening to the standard value for GRS 80, resulting in an oblate spheroid with a semiminor axis consistent with the value, 6,356,752.3141, tabulated in DMA Technical Memorandum 8358.1, "Datums, Ellipsoids, Grids, and Grid Reference Systems."
```

s.InverseFlattening = 298.257222101
S =
oblateSpheroid with defining properties:
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

```

\section*{Tips}
- When you define a spheroid in terms of semimajor and semiminor axes (rather than semimajor axis and inverse flattening, or semimajor axis and eccentricity), a small loss of precision in the last few digits of Flattening, Eccentricity, and ThirdFlattening may occur. This is unavoidable, but does not affect the results of practical computation.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{rm}}\).

\section*{See Also}
referenceEllipsoid| referenceSphere|validateLengthUnit
Introduced in R2012a

\section*{onem}
(To be removed) Construct regular data grid of 1s

Note onem will be removed in a future release. Use the georefcells and ones functions instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[Z,refvec] = onem(latlim,lonlim,scale)

\section*{Description}
[\(Z\), refvec] = onem(latlim, lonlim, scale) returns a regular data grid consisting entirely of 1 s and a three-element referencing vector for the returned data grid, \(Z\). The two-element vectors latlim and lonlim define the latitude and longitude limits of the geographic region. They should be of the form [south north] and [west east], respectively. The scalar scale specifies the number of rows and columns per degree of latitude and longitude.

\section*{Examples}
[Z,refvec] \(=\) onem([46,51],[-79,-75],1)
\begin{tabular}{rrrr}
\(\mathrm{Z}=\) & & & \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
refvec \(=\) & & & \\
1 & 51 & -79 &
\end{tabular}

\section*{Compatibility Considerations}

\section*{onem will be removed}

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the onem function. Instead, create a geographic raster reference object using the georefcells function and a matrix of ones using the ones function. Reference objects have several advantages over referencing vectors.
- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows how to update your code to use the georefcells and ones functions instead of the onem function.
\begin{tabular}{|l|l|}
\hline Will Be Removed & Recommended \\
\hline\([Z\), refvec \(]=\) onem(latlim,lonlim, scale); & \begin{tabular}{l}
R = georefcells(latlim,lonlim,1/scale,1/scale); \\
\(Z=\) ones(R.RasterSize);
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

NaN | sparse| zeros | georefcells|ones
Introduced before R2006a

\section*{org2pol}

Location of north pole in rotated map

\section*{Syntax}
pole = org2pol(origin)
pole = org2pol(origin,units)

\section*{Description}
pole \(=\) org2pol(origin) returns the location of the North Pole in terms of the coordinate system after transformation based on the input origin. The origin is a three-element vector of the form [latitude longitude orientation], where latitude and longitude are the coordinates that the new center (origin) had in the untransformed system, and orientation is the azimuth of the true North Pole from the new origin point in the transformed system. The output pole is a threeelement vector of the form [latitude longitude meridian], which gives the latitude and longitude point in terms of the original untransformed system of the new location of the true North Pole. The meridian is the longitude from the original system upon which the new system is centered.
pole = org2pol(origin, units) allows the specification of the angular units of the origin vector, where units is any valid angle unit. The default is 'degrees'.

When developing transverse or oblique projections, transformed coordinate systems are required. One way to define these systems is to establish the point at which, in terms of the original (untransformed) system, the (transformed) true North Pole will lie.

\section*{Examples}

Perhaps you want to make (\(30^{\circ} \mathrm{N}, 0^{\circ}\)) the new origin. Where does the North Pole end up in terms of the original coordinate system?
```

pole = org2pol([30 0 0])
pole =
60.0000 0 0

```

This makes sense: pull a point \(30^{\circ}\) down to the origin, and the North Pole is pulled down \(30^{\circ}\). A little less obvious example is the following:
```

pole = org2pol([5 40 30])
pole =
59.6245 80.0750 40.0000

```

\section*{See Also}
neworig| putpole

\section*{outlinegeoquad}

Polygon outlining geographic quadrangle

\section*{Syntax}
[lat,lon] = outlinegeoquad(latlim,lonlim,dlat,dlon)

\section*{Description}
[lat,lon] = outlinegeoquad(latlim,lonlim,dlat,dlon) constructs a polygon that traces the outline of the geographic quadrangle defined by latlim and lonlim. Such a polygon can be useful for displaying the quadrangle graphically, especially on a projection where the meridians and/or parallels do not project to straight lines. lat lim is a two-element vector of the form: [southern-limit northern-limit] and lonlim is a two-element vector of the form: [western-limit eastern-limit]. dlat is a positive scalar that specifies a minimum vertex spacing in degrees to be applied along the meridians that bound the eastern and western edges of the quadrangle. Likewise, dlon is a positive scalar that specifies a minimum vertex spacing in degrees of longitude to be applied along the parallels that bound the northern and southern edges of the quadrangle. The outputs lat and lon contain the vertices of a simple closed polygon with clockwise vertex ordering.

\section*{Examples}

Display the outlines of three geographic quadrangles having very different qualities on top of a simple base map:
```

figure('Color','white')
axesm('ortho','Origin',[-45 110],'frame','on','grid','on')
axis off
load coastlines
geoshow(coastlat, coastlon)
% Quadrangle covering Australia and vicinity
[lat, lon] = outlinegeoquad([-45 5],[110 175],5,5);
geoshow(lat,lon,'DisplayType','polygon','FaceAlpha',0.5);
% Quadrangle covering Antarctic region
antarcticCircleLat = dms2degrees([-66 33 39]);
[lat, lon] = outlinegeoquad([-90 antarcticCircleLat], ...
[-180 180],5,5);
geoshow(lat,lon,'DisplayType','polygon', ...
'FaceColor','cyan','FaceAlpha',0.5);
% Quadrangle covering nominal time zone 9 hours ahead of UTC
[lat, lon] = outlinegeoquad([-90 90], 135 + [-7.5 7.5], 5, 5);
geoshow(lat,lon,'DisplayType','polygon', ...
'FaceColor','green','FaceAlpha',0.5);

```


\section*{Tips}

All input and output angles are in units of degrees. Choose a reasonably small value for dlat (a few degrees, perhaps) when using a projection with curved meridians or curved parallels.

To avoid interpolating extra vertices along meridians or parallels, set dlat or dlon to a value of Inf.

\section*{Special Cases}

The insertion of additional vertices is suppressed at the poles (that is, if latlim(1) == -90 or latlim(2) == 90. If lonlim corresponds to a quadrangle width of exactly 360 degrees (lonlim == [-180 180], for example), then it covers a full latitudinal zone and includes two separate, NaNseparated parts, unless either
- \(\operatorname{lat} \lim (1)==-90\) or \(\operatorname{latlim}(2)==90\), so that only one part is needed-a polygon that follows a parallel clockwise around one of the poles.
- \(\operatorname{lat} \lim (1)==-90\) and \(\operatorname{latlim}(2)==90\), so that the quadrangle encompasses the entire planet. In this case, the quadrangle cannot be represented by a latitude-longitude polygon, and an error results.

\section*{See Also}
ingeoquad |intersectgeoquad

\section*{Introduced in R2008a}

\section*{paperscale}

Set figure properties for printing at specified map scale

\section*{Syntax}
```

paperscale(paperdist,punits,surfdist,sunits)
paperscale(paperdist,punits,surfdist,sunits,lat,long)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits,
radius)
paperscale(scale,...)
[paperXdim,paperYdim] = paperscale(...)

```

\section*{Description}
paperscale(paperdist, punits, surfdist, sunits) sets the figure paper position to print the map in the current axes at the desired scale. The scale is described by the geographic distance that corresponds to a paper distance. For example, a scale of 1 inch \(=10\) kilometers is specified as degrees (1, 'inch', 10, ' \(k m\) '). See below for an alternate method of specifying the map scale. The surface distance units sunits can be any unit recognized by units ratio. The paper units punits can be any dimensional units recognized for the figure PaperUnits property.
paperscale(paperdist, punits,surfdist, sunits,lat,long) sets the paper position so that the scale is correct at the specified geographic location. If omitted, the default is the center of the map limits.
paperscale(paperdist, punits,surfdist, sunits, lat,long,az) also specifies the direction along which the scale is correct. If omitted, 90 degrees (east) is assumed.
paperscale(paperdist, punits,surfdist,sunits,lat,long,az,gunits) also specifies the units in which the geographic position and direction are given. If omitted, ' degrees' is assumed.
paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits, radius) uses the last input to determine the radius of the sphere. radius can be one of the values supported by km2deg, or it can be the (numerical) radius of the desired sphere in zunits. If omitted, the default radius of the Earth is used..
paperscale(scale, ...), where the numeric scale replaces the two property/value pairs, specifies the scale as a ratio between distance on the sphere and on paper. This is commonly notated on maps as 1:scale (e.g. 1:100 000, or 1:1 000000). For example, paperscale (100000) or paperscale(100000, lat,long).
[paperXdim, paperYdim] = paperscale(...) returns the computed paper dimensions. The dimensions are in the paper units specified. For the scale calling form, the returned dimensions are in centimeters.

\section*{Background}

Maps are usually printed at a size that allows an easy comparison of distances measured on paper to distances on the Earth. The relationship of geographic distance and paper distance is termed scale. It is usually expressed as a ratio, such as 1 to 100,000 or \(1: 100,000\) or \(1 \mathrm{~cm}=1 \mathrm{~km}\).

\section*{Examples}

The small circle measures 10 cm across when printed.
```

axesm mercator
[lat,lon] = scircle1(0,0,km2deg(5));
plotm(lat,lon)
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
13.154 12.509
set(gca,'pos', [ 0 0 1 1])
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]
ans =
10.195 10.195

```

\section*{Limitations}

The relationship between the paper and geographic coordinates holds only as long as there are no changes to the display that affect the axes limits or the relationship between geographic coordinates and projected coordinates. Changes of this type include the ellipsoid or scale factor properties of the map axes, or adding elements to the display that cause MATLAB to modify the axes autoscaling. To be sure that the scale is correct, execute paperscale just before printing.

\section*{See Also}
printpreview|axesscale|daspectm

\section*{Introduced before R2006a}

\section*{parametricLatitude}

Convert geodetic to parametric latitude

\section*{Syntax}
```

beta = parametricLatitude(phi,F)
beta = parametricLatitude(phi,F,angleUnit)

```

\section*{Description}
beta \(=\) parametricLatitude(phi,F) returns the parametric latitude corresponding to geodetic latitude phi on an ellipsoid with flattening F .
beta \(=\) parametricLatitude(phi,F,angleUnit) specifies the units of input phi and output beta.

\section*{Examples}

\section*{Convert Geodetic Latitude to Parametric Latitude}

Create a reference ellipsoid and then convert the geodetic latitude to parametric latitude. The reference ellipsoid contains a flattening factor.
```

s = wgs84Ellipsoid;
parametricLatitude(45, s.Flattening)
ans =
44.9038

```

\section*{Convert Geodetic Latitude Expressed in Radians to Parametric Latitude}

Create a reference ellipsoid and then convert a parametric latitude expressed in radians to geodetic latitude. The reference ellipsoid contains a flattening factor.
```

s = wgs84Ellipsoid;

```
parametricLatitude(pi/3, s.Flattening, 'radians')
ans \(=\)
1.0457

\section*{Input Arguments}
phi - Geodetic latitude of one or more points
scalar value, vector, matrix, or N-D array

Geodetic latitude of one or more points, specified as a scalar value, vector, matrix, or N-D array. Values must be in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.
Data Types: single | double

\section*{F - Flattening of reference spheroid}
scalar
Flattening of reference spheroid, specified as a scalar value.
Data Types: single|double
angleUnit - Unit of measurement for angle
'degrees' (default)|'radians'
Unit of measurement for angle, specified as 'degrees ' or 'radians '.
Data Types: char \| string

\section*{Output Arguments}

\section*{beta - Parametric latitudes of one or more points}
scalar value, vector, matrix, or N-D array
Parametric latitudes of one or more points, returned as a scalar value, vector, matrix, or N-D array. Values are in units that match the input argument angleUnit, if supplied, and in degrees, otherwise.

\section*{See Also}

\section*{Functions}
geocentricLatitude | geodeticLatitudeFromParametric
Objects
AuthalicLatitudeConverter|ConformalLatitudeConverter|
IsometricLatitudeConverter|RectifyingLatitudeConverter
Introduced in R2013a

\section*{patchesm}

Project patches on map axes as individual objects

\section*{Syntax}
```

patchesm(lat,lon,cdata)
patchesm(lat,lon,z,cdata)
patchesm(...,'PropertyName',PropertyValue,....)
h = patchesm(...)

```

\section*{Description}
patchesm(lat,lon, cdata) projects 2-D patch objects onto the current map axes. The input latitude and longitude data must be in the same units as specified in the current map axes. The input cdata defines the patch face color. If the input vectors are NaN clipped, then multiple patches are drawn each with a single face. Unlike fillm and fill3m, patchesm will always add the patches to the current map regardless of the current hold state.
patchesm(lat,lon, z,cdata) projects 3-D planar patches at the uniform elevation given by scalar z.
patchesm(...,'PropertyName',PropertyValue,...) uses the patch properties supplied to display the patch. Except for xdata, ydata, and zdata, all patch properties available through patch are supported by patchesm.
\(\mathrm{h}=\) patchesm (...) returns the handles to the patch objects drawn.

\section*{Examples}

\section*{Plot Distinct Patch Objects on Current Map Axes}

Plot coastline data as distinct patch objects.
```

load coastlines
axesm sinusoid;
framem
h = patchesm(coastlat,coastlon,'b');

```

```

% Number of objects created.
length(h)
ans = 241

```

\section*{Tips}

\section*{Differences between patchesm and patchm}

The patchesm function is very similar to the patchm function. The significant difference is that in patchesm, separate patches (delineated by NaNs in the inputs lat and lon) are separated and plotted as distinct patch objects on the current map axes. The advantage to this is that less memory is required. The disadvantage is that multifaced objects cannot be treated as a single object. For example, the archipelago of the Philippines cannot be treated and handled as a single Handle Graphics \({ }^{\circledR}\) object.

\section*{When Patches Are Completely Trimmed Away}

Removing graphic objects that fall outside the map frame is called trimming. If, after trimming no polygons remain to be seen within it, patchesm creates no patches and returns an empty 1-by-0 list of handles. When this occurs, automatic reprojection of the patch data (by changing the projection or any of its parameters) is not possible. In cases where some polygons are completely trimmed away but not others, handles returned for the trimmed polygons will be empty. No polygons or rings that have been totally trimmed away can be reprojected; to plot them again, you will need to call patchesm again with the original data.

\section*{See Also}
geoshow|fill3m|fillm|patchm
Introduced before R2006a

\section*{patchm}

Project patch objects on map axes

\section*{Syntax}
h = patchm(lat,lon, cdata)
h = patchm(lat,lon,cdata,PropertyName,PropertyValue,...)
h = patchm(lat,lon,PropertyName,PropertyValue,...)
h = patchm(lat,lon, z, cdata)
h = patchm(lat,lon,z,cdata, PropertyName,PropertyValue,...)

\section*{Description}
h = patchm(lat,lon,cdata) and h =
patchm(lat,lon,cdata, PropertyName,PropertyValue,...) project and display patch (polygon) objects defined by their vertices given in lat and lon on the current map axes. lat and lon must be vectors. The color data, cdata, can be any color data designation supported by the standard MATLAB patch function. The object handle or handles, h , can be returned.
h = patchm(lat,lon,PropertyName,PropertyValue,...) allows any property name/property value pair supported by patch to be assigned to the patchm object. Except for XData, YData, and ZData, all line properties and styles available through patch are supported by patchm.
h = patchm(lat,lon, z,cdata) and h = patchm(lat,lon, \(\mathrm{z}, \mathrm{cdata}\),
PropertyName, PropertyValue, ...) allow the assignment of an altitude, \(z\), to each patch object. The default altitude is \(z=0\).

\section*{Examples}

\section*{Project Patch Object on Map Axes}

Project coastline data as single patch object on map axes.
```

load coastlines
axesm sinusoid;
framem
h = patchm(coastlat,coastlon,'b');

```

length(h)
ans \(=1\)

\section*{Tips}

\section*{How patchm Works}

This Mapping Toolbox function is very similar to the standard MATLAB patch function. Like its analog, and unlike higher level functions such as fillm and fill3m, patchm adds patch objects to the current map axes regardless of hold state.

\section*{When A Patch Is Completely Trimmed Away}

Removing graphic objects that fall outside the map frame is called trimming. If, after trimming to the map frame no polygons remain to be seen within it, patchm creates no patches and returns an empty 0 -by- 1 handle. When this occurs, automatic reprojection of the patch data (by changing the projection or any of its parameters) will not be possible. Instead, after changing the projection, call patchm again.

\section*{See Also}
patchesm|fill3m|fillm

Introduced before R2006a

\section*{pcolorm}

Project regular data grid on map axes in \(\mathrm{z}=0\) plane

\section*{Syntax}
pcolorm(lat,lon, Z)
pcolorm(latlim,lonlim,Z)
pcolorm(..., prop1,val1, prop2,val2,...)
h = pcolorm(...)

\section*{Description}
pcolorm(lat,lon, \(Z\)) constructs a surface to represent the data grid \(Z\) in the current map axes. The surface lies flat in the horizontal plane with its CData property set to \(Z\). Lat and lon are vectors or 2-D arrays that define the latitude-longitude graticule mesh on which \(Z\) is displayed. For a complete description of the various forms that lat and lon can take, see surfm. If the hold state is 'off', pcolorm clears the current map.
pcolorm(latlim, lonlim, Z) defines the graticule using the latitude and longitude limits latlim and lonlim. These limits should match the geographic extent of \(Z\), the data grid. Latlim is a twoelement vector of the form:
[southern_limit northern_limit]
Likewise, lonlim has the form:
[western_limit eastern_limit]
A latitude-longitude graticule of size 50-by-100 is constructed. The surface FaceColor property is 'texturemap', except when \(Z\) is precisely 50 -by-100, in which case it is 'flat'.
pcolorm(..., prop1, val1, prop2, val2,...) applies additional MATLAB graphics properties to the surface via property/value pairs. Any property accepted by the surface may be specified, except for XData, YData, and ZData.
\(\mathrm{h}=\mathrm{pcolorm}(\ldots\)) returns a handle to the surface object.

\section*{Examples}

Load elevation raster data and a geographic cells reference object. Then, display the data as a surface.
```

load topo60c
axesm miller
axis off
framem on
gridm on
[topo60c,topo60cR] = geocrop(topo60c,topo60cR,[-90 90],[-180,180]);
[lat,lon] = geographicGrid(topo60cR);
pcolorm(lat,lon,topo60c)

```
demcmap(topo60c)
tightmap

\section*{Tips}

This function warps a data grid to a graticule mesh, which is projected according to the map axes property MapProjection. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting it. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need fewer graticule points in the longitudinal direction than do complex curve-generating projections.

\section*{See Also}
geoshow | geographicGrid | meshm | surfacem | surfm

\section*{Introduced before R2006a}

\section*{pix2latlon}
(To be removed) Convert pixel coordinates to latitude-longitude coordinates

Note The pix2latlon function will be removed in a future release. Use the intrinsicToGeographic function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
[lat, lon] = pix2latlon(R,row,col)

\section*{Description}
[lat, lon] = pix2latlon(R,row, col) calculates latitude-longitude coordinates lat, lon from pixel coordinates row, col. \(R\) is either a 3-by-2 referencing matrix that transforms intrinsic pixel coordinates to geographic coordinates, or a geographic raster reference object. row and col are vectors or arrays of matching size. The outputs lat and lon have the same size as row and col.

\section*{Examples}

Find the latitude and longitude of the upper left outer corner of a gridded data set.
```

load korea5c
[UL_lat,UL_lon] = pix2latlon(korea5cR,0.5,0.5)

```

The output appears as follows:
UL_lat =
30

UL_lon =
115

\section*{Compatibility Considerations}

\section*{pix2latlon will be removed}

Not recommended starting in R2021b
Some functions that accept referencing matrices as input will be removed, including the pix2latlon function. Use a geographic raster reference object and the intrinsicToGeographic function instead. Reference objects have several advantages over referencing matrices.
- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing matrix to a reference object using the refmatToGeoRasterReference function.

Then, replace uses of the pix2latlon function with the intrinsicToGeographic function according to this pattern.
\begin{tabular}{|l|l|}
\hline Will Be Removed & Recommended \\
\hline\([\) lat, lon \(]=\) pix2latlon \((R, r o w, c o l) ;\) & {\([l a t, l o n]=\) intrinsicToGeographic \((R, c o l, r o w)\); } \\
\hline
\end{tabular}

\section*{See Also}
geographicToIntrinsic|intrinsicToWorld|intrinsicToGeographic

Introduced before R2006a

\section*{pix2map}
(To be removed) Convert pixel coordinates to map coordinates

Note The pix2map function will be removed in a future release. Use the intrinsicToWorld function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
\([x, y]=\operatorname{pix} 2 m a p(R, r o w, c o l)\)
\(\mathrm{s}=\mathrm{pix} 2 \mathrm{map}(\mathrm{R}\), row, col)
[...] \(=\operatorname{pix2map}(R, p)\)

\section*{Description}
\([x, y]=\operatorname{pix} 2 m a p(R, r o w, c o l)\) calculates map coordinates \(x, y\) from pixel coordinates row, col. \(R\) is either a 3 -by-2 referencing matrix defining a two-dimensional affine transformation from intrinsic pixel coordinates to map coordinates, or a map raster reference object. row and col are vectors or arrays of matching size. The outputs \(x\) and \(y\) have the same size as row and col.
\(\mathrm{s}=\mathrm{pix} 2 \mathrm{map}(\mathrm{R}, \mathrm{row}, \mathrm{col})\) combines x and y into a single array s . If row and col are column vectors of length \(n\), then \(s\) is an \(n\)-by-2 matrix and each row (\(s(k,:)\)) specifies the map coordinates of a single point. Otherwise, s has size [size(row) 2], and s(k1, k2, ..., kn, :) contains the map coordinates of a single point.
\([\ldots]=\operatorname{pix} 2 m a p(R, p)\) combines row and col into a single array \(p\). If row and col are column vectors of length \(n\), then \(p\) should be an \(n\)-by-2 matrix such that each row (\(p(k,:)\)) specifies the pixel coordinates of a single point. Otherwise, p should have size [size(row) 2], and \(\mathrm{p}(\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn}, \mathrm{:})\) should contain the pixel coordinates of a single point.

\section*{Examples}
\% Find the map coordinates for the pixel at \((100,50)\).
[X, cmap] = imread('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw','planar',size(X));
\([x, y]=\operatorname{pix} 2 m a p(R, 100,50) ;\)

\section*{Compatibility Considerations}

\section*{pix2map will be removed}

Not recommended starting in R2021b
Some functions that accept referencing matrices as input will be removed, including the pix2map function. Use a map raster reference object and the intrinsicToWorld function instead. Reference objects have several advantages over referencing matrices.
- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the MapPostingsReference and MapCellsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the maprefcells function or a raster of regularly posted samples using the maprefpostings function. Alternatively, convert from a referencing matrix to a reference object using the refmatToMapRasterReference function.

Then, replace uses of the pix2map function with the intrinsicToWorld function according to these patterns.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline \([x, y]=\) pix2map(R, row,col) ; & [\(\mathrm{x}, \mathrm{y}\)] = intrinsicToWorld(R,col, row) ; \\
\hline s = pix2map(R, row, col) ; & \begin{tabular}{l}
If row and col are column vectors:
\[
\begin{aligned}
& {[x, y]=\text { intrinsicToWorld }(R, c o l, \text { row }) ;} \\
& s=[x y] ;
\end{aligned}
\] \\
If row and col have size \(M-b y-N\) or \(1-b y-N\) :
\[
\begin{aligned}
& {[x, y]=\text { intrinsicToWorld }(R, \text { col }, \text { row }) ;} \\
& \mathrm{s}=\text { cat }(3, x, y) ;
\end{aligned}
\]
\end{tabular} \\
\hline [\(\mathrm{x}, \mathrm{y}\)] = \(\operatorname{pix} 2 \mathrm{map}(\mathrm{R}, \mathrm{p})\); & \begin{tabular}{l}
If p has size \(N\)-by-2: \\
\([\mathrm{x}, \mathrm{y}]=\) intrinsicToWorld(R,p(:,2),p(:,1));
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
worldToIntrinsic|intrinsicToGeographic|worldfileread|intrinsicToWorld

\section*{Introduced before R2006a}

\section*{pixcenters}
(To be removed) Compute pixel centers for georeferenced image or data grid

Note The pixcenters function will be removed in a future release. Use the geographicGrid or worldGrid function instead. For more information, see "Compatibility Considerations".

\section*{Syntax}
\([x, y]=\) pixcenters(\(R\), height,width)
\([x, y]=\) pixcenters(r,sizea)
[\(\mathrm{x}, \mathrm{y}\)] = pixcenters(..., 'makegrid')

\section*{Description}
\([x, y]=\) pixcenters(R,height,width) returns the spatial coordinates of a spatially-referenced image or regular gridded data set. R is either a 3 -by-2 referencing matrix defining a 2 -dimensional affine transformation from intrinsic pixel coordinates to map coordinates, or a MapCellsReference object. height and width are the image dimensions. If \(r\) does not include a rotation (i.e., \(r(1,1)=\) \(r(2,2)=0\)), then \(x\) is a 1 -by-width vector and \(y\) is a 1 -by-height vector. In this case, the spatial coordinates of the pixel in row row and column col are given by x (col), y (row). Otherwise, x and \(y\) are each a height-by-width matrix such that \(x(c o l, r o w), y(c o l, r o w)\) are the coordinates of the pixel with subscripts (row, col).
\([x, y]=\) pixcenters(r, sizea) accepts the size vector sizea \(=\) [height, width, ...] instead of height and width.
[\(\mathrm{x}, \mathrm{y}\)] = pixcenters(info) accepts a scalar structure array with the fields
\begin{tabular}{ll}
'RefMatrix' & 3-by-2 referencing matrix \\
'Height' & Scalar number \\
'Width' & Scalar number
\end{tabular}
[\(x, y\)] = pixcenters(..., 'makegrid') returns \(x\) and \(y\) as height-by-width matrices even if \(r\) is irrotational. This syntax can be helpful when you call pixcenters from within a function or script.

\section*{Examples}
```

[Z,R] = readgeoraster('MtWashington-ft.grd','OutputType','double');
info = georasterinfo('MtWashington-ft.grd');
Z = standardizeMissing(Z,info.MissingDataIndicator);
figure
[x,y] = pixcenters(R,size(Z));
h = surf(x,y,Z);
axis equal
demcmap(Z)
set(h,'EdgeColor','none')
xlabel('x (easting in meters)')

```
```

ylabel('y (northing in meters)')

```
zlabel('elevation in feet')

\section*{Tips}
pixcenters is useful for working with surf, mesh, or surface, and for coordinate transformations.

\section*{Compatibility Considerations}

\section*{pixcenters will be removed}

Not recommended starting in R2021a
Some functions that accept referencing matrices as input will be removed, including the pixcenters function. Use a raster reference object and the geographicGrid or worldGrid function instead. Reference objects have several advantages over referencing matrices.
- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and MapCellsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

Depending on the pixcenters function syntax, there are different ways to update your code.
- If the raster is referenced to projected \(x-y\) coordinates, use a map raster reference object and the worldGrid function. This table shows replacement patterns for the pixcenters function syntaxes that specify a referencing matrix refmat, scalar structure info, or GeoTIFF information structure geoinfo. Note that the default behavior of the pixcenters function is to return row vectors and the default behavior of the worldGrid function is to return 2-D arrays. To return row vectors using the worldGrid function, specify the second argument as 'gridvectors'.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [X, Y] = pixcenters(refmat, height,width) ; & R = refmatToMapRasterReference(refmat, [height widt \([\mathrm{X}, \mathrm{Y}]=\) worldGrid(R,'gridvectors'); \\
\hline [\(\mathrm{X}, \mathrm{Y}]=\) pixcenters(refmat, rasterSize) ; & \[
\begin{aligned}
& \mathrm{R}=\text { refmatToMapRasterReference(refmat,rasterSize); } \\
& {[\mathrm{X}, \mathrm{Y}]=\text { worldGrid(R,'gridvectors'); }}
\end{aligned}
\] \\
\hline [\(\mathrm{X}, \mathrm{Y}]=\) pixcenters(info); & \[
\begin{array}{|l}
\mathrm{R}=\text { refmatToMapRasterReference(} \ldots \\
\text { info. RefMatrix, [info.Height info.Widdth]); } \\
{[\mathrm{X}, \mathrm{Y}]=\text { worldGrid(R,'gridvectors'); }}
\end{array}
\] \\
\hline [X,Y] = pixcenters(geoinfo); & \([\mathrm{X}, \mathrm{Y}]=\) worldGrid(geoinfo.SpatialRef,'gridvectors' \\
\hline
\end{tabular}

If the TransformationType property of the reference object \(R\) is 'affine', the \([x, y]=\) worldgrid(R,'gridvectors') syntax displays a warning. Temporarily suppress the warning by including this code before the call to the worldGrid function.
```

w = warning('off','map.spatialref.fullGridForAffine');
c = onCleanup(@() warning(w));

```
- If the raster is referenced to latitude and longitude coordinates, use a geographic raster reference object and the geographicGrid function. This table shows replacement patterns for function syntaxes that specify a referencing matrix refmat or scalar structure info. Note that the default behavior of the pixcenters function is to return row vectors and the default behavior of the geographicGrid function is to return 2-D arrays. To return row vectors using the geographicGrid function, specify the second argument as 'gridvectors'.
\begin{tabular}{|c|c|}
\hline Will Be Removed & Recommended \\
\hline [lon,lat] = pixcenters(refmat,height,wid & th); refmatToGeoRasterReference(refmat, [height widt [lat,lon] = geographicGrid(R,'gridvectors'); \\
\hline [lon,lat] = pixcenters(refmat,rasterSize & \begin{tabular}{l}
R; = refmatToGeoRasterReference(refmat, rasterSize) ; \\
[lat,lon] = geographicGrid(R,'gridvectors');
\end{tabular} \\
\hline [lon,lat] = pixcenters(info) ; & \[
\begin{array}{|l}
\hline \mathrm{R}=\text { refmatToGeoRasterReference(... } \\
\text { info.RefMatrix, [info.Height info.Widdth]); } \\
{[\text { lat, lon] = geographicGrid(R,'gridvectors'); }}
\end{array}
\] \\
\hline
\end{tabular}

\section*{See Also}

\section*{Functions}
readgeoraster|mapoutline|intrinsicToWorld|worldfileread|mapshow|
geographicGrid |worldGrid

\section*{Objects}

MapCellsReference

\section*{Introduced before R2006a}

\section*{plabel}

Toggle and control display of parallel labels

\section*{Syntax}
plabel
plabel('on')
plabel('off')
plabel(meridian)
plabel(MapAxesPropertyName,PropertyValue,...)

\section*{Description}
plabel toggles the visibility of parallel labeling on the current map axes.
plabel('on') sets the visibility of parallel labels to 'on'.
plabel('off') sets the visibility of parallel labels to 'off'.
plabel('reset') resets the displayed parallel labels using the currently defined parallel label properties.
plabel(meridian) sets the value of the PLabelMeridian property of the map axes to the value meridian. This determines the meridian upon which the labels are placed (see axesm). The options for meridian are a scalar longitude or 'east', 'west', or 'prime'.
plabel(MapAxesPropertyName, PropertyValue, ...) allows paired map axes property names and property values to be passed in. For a complete description of map axes properties, see the axesm reference page.

Parallel label handles can be returned in h if desired.

\section*{See Also}
axesm| setm|mlabel

\section*{Introduced before R2006a}

\section*{plot3m}

Project 3-D lines and points on map axes

\section*{Syntax}
h = plot3m(lat,lon,z)
h = plot3m(lat,lon, LineSpec)
h = plot3m(lat,lon,PropertyName, PropertyValue,...)

\section*{Description}
\(h=p l o t 3 m(l a t, l o n, z)\) displays projected line objects on the current map axes. lat and lon are the latitude and longitude coordinates, respectively, of the line object to be projected. Note that this ordering is conceptually reversed from the MATLAB line function, because the vertical (\(y\)) coordinate comes first. However, the ordering latitude, then longitude, is standard geographic usage. lat and lon must be the same size, and in the AngleUnits of the map axes. \(z\) is the altitude data associated with each point in lat and lon. The object handle for the displayed line can be returned in \(h\).

The units of \(z\) are arbitrary, except when using the globe projection. In the case of globe, \(z\) should have the same units as the radius of the earth or semimajor axis specified in the 'geoid ' (reference ellipsoid) property of the map axes. This implies that when the reference ellipsoid is a unit sphere, the units of \(z\) are earth radii.
\(\mathrm{h}=\mathrm{plot} 3 \mathrm{~m}(\) lat,lon, LineSpec) specifies the line style, marker, and color on page 1-1161.
h = plot3m(lat,lon,PropertyName,PropertyValue,...) allows the specification of any number of property name/property value pairs for any properties recognized by the MATLAB line function except for XData, YData, and ZData.

\section*{Examples}
axesm sinusoid; framem; view(3)
[lats,longs] = interpm([45 -45 -45 45 45 -45\(]^{\prime}\)....
[-100 \(\left.-100100100-100-100]^{\prime}, 1\right)\);
z = (1:671)'/100;
plot3m(lats,longs,z,'m')

\section*{More About}

\section*{Line Style, Marker, and Color}

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' \(-r^{\prime}\) '.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline ' - - & Dashed line & - - - - - \\
\hline ':' & Dotted line & \\
\hline ' - . ' & Dash-dotted line & -.-.-.-.- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Marker & Description & Resulting Marker \\
\hline '0' & Circle & \(\bigcirc\) \\
\hline '+' & Plus sign & + \\
\hline '*' & Asterisk & * \\
\hline ''.' & Point & - \\
\hline 'x' & Cross & \(\times\) \\
\hline ' - ' & Horizontal line & - \\
\hline 'I' & Vertical line & | \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Marker & Description & Resulting Marker \\
\hline 's' & Square & \(\square\) \\
\hline 'd' & Diamond & \(\diamond\) \\
\hline '^' & Upward-pointing triangle & \(\triangle\) \\
\hline 'v' & Downward-pointing triangle & \(\nabla\) \\
\hline '>' & Right-pointing triangle & D \\
\hline '<' & Left-pointing triangle & \(\checkmark\) \\
\hline 'p' & Pentagram & A \\
\hline 'h' & Hexagram & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Color Name & Short Name & RGB Triplet & Appearance \\
\hline 'red' & 'r' & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} & \\
\hline 'green' & 'g' & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} & \\
\hline 'blue' & 'b' & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} & \\
\hline 'cyan' & 'c' & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} & \\
\hline 'magenta' & 'm' & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} & \\
\hline 'yellow' & 'y' & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} & \\
\hline 'black' & 'k' & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} & \\
\hline 'white' & 'w' & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} & \\
\hline
\end{tabular}

\section*{Tips}
plot 3 m is the mapping equivalent of the MATLAB plot3 function.

\section*{See Also}
linem|plot3|plotm

\section*{plotm}

Project 2-D lines and points on map axes

\section*{Syntax}
```

plotm(lat,lon)
plotm([lat lon])
plotm(lat,lon,LineSpec)
plotm(lat,lon,Name,Value)
h = plotm(

```
\(\qquad\)
``` )
```


Description

plotm is the mapping equivalent of the MATLAB plot function.
plotm(lat,lon) displays projected line objects on the current map axes. lat and lon are the latitude and longitude coordinates, respectively, of the line object to be projected. This ordering of latitude then longitude is standard geographic usage. However, this ordering is conceptually reversed from the MATLAB line function, in which the horizontal (x) coordinate comes first.
plotm([lat lon]) allows the latitude and longitude coordinates to be packed into a single twocolumn matrix.
plotm(lat,lon, LineSpec) specifies the line style, marker, and color.
plotm(lat,lon, Name, Value) uses name-value pair arguments to specify any number of Line Properties except for XData, YData, and ZData. Name is the property name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN. Property names can be abbreviated, and case does not matter.
$\mathrm{h}=\mathrm{plotm}(\ldots \quad$) returns a handle to the displayed line.

Examples

Plot Coastlines on Map

First, load coastline data into the workspace and create a set of map axes. Then, plot the data. The plotm function uses the NaN values in coastlat and coastlon to break the data into separate lines.

```
load coastlines
ax = axesm('sinusoid','Frame','on');
plotm(coastlat,coastlon,'g')
```


Input Arguments

lat, lon - Latitude or longitude vector

numeric vector
Latitude or longitude vector, specified as a numeric vector. Specify values in units that match the AngleUnits property of the map axes. lat and lon must be the same size.

Create breaks in lines or polygons using NaN values. For example, this code plots the first three elements, skips the fourth element, and draws another line using the last three elements.

```
lat = [0 1 2 NaN 4 5 6];
lon = [0 1 2 NaN 3 4 5];
axesm('UTM','Zone','31N','Frame','on')
plotm(lat,lon)
```


LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - -
':'	Dotted line
' - .	Dash-dotted line	--------

Marker	Description	Resulting Marker
'0'	Circle	\bigcirc
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
'x'	Cross	\times
' -'	Horizontal line	-
' 1 '	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	\checkmark
'p'	Pentagram	W
'h'	Hexagram	\%

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	

Color Name	Short Name	RGB Triplet	Appearance
'yellow'	' y^{\prime}	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Output Arguments

h - Handle to displayed line

handle object
Handle to the displayed line, returned as a handle to a MATLAB graphics object.

Tips

When you pass two points to the plotm function, the function projects the locations of each point on the map and displays a straight line that connects them, regardless of the map projection or the distance between the points. To display a projected geodesic or rhumbline curve between two points, first insert intermediate points using the track2 function.

See Also

linem|plot|plot3m
Introduced before R2006a

Point Properties

Geographic point appearance and behavior

Description

Point properties control the appearance and behavior of a Point object. By changing property values, you can modify certain aspects of the point. Use dot notation to query and set properties.
shape $=$ geopointshape(1:10,1:10);
$\mathrm{p}=$ geoplot(shape);
c = p.Marker;
p.Marker = "*";

Properties

Markers

Marker - Marker symbol

```
'.' (default)|'o'| '+'|'*'| 'x'| ...
```

Marker symbol, specified as one of the options listed in this table:

Marker	Description	Resulting Marker
'0'	Circle	\bigcirc
'+'	Plus sign	$+$
'*'	Asterisk	*
'.'	Point	-
'x'	Cross	\times
' -'	Horizontal line	-
'I'	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D

Marker	Description	Resulting Marker
'<'	Left-pointing triangle	\checkmark
'p'	Pentagram	*
'h'	Hexagram	S
'none'	No markers	Not applicable

MarkerSize - Marker size

6 (default) | positive value
Marker size, specified as a positive value in points, where 1 point $=1 / 72$ of an inch.

MarkerEdgeColor - Marker outline color

[0 0 0] (default)|'flat'|RGB triplet| hexadecimal color code|'r'|'g'|'b'|...

Marker outline color, specified as 'flat ', an RGB triplet, a hexadecimal color code, a color name, or a short name. The 'flat' option uses colors from the ColorData property. When the geoplot function sets the ColorData property, MATLAB updates this property to 'flat '.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	'\#FF0000'	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	'\#00FF00'	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	$' \# 0000 F^{\prime}$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	'\#00FFFF'	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	'\#FF00FF'	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	'\#000000'	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	'\#FFFFFF'	
'none'	Not applicable	Not applicable	Not applicable	No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD '	
[0.8500 0.3250 0.0980]	'\#D95319'	\square
[0.9290 0.6940 0.1250]	'\#EDB120'	
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
$\left[\begin{array}{llll}0.4660 & 0.6740 & 0.1880\end{array}\right]$	'\#77AC30 '	\square
[0.3010 0.7450 0.9330]	'\#4DBEEE'	\square
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '\#D2F9A7 '

MarkerFaceColor - Marker fill color

' none' (default) | 'flat' | RGB triplet | hexadecimal color code | 'r'| 'g'|'b'|...
Marker fill color, specified as ' flat ', an RGB triplet, a hexadecimal color code, a color name, or a short name. The ' flat ' option use colors from the ColorData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1 ; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	'\#FF0000'	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	'\#00FF00'	\square
'blue'	'b'	[0 0 1 1]	'\#0000FF'	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	'\#00FFFF'	-
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	'\#FF00FF'	-
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	-
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	'\#000000'	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	'\#FFFFFF'	\square
'none'	Not applicable	Not applicable	Not applicable	No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD '	\square
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
[0.4660 0.6740 0.1880]	'\#77AC30'	
[0.3010 0.7450 0.9330]	'\#4DBEEE'	\square
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example:[0.3 0.2 0.1]
Example: 'green'
Example: '\#D2F9A7'

MarkerEdgeAlpha - Marker outline transparency

1 (default) | scalar in range [0,1]
Marker outline transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

MarkerFaceAlpha - Marker fill transparency

1 (default) | scalar in range [0, 1]
Marker fill transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

Color Data

ColorData - Marker colors

[] (default) | numeric vector
Marker colors, specified as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData. Specify ColorData as a vector the same length as ShapeData.

The ColorData property controls the fill colors of the markers when the MarkerFaceColor property has a value of 'flat'. The ColorData property also controls the outline colors of the markers when the MarkerEdgeColor property has a value of 'flat'.

ColorDataMode - Control how ColorData is set
 'auto' (default)|'manual'

Control how the ColorData property is set, specified as one of these values:

- 'auto' - MATLAB controls the value of the ColorData property.
- 'manual ' - You manually control the value of the ColorData property. When you set the ColorData property, MATLAB sets this property to 'manual'.

To specify colors using the ColorVariable property, this property must have a value of 'auto'.

SeriesIndex - Series index

non-negative integer

Series index, specified as a non-negative integer. This property is useful for reassigning the marker colors of several Point objects so that they match each other. By default, the SeriesIndex property of a Point object is a number that corresponds to the order of creation of the object, starting at 1.

MATLAB uses the number to calculate indices for assigning colors when you call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder property of the axes.

MATLAB automatically updates the marker color of the Point object when you change its SeriesIndex, or when you change the ColorOrder property on the axes. However, the following conditions must be true for the changes to have any effect:

- The ColorDataMode property on the Point object has a value of 'auto'.
- Either the MarkerEdgeColor or MarkerFaceColor property on the Point object has a value of 'flat'.
- The SeriesIndex property on the Point object is greater than 0.
- The NextSeriesIndex property on the axes object is greater than 0.

Shape Data

ShapeData - Point shapes

empty geopointshape object (default) | geopointshape or mappointshape object | vector of geopointshape or mappointshape objects

Point shapes, specified as a geopointshape or mappointshape object or as a vector of geopointshape or mappointshape objects. For mappointshape objects, the value of the ProjectedCRS property must not be empty.

When you pass shape objects or a geospatial table to the geoplot function, the geoplot function sets the value of ShapeData.

ShapeDataMode - Control how ShapeData is set
 'auto' (default) | 'manual'

Control how the ShapeData property is set, specified as one of these values:

- 'auto ' - MATLAB automatically updates the ShapeData property based on the SourceTable and ShapeVariable properties. When you pass a geospatial table to the geoplot function, MATLAB sets this property to 'auto'.
- 'manual ' - You manually control the value of the ShapeData property. When you set the ShapeData property or pass shape objects to the geoplot function, MATLAB sets this property to 'manual'.

Table Data

SourceTable - Source table

geospatial table
Source table containing the data to plot, specified as a geospatial table. A geospatial table is a table or timetable object that contains a Shape variable and attribute variables. For more information about geospatial tables, see "Create Geospatial Tables".

ShapeVariable - Table variable containing shape objects

table variable index

Table variable containing the shape objects, specified as a table variable index. The table variable must contain geopointshape or mappointshape objects. For mappointshape objects, the value of the ProjectedCRS property must not be empty.

When you pass a geospatial table to the geoplot function, the value of this property is 'Shape'. When you set this property, MATLAB updates the ShapeData property.

This table lists the different indexing schemes you can use to specify the table variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable
Variable type: A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.	- vartype("double") - The variable containing values of type double

ColorVariable - Table variable containing color data

table variable index
Table variable containing the color data, specified as a variable index into the source table.

Specifying the Table Index

Use any of these indexing schemes to specify the desired variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable

Indexing Scheme
Variable type:
A vartype subscript that selects a table variable
of a specified type. The subscript must refer to
only one variable.

Examples

- vartype("double") - The variable containing values of data type double

Specifying Color Data

The ColorVariable property controls the fill colors of the markers when the MarkerFaceColor property has a value of 'flat'. The ColorVariable property also controls the outline colors of the markers when the MarkerEdgeColor property has a value of 'flat'.

Specify the color data values as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData.

When you set the ColorVariable property, MATLAB updates the ColorData property.

Legend

DisplayName - Legend label

' ' (default) | character vector | string scalar
Legend label, specified as a character vector or string scalar. The legend does not display until you call the legend command. If you do not specify the text, then legend sets the label using the form 'dataN'.

Annotation - Control for including or excluding object from legend
 Annotation object

This property is read-only.
Control for including or excluding the object from a legend, returned as an Annotation object. Set the underlying IconDisplayStyle property to one of these values:

- 'on ' - Include the object in the legend (default).
- 'off' - Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the IconDisplayStyle property to 'off'.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend function. Specify the first input argument as a vector of the graphics objects to include. If you do not specify an existing graphics object in the first input argument, then it does not appear in the legend. However, graphics objects added to the axes after the legend is created do appear in the legend. Consider creating the legend after creating all the plots to avoid extra items.

Interactivity

Visible - State of visibility

' on ' (default) | on/off logical value
State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on ' - Display the object.
- 'off' - Hide the object without deleting it. You still can access the properties of an invisible object.

ContextMenu - Context menu

empty GraphicsPlaceholder array (default) | ContextMenu object
Context menu, specified as a ContextMenu object. Use this property to display a context menu when you right-click the object. Create the context menu using the uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then the context menu does not appear.

Selected - Selection state

'off' (default) | on/off logical value
Selection state, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- ' on ' - Selected. If you click the object when in plot edit mode, then MATLAB sets its Selected property to 'on'. If the SelectionHighlight property also is set to 'on', then MATLAB displays selection handles around the object.
- 'off' - Not selected.

SelectionHighlight - Display of selection handles

' on ' (default) | on/off logical value
Display of selection handles when selected, specified as ' on ' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab. lang. OnOffSwitchState.

- 'on' - Display selection handles when the Selected property is set to 'on'.
- 'off' - Never display selection handles, even when the Selected property is set to 'on '.

Callbacks

ButtonDownFcn - Mouse-click callback

' ' (default) | function handle | cell array | character vector
Mouse-click callback, specified as one of these values:

- Function handle
- Cell array containing a function handle and additional arguments
- Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:

- Clicked object - Access properties of the clicked object from within the callback function.
- Event data - Empty argument. Replace it with the tilde character (\sim) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see "Callback Definition".

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then this callback does not execute.

CreateFcn - Creation function

' ' (default) | function handle | cell array | character vector
Object creation function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

DeleteFcn - Deletion function

' ' (default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn callback before destroying the properties of the object. If you do not specify the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Callback Execution Control

Interruptible - Callback interruption

' on ' (default) | on/off logical value
Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor, and pause.

If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of the object that owns the running callback determines if the interruption occurs:

- If the value of Interruptible is ' off' ' then no interruption occurs. Instead, the BusyAction property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.
- If the value of Inter ruptible is ' on ' , then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.

Note Callback interruption and execution behave differently in these situations:

- If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback, then the interruption occurs regardless of the Inter uptible property value.
- If the running callback is currently executing the waitfor function, then the interruption occurs regardless of the Interruptible property value.
- If the interrupting callback is owned by a Timer object, then the callback executes according to schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the object returned by the gca or gcf command might change when another callback executes.

BusyAction - Callback queuing

'queue' (default)| 'cancel'
Callback queuing, specified as 'queue' or 'cancel '. The BusyAction property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions are met:

- The running callback contains a command that processes the callback queue, such as drawnow, figure, uifigure, getframe, waitfor, or pause.
- The value of the Interruptible property of the object that owns the running callback is 'off '.

Under these conditions, the BusyAction property of the object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the BusyAction property:

- 'queue ' - Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
- ' cancel' - Does not execute the interrupting callback.

PickableParts - Ability to capture mouse clicks

'visible' (default)|'none'
Ability to capture mouse clicks, specified as one of these values:

- 'visible' - Capture mouse clicks when visible. The Visible property must be set to ' on ' and you must click a part of the Point object that has a defined color. You cannot click a part that has an associated color property set to ' none'. If the plot contains markers, then the entire marker is clickable if either the edge or the fill has a defined color. The HitTest property determines if the Point object responds to the click or if an ancestor does.
- 'none ' - Cannot capture mouse clicks. Clicking the Point object passes the click to the object below it in the current view of the figure window. The HitTest property of the Point object has no effect.

HitTest - Response to captured mouse clicks

' on ' (default)| on/off logical value
Response to captured mouse clicks, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on ' - Trigger the ButtonDownFcn callback of the Point object. If you have defined the ContextMenu property, then invoke the context menu.
- 'off' - Trigger the callbacks for the nearest ancestor of the Point object that has one of these:
- HitTest property set to 'on'
- PickableParts property set to a value that enables the ancestor to capture mouse clicks

Note The PickableParts property determines if the Point object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted - Deletion status

on/off logical value

This property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.
MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property remains set to ' on ' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted before querying or modifying it.

Parent/Child

Parent - Parent
GeographicAxes object
Parent, specified as a GeographicAxes object.

Children - Children

empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility - Visibility of object handle
 'on' (default)| 'off'|'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these values:

- 'on' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- ' callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to ' on ' to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type - Type of graphics object

'point
This property is read-only.
Type of graphics object, returned as 'point '. Use this property to find all objects of a given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag - Object identifier

' ' (default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

UserData - User data

[] (default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see "Share Data Within App Designer Apps".

See Also

Functions

geoplot

Objects

geopointshape|mappointshape

Topics

"Access Property Values"
"Graphics Object Properties"
Introduced in R2022a

polcmap

Create colormap appropriate to political regions

Syntax

```
polcmap
```

polcmap(ncolors)
polcmap (ncolors, maxsat)
polcmap(ncolors, huelimits, saturationlimits, valuelimits)
cmap $=$ polcmap(\qquad)

Description

polcmap applies a random, muted colormap to the current figure. The size of the colormap is the same as the existing colormap. This function is useful for creating colormaps that help you distinguish one political region from its neighbors.
polcmap (ncolors) creates a colormap with the specified number of colors.
polcmap(ncolors,maxsat) controls the maximum saturation of the colors.
polcmap(ncolors,huelimits, saturationlimits, valuelimits) controls the hue, saturation, and value of the colors. polcmap randomly selects values within the limit vectors. These are twoelement vectors of the form [min max]. Valid values range from 0 to 1 . As the hue varies from 0 to 1 , the resulting color varies from red, through yellow, green, cyan, blue, and magenta, back to red. When the saturation is 0 , the colors are unsaturated; they are simply shades of gray. When the saturation is 1 , the colors are fully saturated; they contain no white component. As the value varies from 0 to 1 , the brightness increases.
cmap $=$ polcmap(\qquad) returns the colormap without applying it to the figure.

Examples

Color Patches Using Random, Muted Colormap

Create an empty map axes with a Lambert conformal conic projection and map limits covering Texas.

```
figure
usamap("texas")
```

Read state boundaries from a shapefile into a geospatial table. Display the boundaries on the map, noting that the default face color is yellow.

```
states = readgeotable("usastatelo.shp");
geoshow(states,"DisplayType","polygon")
```


Define the colors you want to apply to the shapes (states) in a symbol specification. Use polcmap to create a colormap the same size as the number of rows in the geospatial table. polcmap creates a palette of muted colors.

```
h = height(states);
faceColors = makesymbolspec("Polygon", ...
    {'INDEX',[1 h],'FaceColor',polcmap(h)});
```

Display the map again using the symbol specification to color the patches (states) in the map. The colors you obtain for this example can vary each time you run this example because polcmap computes them randomly.
geoshow(states,"DisplayType", "polygon", "SymbolSpec", faceColors)

Specify Number and Saturation of Colors

Read state boundaries from a shapefile into a geospatial table. Set to a variable the number of rows in the table.

```
states = readgeotable("usastatelo.shp");
h = height(states);
```

Create a colormap with 256 colors and a maximum saturation of 0.2 . To ensure that the colormap is always the same, seed the MATLAB® random number function using the rng function and a fixed value of your choice.
rng(0)
cmap $=\operatorname{polcmap}(256,0.2)$;
Use the colormap to display the state boundaries on a map of North America.
figure
worldmap na
faceColors = makesymbolspec("Polygon", \{'INDEX',[1 h],'FaceColor',cmap\}); geoshow(states,"SymbolSpec",faceColors)

Input Arguments

ncolors - Number of colors in the color map

numeric scalar
Number of colors in the color map, specified as a numeric scalar.

```
Data Types: single | double | int8| int16| int32 | int64 | uint8|uint16|uint32 | uint64 |
logical
```


maxsat - Maximum saturation of colors

```
0.5 (default) | numeric scalar
```

Maximum saturation of colors, specified as a numeric scalar. Larger maximum saturation values produce brighter, more saturated colors.
Data Types: single | double| logical|char
huelimits - Color range limits
[0 1] (default)| two-element vector
Color range limits, specified as a two-element vector of the form [min max]. Values range from 0 to 1.0. As the hue varies from 0 to 1 , the resulting color varies from red, through yellow, green, cyan, blue, and magenta, back to red.
Data Types: single | double

saturationlimits - Color saturation limits

[. 25 .5] (default)|two-element vector
Color saturation limits, specified as a two-element vector of the form [min max]. Values range from 0 to 1.0. When the saturation is 0 , the colors are unsaturated; they are simply shades of gray. When the saturation is 1 , the colors are fully saturated; they contain no white component.
Data Types: single | double
valuelimits - Brightness of colors
[1 1] (default) | two-element vector
Brightness of colors, specified as a two-element vector of the form [min max]. Values range from 0 to 1.0. As the value varies from 0 to 1 , the brightness increases.
Data Types: single | double

Output Arguments

cmap - Colormap

m-by-3 numeric array
Colormap, returned as an m-by- 3 numeric array of class double or class single, depending on the type of the input.

Tips

- You cannot use polcmap to alter the colors of displayed patches drawn by geoshow or mapshow. The patches must have been rendered by displaym. However, you can color patches using polcmap when you call geoshow or mapshow (see "Color Patches Using Random, Muted Colormap" on page 1-1180).

See Also

demcmap | colormap | lcolorbar
Introduced before R2006a

poly2ccw

Convert polygon contour to counterclockwise vertex ordering

Syntax

[x2,y2] = poly2ccw(x1,y1)

Description

$[\mathrm{x} 2, \mathrm{y} 2]=$ poly2ccw($\mathrm{x} 1, \mathrm{y} 1)$ arranges the Cartesian vertices in the polygonal contour $(\mathrm{x} 1, \mathrm{y} 1)$ in counterclockwise order, returning the result in $x 2$ and $y 2$. If $x 1$ and $y 1$ can contain multiple contours, represented either as NaN -separated vectors or as cell arrays, then each contour is converted to clockwise ordering. x 2 and y 2 have the same format (NaN -separated vectors or cell arrays) as x 1 and y 1 .

Examples

Convert a clockwise-ordered square to counterclockwise ordering.

```
x1 = [0 0 0 1 1 0];
y1 = [0 1 1 0 0];
ispolycw(x1, y1)
ans =
    1
[x2, y2] = poly2ccw(x1, y1);
ispolycw(x2, y2)
ans =
    0
```


Tips

You can use poly2ccw for geographic coordinates if the polygon does not cross the Antimeridian or contain a pole. A polygon contains a pole if the longitude data spans 360 degrees. To use poly2ccw with geographic coordinates, specify the longitude vector as x 1 and the latitude vector as y 1 .

See Also

poly2cw | ispolycw | polyshape
Topics
"Create and Display Polygons"
Introduced before R2006a

poly2cw

Convert polygon contour to clockwise vertex ordering

Syntax

[x2, y2] = poly2cw(x1, y1)

Description

[x2, y2] = poly2cw(x1, y1) arranges the Cartesian vertices in the polygonal contour (x1, y1) in clockwise order, returning the result in $x 2$ and $y 2$. If $x 1$ and $y 1$ can contain multiple contours, represented either as NaN -separated vectors or as cell arrays, then each contour is converted to clockwise ordering. x 2 and y 2 have the same format (NaN -separated vectors or cell arrays) as $\times 1$ and y 1 .

Examples

Convert a counterclockwise-ordered square to clockwise ordering.

```
x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
ispolycw(x1, y1)
ans =
    0
[x2, y2] = poly2cw(x1, y1);
ispolycw(x2, y2)
ans =
    1
```


Tips

You can use poly2cw for geographic coordinates if the polygon does not cross the Antimeridian or contain a pole. A polygon contains a pole if the longitude data spans 360 degrees. To use poly 2 cw with geographic coordinates, specify the longitude vector as x 1 and the latitude vector as y 1 .

See Also
poly2ccw | ispolycw | polyshape
\section*{Topics}
"Create and Display Polygons"
Introduced before R2006a

poly2fv

Convert polygonal region to patch faces and vertices

Syntax

[F,V] = poly2fv(x,y)

Description

$[F, V]=\operatorname{poly2fv}(x, y)$ converts the polygonal region represented by the contours (x, y) into a faces matrix, F , and a vertices matrix, V , that can be used with the patch function to display the region. If the polygon represented by x and y has multiple parts, either the NaN -separated vector format or the cell array format may be used. The poly2fv function creates triangular faces.

Most Mapping Toolbox functions adhere to the convention that individual contours with clockwiseordered vertices are external contours and individual contours with counterclockwise-ordered vertices are internal contours. Although the poly2fv function ignores vertex order, you should follow the convention when creating contours to ensure consistency with other functions.

Examples

Display a rectangular region with two holes using a single patch object.

```
% External contour, rectangle.
x1 = [0 0 6 6 0];
y1 = [0 3 3 0 0];
% First hole contour, square.
x2 = [1 2 2 1 1];
y2 = [1 1 2 2 1];
% Second hole contour, triangle.
x3 = [4 5 4 4];
y3 = [1 1 2 1];
% Compute face and vertex matrices.
[f, v] = poly2fv({x1, x2, x3}, {y1, y2, y3});
% Display the patch.
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none');
axis off, axis equal
```


See Also

Functions

```
ispolycw | patch | poly2cw | poly2ccw | polyshape
```


Topics

```
"Create and Display Polygons"
```

Introduced before R2006a

polybool

Set operations on polygonal regions

Note polybool is not recommended. Use polyshape instead.
To replace calls to polybool, create polyshape objects to represent the shapes, call the appropriate polyshape object function for the equivalent Boolean operation, and then call the polyshape boundary object function. For example, this call to polybool specifies the union operation as the first argument.
[Cx,Cy] = polybool('union',Ax,Ay,Bx,By)
To update this usage, create separate polyshape objects for each shape and then use the union object function associated with the polyshape object. polyshape supports the Boolean operations supported by polybool: union, intersection, subtraction, and exclusive OR. Use the polyshape boundary object function to return Cx and Cy. See polyshape for a complete list of object functions, including plot.

```
A = polyshape(Ax,Ay,'Simplify',false);
B = polyshape(Bx,By,'Simplify',false);
C = union(A,B);
[Cx,Cy] = boundary(C);
```

Note that the polygon vertex order is likely to differ between the output from polybool and the output from the call to boundary, because there is no single right answer. (Even in a simple oneregion polygon, the vertices can be permuted cyclically without affecting the underlying geometry.) In addition, if the geometries of the inputs are not perfectly clean (free from self-intersections, etc.), then the polyshape union operation may make small changes that are not necessarily performed in polybool.

Syntax

$[x, y]=\operatorname{polybool}(f l a g, x 1, y 1, x 2, y 2)$

Description

$[x, y]=$ polybool(flag, $x 1, y 1, x 2, y 2)$ performs the polygon set operation identified by flag. The result is output using the same format as the input. Geographic data that encompasses a pole cannot be used directly. Use flatearthpoly to convert polygons that contain a pole to Cartesian coordinates.

Most Mapping Toolbox functions adhere to the convention that individual contours with clockwiseordered vertices are external contours and individual contours with counterclockwise-ordered vertices are internal contours. Although the polybool function ignores vertex order, follow this convention when creating contours to ensure consistency with other functions.

Examples

Set Operations on Two Overlapping Circular Regions

```
theta = linspace(0, 2*pi, 100);
x1 = cos(theta) - 0.5;
y1 = -sin(theta); % -sin(theta) to make a clockwise contour
x2 = x1 + 1;
y2 = y1;
[xa, ya] = polybool('union', x1, y1, x2, y2);
[xb, yb] = polybool('intersection', x1, y1, x2, y2);
[xc, yc] = polybool('xor', x1, y1, x2, y2);
[xd, yd] = polybool('subtraction', x1, y1, x2, y2);
subplot(2, 2, 1)
patch(xa, ya, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Union')
subplot(2, 2, 2)
patch(xb, yb, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Intersection')
subplot(2, 2, 3)
% The output of the exclusive-or operation consists of disjoint
% regions. It can be plotted as a single patch object using the
% face-vertex form. Use poly2fv to convert a polygonal region
% to face-vertex form.
[f, v] = poly2fv(xc, yc);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Exclusive Or')
subplot(2, 2, 4)
patch(xd, yd, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Subtraction')
```


Set Operations on Regions with Holes

```
Ax = {[1 1 1 6 6 1], [2 5 5 2 2], [2 5 5 2 2]};
Ay = {[1 6 6 1 1], [2 2 3 3 2], [4 4 5 5 4]};
subplot(2, 3, 1)
[f, v] = poly2fv(Ax, Ay);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ax), plot(Ax{k}, Ay{k}, 'Color', 'k'), end
title('A')
Bx = {[[0 0 7 7 7 0], [ll 3 3 3 1 1], [l4 6 6 6 4 4 4]};
By = {[0 7 7 0 0], [1 1 6 6 1], [1 1 6 6 1]};
subplot(2, 3, 4);
[f, v] = poly2fv(Bx, By);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Bx), plot(Bx{k}, By{k}, 'Color', 'k'), end
title('B')
subplot(2, 3, 2)
[Cx, Cy] = polybool('union', Ax, Ay, Bx, By);
[f, v] = poly2fv(Cx, Cy);
```

```
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Cx), plot(Cx{k}, Cy{k}, 'Color', 'k'), end
title('A \cup B')
subplot(2, 3, 3)
[Dx, Dy] = polybool('intersection', Ax, Ay, Bx, By);
[f, v] = poly2fv(Dx, Dy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Dx), plot(Dx{k}, Dy{k}, 'Color', 'k'), end
title('A \cap B')
subplot(2, 3, 5)
[Ex, Ey] = polybool('subtraction', Ax, Ay, Bx, By);
[f, v] = poly2fv(Ex, Ey);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ex), plot(Ex{k}, Ey{k}, 'Color', 'k'), end
title('A - B')
subplot(2, 3, 6)
[Fx, Fy] = polybool('xor', Ax, Ay, Bx, By);
[f, v] = poly2fv(Fx, Fy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...
    'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Fx), plot(Fx{k}, Fy{k}, 'Color', 'k'), end
title('XOR(A, B)')
```


B

A-B
由
$\operatorname{XOR}(\mathrm{A}, \mathrm{B})$

Input Arguments

flag - Polygon set operation

'intersection'| 'and'|'\&'|'union'| 'or'|'|'| '+'| 'plus'|'subtraction'| 'minus'|'-'|'exclusiveor'|'xor'

Polygon set operation, specified as one of the following values.

Operatio \mathbf{n}					
Region intersecti on	'intersection'	'and'	'\&'		
Region union	'union'	'or'	' ' ' $^{\prime}$	' ' ' $^{\prime}$	'plus '
Region subtractio n	'subtraction'	'minus'	' - '		
Region exclusive or	'exclusiveor'	'xor'			

Data Types: char|string

x1 - Polygon contours

NaN-delimited vector | cell array
Polygon contours, specified as a NaN-delimited vector or cell array.
Data Types: double
x2 - Polygon contours
NaN -delimited vector | cell array
Polygon contours, specified as a NaN-delimited vector or cell array.
Data Types: double
y1 - Polygon contours
NaN-delimited vector | cell array
Polygon contours, specified as a NaN-delimited vector or cell array.
Data Types: double

y2 - Polygon contours

NaN-delimited vector | cell array
Polygon contours, specified as a NaN-delimited vector or cell array.
Data Types: double

Output Arguments

x - Polygon contour after set operation
 NaN -delimited vector | cell array

Polygon contour after set operation, returned as a NaN-delimited vector or cell array. The output returns in the same format as the input.

y - Polygon contour after set operation

NaN-delimited vector | cell array
Polygon contour after set operation, returned as a NaN-delimited vector or cell array. The output returns in the same format as the input.

Tips

- Numerical problems can occur when the polygons have a large offset from the origin. To avoid this issue, translate the coordinates to a location closer to the origin before performing the operation. Then, undo the translation after completing the operation. For example:

$$
[x, y]=\operatorname{polybool(flag,x1-xt,y1-yt,x2-xt,y2-yt);~}
$$

x = x+xt;
$y=y+y t ;$

See Also

bufferm|flatearthpoly|ispolycw|poly2ccw|polyjoin|polysplit|poly2fv|poly2cw | polyshape

Introduced before R2006a

polycut

Polygon branch cuts for holes

Syntax

[lat2,long2] = polycut(lat,long)

Description

[lat2,long2] = polycut(lat,long) connects the contour and holes of polygons using optimal branch cuts. Polygons are input as NaN-delimited vectors, or as cell arrays containing individual polygons in each element with the outer face separated from the subsequent inner faces by NaNs. Multiple polygons outputs are separated by NaNs.

See Also
polyshape|polysplit|polyjoin

Introduced before R2006a

Polygon Properties

Geographic polygon appearance and behavior

Description

Polygon properties control the appearance and behavior of a Polygon object. By changing property values, you can modify certain aspects of the polygon. Use dot notation to query and set properties.

```
shape = geopolyshape([[1 10 1 1],[1 1 1 10 1] );
pg = geoplot(shape);
c = pg.FaceColor;
pg.FaceColor = "r";
```


Properties

Polygon

FaceColor - Polygon fill color

[0 0 0] (default)|'flat'|RGB triplet | hexadecimal color code | 'r'|'g'|'b'|...

Polygon fill color, specified as ' $f l a t$ ', an RGB triplet, a hexadecimal color code, a color name, or a short name. The ' flat ' option uses colors from the ColorData property. When the geoplot function sets the ColorData property, MATLAB updates this property to 'flat'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1$]$; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	$' \# F F 0000 '$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	$' \# 00 F F 00 '$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	$' \# 0000 F^{\prime}$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$' \# 00 F F F F^{\prime}$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	$' \# F F 00 F F^{\prime}$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	'\#000000'	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	'\#FFFFFF'	

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'none'	Not applicable	Not applicable	Not applicable	No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD'	
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	\square
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
[0.4660 0.6740 0.1880]	'\#77AC30'	
[0.3010 0.7450 0.9330]	'\#4DBEEE'	
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: pg.FaceColor = [0.1 0.5 0.2];
Example: pg.FaceColor = 'white';
Example: pg.FaceColor = 'none';

EdgeColor - Polygon outline color

[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
Polygon outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (\#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '\#FF8800', '\#ff8800', '\#F80', and '\#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	$' \# F F 0000$ '	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	$' \# 00 F F 00 '$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	$' \# 0000 F^{\prime}$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$' \# 00 F F F F^{\prime}$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	$' \# F F 00 F F^{\prime}$	

Color Name	Short Name	RGB Triplet	Hexadecimal Color Code	Appearance
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	'\#FFFF00'	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	$' \# 000000$ '	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	'\#FFFFFF'	\square
'none'	Not applicable	Not applicable	Not applicable	No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet	Hexadecimal Color Code	Appearance
[0 0.4470 0.7410]	'\#0072BD'	
[0.8500 0.3250 0.0980]	'\#D95319'	
[0.9290 0.6940 0.1250]	'\#EDB120'	\square
[0.4940 0.1840 0.5560]	'\#7E2F8E'	
[0.4660 0.6740 0.1880]	'\#77AC30'	
[0.3010 0.7450 0.9330]	'\#4DBEEE'	\square
[0.6350 0.0780 0.1840]	'\#A2142F'	

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '\#D2F9A7'

FaceAlpha - Polygon fill transparency

0.35 (default) | scalar in range [0,1]

Polygon fill transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

When the geoplot function sets the ColorData property, MATLAB updates this property to 1 .

EdgeAlpha - Polygon outline transparency

1 (default) | scalar in range [0,1]
Polygon outline transparency, specified as a scalar in the range [0,1]. A value of 1 is opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

LineStyle - Line style

'- ' (default)|'--'|':'| ' - .' | 'none'
Line style, specified as one of the options listed in this table.

Line Style	Description	Resulting Line
' - '	Solid line	-
' - '	Dashed line	-----

Line Style	Description	Resulting Line
':'	Dotted line
'-.'	Dash-dotted line	--------
'none'	No line	No line

LineWidth - Line width

0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point $=1 / 72$ of an inch.
The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

Color Data

ColorData - Polygon colors

[] (default) | numeric vector
Polygon colors, specified as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData. Specify ColorData as a vector the same length as ShapeData.

The ColorData property controls the fill colors of the polygons when the FaceColor property has a value of 'flat'.

ColorDataMode - Control how ColorData is set
 'auto' (default)|'manual'

Control how the ColorData property is set, specified as one of these values:

- 'auto ' - MATLAB controls the value of the ColorData property.
- 'manual' - You manually control the value of the ColorData property. When you set the ColorData property, MATLAB sets this property to 'manual '.

To specify colors using the ColorVariable property, this property must have a value of 'auto'.

SeriesIndex - Series index

non-negative integer
Series index, specified as a non-negative integer. This property is useful for reassigning the colors of several Polygon objects so that they match each other. By default, the SeriesIndex property of a Polygon object is a number that corresponds to the order of creation of the object, starting at 1.

MATLAB uses the number to calculate indices for assigning colors when you call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder property of the axes.

MATLAB automatically updates the color of the Polygon object when you change its SeriesIndex, or when you change ColorOrder property on the axes. However, the following conditions must be true for the changes to have any effect:

- The ColorDataMode property on the Polygon object has a value of 'auto'.
- The FaceColor property on the Polygon object has a value of 'flat'.
- The SeriesIndex property on the Polygon object is greater than 0 .
- The NextSeriesIndex property on the axes object is greater than 0.

Shape Data

ShapeData - Polygon shapes

empty geopolyshape object (default) | geopolyshape or mappolyshape object \| vector of geopolyshape or mappolyshape objects

Polygon shapes, specified as a geopolyshape or mappolyshape object or as a vector of geopolyshape or mappolyshape objects. For mappolyshape objects, the value of the ProjectedCRS property must not be empty.

When you pass shape objects or a geospatial table to the geoplot function, the geoplot function sets the value of ShapeData.

ShapeDataMode - Control how ShapeData is set

'auto' (default) | 'manual'
Control how the ShapeData property is set, specified as one of these values:

- 'auto' - MATLAB automatically updates the ShapeData property based on the SourceTable and ShapeVariable properties. When you pass a geospatial table to the geoplot function, MATLAB sets this property to 'auto'.
- 'manual' - You manually control the value of the ShapeData property. When you set the ShapeData property or pass shape objects to the geoplot function, MATLAB sets this property to 'manual'.

Table Data

SourceTable - Source table

geospatial table
Source table containing the data to plot, specified as a geospatial table. A geospatial table is a table or timetable object that contains a Shape variable and attribute variables. For more information about geospatial tables, see "Create Geospatial Tables".

ShapeVariable - Table variable containing shape objects

table variable index
Table variable containing the shape objects, specified as a table variable index. The table variable must contain geopolyshape or mappolyshape objects. For mappolyshape objects, the value of the ProjectedCRS property must not be empty.

When you pass a geospatial table to the geoplot function, the value of this property is 'Shape '. When you set this property, MATLAB updates the ShapeData property.

This table lists the different indexing schemes you can use to specify the table variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable
Variable type: A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.	- vartype("double") - The variable containing values of type double

ColorVariable - Table variable containing color data

table variable index
Table variable containing the color data, specified as a variable index into the source table.

Specifying the Table Index

Use any of these indexing schemes to specify the desired variable.

Indexing Scheme	Examples
Variable name: - A string scalar or character vector. - A pattern object. The pattern object must refer to only one variable.	- "A" or 'A' - A variable called A - "Var"+digitsPattern(1) - The variable with the name "Var" followed by a single digit
Variable index: - An index number that refers to the location of a variable in the table. - A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.	- 3 - The third variable from the table - [false false true] - The third variable
Variable type: A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.	- vartype("double") - The variable containing values of data type double

Specifying Color Data

Specifying the ColorVariable property controls the fill colors of the polygons when the FaceColor property has a value of 'flat'.

Specify the values as a numeric vector that linearly maps to the colors in the current colormap. The plot uses a different color for each element of ShapeData.

When you set the ColorVariable property, MATLAB updates the ColorData property.

Legend

DisplayName - Legend label

' ' (default) | character vector | string scalar
Legend label, specified as a character vector or string scalar. The legend does not display until you call the legend command. If you do not specify the text, then legend sets the label using the form 'dataN'.

Annotation - Control for including or excluding object from legend

Annotation object

This property is read-only.
Control for including or excluding the object from a legend, returned as an Annotation object. Set the underlying IconDisplayStyle property to one of these values:

- 'on ' - Include the object in the legend (default).
- 'off ' - Do not include the object in the legend.

For example, to exclude a graphics object, go, from the legend set the IconDisplayStyle property to 'off'.
go.Annotation.LegendInformation.IconDisplayStyle = 'off';
Alternatively, you can control the items in a legend using the legend function. Specify the first input argument as a vector of the graphics objects to include. If you do not specify an existing graphics object in the first input argument, then it does not appear in the legend. However, graphics objects added to the axes after the legend is created do appear in the legend. Consider creating the legend after creating all the plots to avoid extra items.

Interactivity

Visible - State of visibility

' on ' (default) | on/off logical value
State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- ' on ' - Display the object.
- 'off' - Hide the object without deleting it. You still can access the properties of an invisible object.

ContextMenu - Context menu

empty GraphicsPlaceholder array (default) | ContextMenu object
Context menu, specified as a ContextMenu object. Use this property to display a context menu when you right-click the object. Create the context menu using the uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then the context menu does not appear.

Selected - Selection state

'off' (default) | on/off logical value
Selection state, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- ' on ' - Selected. If you click the object when in plot edit mode, then MATLAB sets its Selected property to 'on'. If the SelectionHighlight property also is set to 'on', then MATLAB displays selection handles around the object.
- 'off' - Not selected.

SelectionHighlight - Display of selection handles

' on ' (default) | on/off logical value
Display of selection handles when selected, specified as ' on ' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on ' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab. lang.OnOffSwitchState.

- 'on' - Display selection handles when the Selected property is set to 'on'.
- 'off' - Never display selection handles, even when the Selected property is set to 'on '.

Callbacks

ButtonDownFcn - Mouse-click callback

' ' (default) | function handle | cell array | character vector
Mouse-click callback, specified as one of these values:

- Function handle
- Cell array containing a function handle and additional arguments
- Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:

- Clicked object - Access properties of the clicked object from within the callback function.
- Event data - Empty argument. Replace it with the tilde character (\sim) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see "Callback Definition".

Note If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then this callback does not execute.

CreateFcn - Creation function

' ' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

DeleteFcn - Deletion function

' ' (default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:

- Function handle.
- Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
- Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see "Callback Definition".

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn callback before destroying the properties of the object. If you do not specify the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Callback Execution Control

Interruptible - Callback interruption

' on ' (default) | on/off logical value
Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.0n0ffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor, and pause.

If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Inter ruptible property of the object that owns the running callback determines if the interruption occurs:

- If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.
- If the value of Inter ruptible is ' on ' , then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.

Note Callback interruption and execution behave differently in these situations:

- If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback, then the interruption occurs regardless of the Inter ruptible property value.
- If the running callback is currently executing the waitfor function, then the interruption occurs regardless of the Interruptible property value.
- If the interrupting callback is owned by a Timer object, then the callback executes according to schedule regardless of the Interruptible property value.

Note When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the object returned by the gca or gcf command might change when another callback executes.

BusyAction - Callback queuing

'queue' (default)|'cancel'
Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

- The running callback is the currently executing callback.
- The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions are met:

- The running callback contains a command that processes the callback queue, such as drawnow, figure, uifigure, getframe, waitfor, or pause.
- The value of the Inter ruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the BusyAction property:

- 'queue' - Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
- 'cancel' - Does not execute the interrupting callback.

PickableParts - Ability to capture mouse clicks

'visible' (default)|'none'
Ability to capture mouse clicks, specified as one of these values:

- 'visible' - Capture mouse clicks only when visible. The Visible property must be set to ' on '. The HitTest property determines if the Polygon object responds to the click or if an ancestor does.
- 'none ' - Cannot capture mouse clicks. Clicking the Polygon object passes the click to the object behind it in the current view of the figure window. The HitTest property of the Polygon object has no effect.

HitTest - Response to captured mouse clicks

' on ' (default) | on/off logical value
Response to captured mouse clicks, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of ' on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- ' on ' - Trigger the ButtonDownFcn callback of the Polygon object. If you have defined the ContextMenu property, then invoke the context menu.
- 'off' - Trigger the callbacks for the nearest ancestor of the Polygon object that has one of these:
- HitTest property set to 'on'
- PickableParts property set to a value that enables the ancestor to capture mouse clicks

Note The PickableParts property determines if the Polygon object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

BeingDeleted - Deletion status

on/off logical value
This property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to ' on ' when the DeleteFcn callback begins execution. The BeingDeleted property remains set to ' on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted before querying or modifying it.

Parent/Child

Parent - Parent
GeographicAxes object
Parent, specified as a GeographicAxes object.

Children - Children

empty GraphicsPlaceholder array
The object has no children. You cannot set this property.

HandleVisibility - Visibility of object handle

'on' (default)|'off'|'callback'
Visibility of the object handle in the Children property of the parent, specified as one of these values:

- 'on' - Object handle is always visible.
- 'off' - Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. Set the HandleVisibility to 'off' to temporarily hide the handle during the execution of that function.
- ' callback' - Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to ' on ' to list all object handles regardless of their HandleVisibility property setting.

Identifiers

Type - Type of graphics object
 'polygon'

This property is read-only.
Type of graphics object, returned as 'polygon '. Use this property to find all objects of a given type within a plotting hierarchy, for example, searching for the type using findobj.

Tag - Object identifier

```
' ' (default) | character vector | string scalar
```

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

UserData - User data

[] (default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see "Share Data Within App Designer Apps".

See Also

Functions

geoplot
Objects
geopolyshape|mappolyshape

Topics

"Access Property Values"
"Graphics Object Properties"
Introduced in R2022a

polyjoin

Convert line or polygon parts from cell arrays to vector form

Syntax

[lat,lon] = polyjoin(latcells,loncells)

Description

[lat,lon] = polyjoin(latcells,loncells) converts polygons from cell array format to column vector format. In cell array format, each element of the cell array is a vector that defines a separate polygon.

Examples

```
latcells = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
loncells = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
[lat,lon] = polyjoin(latcells,loncells);
[lat lon]
ans =
            1 9
            2 8
            3 7
    NaN NaN
            NaN NaN
            5 5
            6 4
            7 3
            8 2
    NaN NaN
                1
```


Tips

A polygon may consist of an outer contour followed by holes separated with NaNs. In vector format, each vector may contain multiple faces separated by NaNs. There is no structural distinction between outer contours and holes in vector format.

See Also

polyshape|polysplit
Topics
"Create and Display Polygons"

Introduced before R2006a

polymerge

Merge line segments with matching endpoints

Syntax

[latMerged, lonMerged] = polymerge(lat, lon)
[latMerged, lonMerged] = polymerge(lat, lon, tol)
[latMerged, lonMerged] = polymerge(lat, lon, tol, outputFormat)

Description

[latMerged, lonMerged] = polymerge(lat, lon) accepts a multipart line in latitudelongitude with vertices stored in arrays lat and lon, and merges the parts wherever a pair of end points coincide. For this purpose, an end point can be either the first or last vertex in a given part. When a pair of parts are merged, they are combined into a single part and the duplicate common vertex is removed. If two first vertices coincide or two last vertices coincide, then the vertex order of one of the parts will be reversed. A merge is applied anywhere that the end points of exactly two distinct parts coincide, so that an indefinite number of parts can be chained together in a single call to polymerge. If three or more distinct parts share a common end point, however, the choice of which parts to merge is ambiguous and therefore none of the corresponding parts are connected at that common point.

The inputs lat and lon can be column or row vectors with NaN -separated parts (and identical NaN locations in each array), or they can be cell arrays with each part in a separate cell. The form of the output arrays, latMerged and lonMerged, matches the inputs in this regard.
[latMerged, lonMerged] = polymerge(lat, lon, tol) combines line segments whose endpoints are separated by less than the circular tolerance, tol. tol has the same units as the polygon input.
[latMerged, lonMerged] = polymerge(lat, lon, tol, outputFormat) allows you to request either the NaN -separated vector form for the output (set outputFormat to 'vector'), or the cell array form (set outputFormat to ' cell').

Examples

Link Line Segments with Common Endpoints into Polygons

Construct column vectors representing coordinate values. The vectors use NaN separators to define four line segments.

```
lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';
```

Concatenate the segments with matching endpoints. Three of the line segments have overlapping end points, so polymerge returns two line segments.
[latm, lonm] = polymerge(lat,lon)

```
latm = 8×1
            1
            2
            3
            4
        NaN
            5
            6
        NaN
lonm = 8\times1
    1 1
    12
    13
    14
        NaN
            1 5
            16
    NaN
```


See Also

polyjoin| polysplit

Topics

"Create and Display Polygons"

Introduced before R2006a

polysplit

Convert line or polygon parts from vector form to cell arrays

Syntax

[latcells,loncells] = polysplit(lat,lon)

Description

[latcells,loncells] = polysplit(lat,lon) returns the NaN-delimited segments of the vectors lat and lon as N -by-1 cell arrays with one polygon segment per cell. lat and lon must be the same size and have identically-placed NaNs. The polygon segments are column vectors if lat and lon are column vectors, and row vectors otherwise.

Examples

Extract and Join Polygons or Line Segments

Create two NaN-delimited arrays in the form of column vectors.

```
lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
lon = [13 -97.45 165 NaN 0 -114.2 -18 0]';
```

Split the column vectors into individual line segment cell arrays at the NaN separators using polysplit.
[latc,lonc] = polysplit(lat,lon)
latc=2×1 cell array
\{3x1 double\}
\{4x1 double\}
lonc=2×1 cell array
$\{3 \times 1$ double\}
\{4x1 double\}

Inspect the contents of the cell arrays. Note that each cell array element contains a segment of the original line.

```
[latc{1} lonc{1}]
ans = 3\times2
    45.6000 13.0000
    -23.4700 -97.4500
    78.0000 165.0000
```

[latc\{2\} lonc\{2\}]

```
ans = 4×2
    43.9000 0
    -67.1400 -114.2000
    90.0000 -18.0000
    -89.0000 0
```

You can reverse the process by using the polyjoin function.

```
[lat2,lon2] = polyjoin(latc,lonc);
```

Compare the original and joined segments. By definition, the logical comparison is false for the NaN delimiters.

```
[lat lon] == [lat2 lon2]
ans = 8x2 logical array
    1 1
    1 1
    1
    0
    1
    1 1
    1 1
    1
```

Test for global equality, including NaN values.

```
isequaln(lat,lat2) & isequaln(lon,lon2)
ans = logical
    1
```


See Also

isShapeMultipart|polyshape|polyjoin
Topics
"Create and Display Polygons"
Introduced before R2006a

polyxpoly

Intersection points for lines or polygon edges

Syntax

[xi,yi] = polyxpoly(x1,y1,x2,y2)
[xi,yi,ii] = polyxpoly(\qquad
[xi,yi] = polyxpoly(__,'unique')

Description

$[x i, y i]=$ polyxpoly $(x 1, y 1, x 2, y 2)$ returns the intersection points of two polylines in a planar, Cartesian system, with vertices defined by $x 1, y 1, x 2$ and $y 2$. The output arguments, $x i$ and $y i$, contain the x - and y-coordinates of each point at which a segment of the first polyline intersects a segment of the second. In the case of overlapping, collinear segments, the intersection is actually a line segment rather than a point, and both endpoints are included in xi, yi.
[xi,yi,ii] = polyxpoly(__) returns a two-column array of line segment indices corresponding to the intersection points. The k-th row of ii indicates which polyline segments give rise to the intersection point $x i(k), y i(k)$.

To remember how these indices work, just think of segments and vertices as fence sections and posts. The i-th fence section connects the i-th post to the $(i+1)$-th post. In general, letting i and j denote the scalar values comprised by the k-th row of ii, the intersection indicated by that row occurs where the i-th segment of the first polyline intersects the j-th segment of the second polyline. But when an intersection falls precisely on a vertex of the first polyline, then i is the index of that vertex. Likewise with the second polyline and the index j. In the case of an intersection at the i-th vertex of the first line, for example, $x i(k)$ equals $x 1(i)$ and $y i(k)$ equals $y 1(i)$. In the case of intersections between vertices, i and j can be interpreted as follows: the segment connecting $x 1(i), y 1(i)$ to $\times 1(i+1)$, $y 1(i+1)$ intersects the segment connecting $x 2(j), y 2(j)$ to $x 2(j+1), y 2(j+1)$ at the point $x i(k)$, yi(k).
[xi,yi] = polyxpoly(\qquad , 'unique ') filters out duplicate intersections, which may result if the input polylines are self-intersecting.

Examples

Find Intersection Points Between Rectangle and Polyline

Define and fill a rectangular area in the plane.

```
xlimit = [3 13];
ylimit = [2 8];
xbox = xlimit([[\begin{array}{lllll}{1}&{1}&{2}&{2}&{1}\end{array}]);
ybox = ylimit([1 2 2 1 1]);
mapshow(xbox,ybox,'DisplayType','polygon','LineStyle','none')
```

Define and display a two-part polyline.

```
x = [0[0 6 4 4 8 8 10 14 10 14 NaN 4 4 6 9 15];
y = [4 6 10 11 7 6 10 10 6 NaN 0 3 4 3 6];
mapshow(x,y,'Marker','+')
```

Intersect the polyline with the rectangle.
[xi,yi] = polyxpoly(x,y,xbox,ybox);
mapshow(xi,yi,'DisplayType','point','Marker','o')

Display the intersection points; note that the point $(12,8)$ appears twice because of a self-intersection near the end of the first part of the polyline.
[xi yi]

ans $=8 \times 2$	
3.0000	5.0000
5.0000	8.0000
8.0000	8.0000
12.0000	8.0000
12.0000	8.0000
13.0000	7.0000
13.0000	5.0000
4.0000	2.0000

You can suppress this duplicate point by using the ' unique ' option.

```
[xi,yi] = polyxpoly(x,y,xbox,ybox,'unique');
[xi yi]
ans = 7\times2
    3.0000 5.0000
    5.0000 8.0000
    8.0000 8.0000
    12.0000 8.0000
    13.0000 7.0000
    13.0000 5.0000
    4.0000 2.0000
```


Find Intersection Points Between State Border and Small Circle

Read state polygons into a geospatial table. Create a subtable that contains the California polygon. Display the polygon on a map.

```
states = readgeotable("usastatehi.shp");
row = states.Name == "California";
california = states(row,:);
figure
usamap("california")
geoshow(california,"FaceColor","none")
```

Define a small circle centered off the coast of California.

```
lat0 = 37;
lon0 = -122;
rad = 500;
[latc,lonc] = scircle1(lat0,lon0,km2deg(rad));
plotm(lat0,lon0,"r*")
plotm(latc,lonc,"r")
```

Extract the latitude and longitude coordinates of the California polygon from the geospatial table.

```
T = geotable2table(california,["Latitude","Longitude"]);
```

[lat,lon] = polyjoin(T.Latitude',T.Longitude');

Find the intersection points between the state of California and the small circle.
[loni,lati] = polyxpoly(lon,lat,lonc,latc);
plotm(lati,loni,"bo")

$$
125.0^{\circ} \mathrm{W} 122.5^{\circ} \mathrm{W} 120.0^{\circ} \mathrm{W} 117.5^{\circ} \mathrm{W} 115.0^{\circ} \mathrm{W}
$$

Input Arguments

x1, y1, x2, y2 - Coordinates of polylines
numeric vector
x - or y-coordinates of points in the first or second polyline, specified as a numeric vector. For a given polyline, the x - and y-coordinate vectors must be the same length.

Output Arguments

xi, yi - Coordinates of intersection points
numeric column vector
x - or y-coordinates of intersection points, specified as a numeric column vector.

ii - line segment indices

numeric vector
Line segment indices of intersection points, specified as a numeric vector.

Tips

- If the spacing between points is large, the intersections calculated by the polyxpoly function and the intersections shown on a map display might be different. This is a result of differences
between straight lines in the unprojected and projected coordinates. Similarly, there might be differences between the polyxpoly result and intersections that assume great circles or rhumb lines between points.

See Also

crossfix | gcxgc|gcxsc|navfix|rhxrh|scxsc
Introduced before R2006a

previewmap

View map at printed size

Description

The appearance of a map onscreen can differ from the final printed output. This results from the difference in the size and shape of the figure window and the area the figure occupies on the printed page. A map that appears readable on screen might be cluttered when the printed output is smaller. Likewise, the relative position of multiple axes can appear different when printed. This function resizes the figure to the printed size.

Examples

Is the text small enough to avoid overlapping in a map of Europe?

```
figure
worldmap europe
land=shaperead('landareas.shp','UseGeoCoords',true);
geoshow([land.Lat],[land.Lon])
m=gcm;
latlim = m.maplatlimit;
lonlim = m.maplonlimit;
BoundingBox = [lonlim(1) latlim(1);lonlim(2) latlim(2)];
cities=shaperead('worldcities.shp', ...
    'BoundingBox',BoundingBox,'UseGeoCoords',true);
for index=1:numel(cities)
    h=textm(cities(index).Lat, cities(index).Lon, ...
            cities(index).Name);
    trimcart(h)
    rotatetext(h)
end
orient landscape
tightmap
axis off
previewmap
```


Limitations

The figure cannot be made larger than the screen.

Tips

previewmap changes the size of the current figure to match the printed output. If the resulting figure size exceeds the screen size, the figure is enlarged as much as possible.

See Also

printpreview | paperscale | axesscale

Introduced before R2006a

projcrs

Projected coordinate reference system object

Description

A projected coordinate reference system (CRS) provides information that assigns Cartesian x and y map coordinates to physical locations. Projected CRSs consist of a geographic CRS and several parameters that are used to transform coordinates to and from the geographic CRS. For more information about geographic CRSs, see geocrs.

Creation

There are several ways to create projected CRS objects, including:

- Import raster data by using readgeoraster, and then query the ProjectedCRS property of the returned raster reference object.
- Get information about a shapefile by using the shapeinfo function, and then query the CoordinateReferenceSystem field of the returned structure.
- Use the projcrs function (described here).

Syntax

```
p = projcrs(code)
p = projcrs(code,'Authority',authority)
p = projcrs(wkt)
```


Description

p = projcrs(code) creates a projected CRS object using the EPSG code specified by code.
p = projcrs(code,'Authority', authority) creates a projected CRS object using the specified code and authority.
$\mathrm{p}=\mathrm{projcrs}(\mathrm{wkt})$ creates a projected CRS object using the well-known text (WKT) string representation specified by wkt.

Input Arguments
code - Projected CRS code
positive integer | string scalar | character vector
Projected CRS code, specified as a positive integer, string scalar, or character vector. By default, the projers function assumes the code argument is an EPSG code. To specify other types of codes, use the 'Authority' name-value pair.

If referring to an EPSG or ESRI code, specify this argument as a positive integer. If referring to an IGNF code, specify this argument as a string scalar or character vector.

For information on valid EPSG codes, see the EPSG home page.

authority - Authority

```
'EPSG' (default)|'ESRI'|'IGNF'
```

Authority, specified as 'EPSG', 'ESRI', or 'IGNF'. This argument specifies which authority the projers function uses to determine the properties of the created projected CRS object. If you do not specify an authority, then the projers function uses 'EPSG'.

wkt - Well-known text

string scalar | character vector
Well-known text (WKT), specified as a string scalar or character vector. You can specify WKT using either the WKT 1 or WKT 2 standard.

The parameters listed in the ProjectionParameters property use the WKT 2 standard, even if the argument uses the WKT 1 standard.

Properties

Name - CRS name

string scalar
This property is read-only.
CRS name, returned as a string scalar.
Data Types: string

GeographicCRS - Geographic CRS

geocrs object

This property is read-only.
Geographic CRS, returned as a geocrs object. A geographic CRS consists of a datum (including its ellipsoid), prime meridian, and angular unit of measurement.

LengthUnit - Length unit

string scalar
This property is read-only.
Length unit, returned as a string scalar. Possible values include "meter" and "U.S. survey foot".

Data Types: string

ProjectionMethod - Projection method

string scalar
This property is read-only.
Projection method, returned as a string scalar. Possible values include "Lambert Conic Conformal (2SP)" and "Transverse Mercator".
Data Types: string

ProjectionParameters - Projection parameters

ProjectionParameters object
This property is read-only.
Projection parameters, returned as a ProjectionParameters object. The parameters in a ProjectionParameters object use the WKT 2 standard, even if the supplied wkt argument uses the WKT 1 standard.

You can query individual projection parameters using dot notation. For example, create a projcrs object and access the LatitudeOfFalseOrigin parameter.

```
p = projcrs(26986);
p.ProjectionParameters.LatitudeOfFalseOrigin
```

This table describes common projection parameters, including those used by the Lambert Conformal Conic and Transverse Mercator projection methods. Different projections may have parameters other than the ones listed here.

Parameter	Description
EastingAtFalseOrigin	Easting at the false origin, returned as a number in the units specified by LengthUnit. A projected CRS often uses a false origin such that all coordinates within the CRS have positive values. The easting at the false origin is with respect to the grid origin at (0, 0).
FalseEasting	False easting, returned as a number in the units specified by LengthUnit. A projected CRS often uses a false easting to shift the y-axis of the map grid so that the x-coordinates have positive values.
FalseNorthing	False northing, returned as a number in the units specified by LengthUnit. A projected CRS often uses a false northing to shift the x-axis of the map grid so that the y-coordinates have positive values.
LatitudeOf1stStandardParallel	Latitude of the first standard parallel, returned as a number. Units are typically in degrees. Standard parallels are the parallels at which the cone or cylinder used in a conic or cylindrical projection intersects the reference spheroid.
LatitudeOf2ndStandardParallel	Latitude of the second standard parallel, returned as a number. Units are typically in degrees. Standard parallels are the parallels at which the cone or cylinder used in a conic or cylindrical projection intersects the reference spheroid.
LatitudeOfFalseOrigin	Latitude of false origin, returned as a number. A projected CRS typically uses a false origin such that all coordinates within the CRS have positive values.

Parameter	Description
Latitude0fNaturalOrigin	Latitude of the natural origin, returned as a number. Units are typically in degrees. The natural origin is the grid origin without the shift by a false northing or easting.
Longitude0fFalse0rigin	Longitude of false origin, returned as a number. A projected CRS typically uses a false origin such that all coordinates within the CRS have positive values.
Longitude0fNaturalOrigin	Longitude of the natural origin, returned as a number. Units are typically in degrees. The natural origin is the grid origin without the shift by a false northing or easting.
NorthingAtFalse0rigin	Northing at the false origin, returned as a number in the units specified by LengthUnit. A projected CRS typically uses a false origin such that all coordinates within the CRS have positive values. The northing at the false origin is with respect to the grid origin at (0, 0).
ScaleFactorAtNatural0rigin	Scale factor at natural origin, returned as a number with no units. The natural origin is the grid origin without the shift by a false northing or easting. A projected CRS typically uses a scale factor (a number close to 1) to balance out scale distortion across the area covered by the coordinate system.

Object Functions

projfwd Project latitude-longitude coordinates to x-y map coordinates
projinv Unproject x-y map coordinates to latitude-longitude coordinates
wktstring Well-known text string
isequal Compare two projcrs or geocrs objects for equivalence

Examples

Get Projected CRS from EPSG Code

Create a projected CRS object by specifying an EPSG code.

```
p = projcrs(5325)
p =
    projcrs with properties:
                                    Name: "ISN2004 / Lambert 2004"
            GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Lambert Conic Conformal (2SP)"
            LengthUnit: "meter"
        ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```


Get Projected CRS from ESRI Code

Create a projected CRS object from an ESRI code by using the 'Authority ' name-value pair.
p = projcrs(53026,'Authority','ESRI')
$p=$
projcrs with properties:
Name: "Sphere_Stereographic"
GeographicCRS: [1x1 geocrs]
ProjectionMethod: "Stereographic"
LengthUnit: "meter"
ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Get Projected CRS from IGNF Code

Create a projected CRS object from an IGNF code by using the 'Authority ' name-value pair. Specify the code using a string or character vector.

```
p = projcrs('UTM39SW84','Authority','IGNF')
p =
    projcrs with properties:
                            Name: "WGS84 UTM SUD FUSEAU 39"
    GeographicCRS: [1x1 geocrs]
    ProjectionMethod: "Transverse Mercator"
            LengthUnit: "meter"
        ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```


Get Projected CRS from Projection File

Import a WKT projection file as a character vector by using the fileread function. Then create a projected CRS object by specifying the vector.

```
wkt = fileread('MtWashington-ft.prj');
p = projcrs(wkt)
p =
    projcrs with properties:
                            Name: "UTM Zone 19, Northern Hemisphere"
            GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Transverse Mercator"
            LengthUnit: "meter"
        ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```


Get Projected CRS from Imported Raster Data

Import raster data as an array and a map reference object using the readgeoraster function. Then, get the projected CRS by querying the ProjectedCRS property of the reference object.

```
[Z,R] = readgeoraster('boston.tif');
R.ProjectedCRS
ans =
    projcrs with properties:
                            Name: "NAD83 / Massachusetts Mainland"
                GeographicCRS: [1×1 geocrs]
            ProjectionMethod: "Lambert Conic Conformal (2SP)"
                    LengthUnit: "U.S. survey foot"
        ProjectionParameters: [1\times1 map.crs.ProjectionParameters]
```

Alternatively, return information about the same file as a RasterInfo object using the georasterinfo function. Then, get the projected CRS by querying the CoordinateReferenceSystem property of the object.

```
info = georasterinfo('boston.tif');
info.CoordinateReferenceSystem
ans =
    projcrs with properties:
                            Name: "NAD83 / Massachusetts Mainland"
                GeographicCRS: [ 1 < 1 geocrs]
            ProjectionMethod: "Lambert Conic Conformal (2SP)"
                    LengthUnit: "U.S. survey foot"
        ProjectionParameters: [1\times1 map.crs.ProjectionParameters]
```


Get Projection Parameters for Projected CRS

Get projection parameters for a projected CRS by creating a projcrs object and querying its ProjectionParameters property.

```
p = projcrs(26986);
parameters = p.ProjectionParameters
parameters =
    ProjectionParameters object with parameters:
                LatitudeOfFalseOrigin: 41
            LongitudeOfFalseOrigin: -71.5
        LatitudeOf1stStandardParallel: 42.6833333333333
        LatitudeOf2ndStandardParallel: 41.7166666666667
            EastingAtFalseOrigin: 200000
            NorthingAtFalseOrigin: 750000
```

Query individual projection parameters by using dot notation.
f = parameters.EastingAtFalseOrigin
$f=200000$

Tips

When you compare two ProjectionParameters objects by using the isequal function, the function might return 0 (false), even when the parameter values are the same. Instead, compare ProjectionParameters objects by comparing the projcrs objects or by comparing the parameter values directly.

See Also

Functions
fileread | projfwd|projinv
Objects
geocrs

External Websites

EPSG home page

Introduced in R2020b

project

(To be removed) Project displayed map graphics object

Note The project function will be removed in a future release. Use the proj fwd function instead.

Syntax

```
project(h)
```

project(h,'xy')
project(h,'yx')

Description

project (h) takes unprojected objects with handles h that are displayed on map axes and projects them. For example, project takes a line created on a map axes with the plot function and projects it as though it had been created with the plotm function. This can be useful if a standard MATLAB function was accidentally executed. The map structure of the existing map axes determines the specifics of the projection. If h is the handle of the map axes, then all the children of h are projected. Do not attempt this if any children of h have already been projected!
project (h,'xy') specifies that the XData of the unprojected objects corresponds to longitudes and the YData to latitudes. This is the default assumption.
project(h,'yx') specifies that the XData of the unprojected objects corresponds to latitudes and the YData to longitudes.

Examples

Create an axes, plot a line, then project it:

```
axesm('bonne','AngleUnits','radians'); framem;
h = plot([-1 -.5 0 .5 1],[-1 -.5 0 .5 1]);
```



```
project(h)
```


The line is straight in $x-y$ space, but when converted to a projected map object, it bends with the projection.

See Also
projfwd

Introduced before R2006a

projfwd

Project latitude-longitude coordinates to x - y map coordinates

Syntax

[x, y] = projfwd(proj,lat,lon)

Description

[x, y] = projfwd(proj,lat,lon) transforms the latitude-longitude coordinates specified by lat and lon to the x and y map coordinates in the projected coordinate reference system specified by proj. Specify proj using a projers object (since R2020b), a map projection structure, or a GeoTIFF information structure.

Examples

Project Latitude-Longitude Coordinates to $\boldsymbol{x}-\boldsymbol{y}$

Project latitude-longitude coordinates to $x-y$ coordinates by specifying a map projection. Then, display the projected coordinates on a map.

To do this, first specify the latitude and longitude coordinates of landmarks in Boston. Specify the coordinates in the NAD83 geographic CRS.

```
lat = [42.3604 42.3691 42.3469 42.3480 42.3612];
lon = [-71.0580 -71.0710 -71.0623 -71.0968 -71.0941];
```

Then, import a GeoTIFF image of Boston as an array and a map cells reference object. Get information about the map projection by querying the ProjectedCRS property of the reference object. Verify that the geographic CRS underlying the projected CRS is NAD83.

```
[A,R] = readgeoraster('boston.tif');
proj = R.ProjectedCRS;
proj.GeographicCRS.Name
ans =
"NAD83"
```

Project the latitude-longitude coordinates to $x-y$ coordinates using the same projected CRS as the GeoTIFF image.

```
[x,y] = projfwd(proj,lat,lon);
```

Display the GeoTIFF image and the projected coordinates on the same map. Change the marker symbol and color of the coordinates so they are more visible. Then, add axis labels.

```
mapshow(A,R)
mapshow(x,y,'DisplayType','point','Marker','o', ...
    'MarkerFaceColor','y','MarkerEdgeColor',''none')
xlabel('x (survey feet)')
ylabel('y (survey feet)')
```


Input Arguments

```
proj - Map projection
projcrs object | scalar map projection structure | scalar GeoTIFF information structure
```

Map projection, specified as a projcrs object (since R2020b), a scalar map projection structure (mstruct), or a GeoTIFF information structure. For more information about map projection structures, see defaultm. For more information about GeoTIFF information structures, see geotiffinfo.
Data Types: struct

lat - Geodetic latitudes

scalar value | vector \mid matrix | N-D array
Geodetic latitudes, specified as a scalar value, vector, matrix, or N-D array, in units of degrees. The size of lat and lon must match.

Data Types: single | double

Lon - Geodetic longitudes

scalar value | vector | matrix | N-D array
Geodetic longitudes, specified as a scalar value, vector, matrix, or N-D array, in units of degrees. The size of lat and lon must match.

Data Types: single | double

Output Arguments

x - Projected x-coordinates

scalar value | vector | matrix | N-D array
Projected x-coordinates, returned as a scalar value, vector, matrix, or N-D array.

y - Projected \boldsymbol{y}-coordinates

scalar value | vector | matrix | N-D array
Projected y-coordinates, returned as a scalar value, vector, matrix, or N-D array.

Tips

If the geographic CRS of lat and lon does not match the geographic CRS of proj, then the values of x and y may be inaccurate. When proj is a projers object, you can find its geographic CRS by querying its GeographicCRS property. For example, this code shows how to create a projcrs object from EPSG code 32610 and find the associated geographic CRS.

```
proj = projcrs(32610);
proj.GeographicCRS.Name
ans =
    "WGS 84"
```


See Also

Functions

geotiffinfo|projinv|projlist
Objects
projers

Topics

"Project and Display Raster Data"
"Transform Coordinates to a Different Projected CRS"
Introduced before R2006a

projinv

Unproject x - y map coordinates to latitude-longitude coordinates

Syntax

[lat,lon] = projinv(proj, x, y)

Description

[lat,lon] = projinv(proj, x, y) transforms the map coordinates specified by x and y in the projected coordinate reference system specified by proj to the latitude-longitude coordinates lat and lon. Specify proj using a projcrs object (since R2020b), a map projection structure, or a GeoTIFF information structure.

Examples

Unproject $x-y$ Coordinates to Latitude-Longitude

Unproject $x-y$ coordinates to latitude-longitude coordinates by specifying the projected CRS of the $x-y$ coordinates. Then, display the latitude-longitude coordinates on geographic axes.

To do this, first import a shapefile containing the x - and y-coordinates of roads in Concord, MA. Get information about the shapefile as a structure. Find the projected CRS for the coordinates by accessing the CoordinateReferenceSystem field of the structure.

```
roads = shaperead('concord_roads.shp');
x = [roads.X];
y = [roads.Y];
info = shapeinfo('concord_roads.shp');
proj = info.CoordinateReferenceSystem;
```

Unproject the $x-y$ coordinates to latitude-longitude coordinates.
[lat,lon] = projinv(proj,x,y);
Display the coordinates on geographic axes.

```
figure
geoplot(lat,lon)
hold on
geobasemap('streets')
```


The geographic CRS of the $x-y$ coordinates used in this example is NAD83. You can find the geographic CRS that underlies a projected CRS by querying the GeographicCRS property.
proj.GeographicCRS.Name
ans =
"NAD83"
The geographic CRS underlying the 'streets ' basemap is WGS84. NAD83 and WGS84 are similar, but not identical. Therefore, at high zoom levels the coordinates and basemap may appear misaligned.

Input Arguments

proj - Map projection

projers object | scalar map projection structure | scalar GeoTIFF information structure
Map projection, specified as a projcrs object (since R2020b), a scalar map projection structure (mstruct), or a GeoTIFF information structure. For more information about map projection structures, see defaultm. For more information about GeoTIFF information structures, see geotiffinfo.

Data Types: struct

x - Projected x-coordinates

scalar value | vector | matrix | N-D array

Projected x-coordinates, specified as a scalar value, vector, matrix, or N-D array. The size of x and y must match.

Data Types: single | double

y - Projected \boldsymbol{y}-coordinates

scalar value | vector | matrix | N-D array
Projected y-coordinates, specified as a scalar value, vector, matrix, or N-D array. The size of x and y must match.

Data Types: single | double

Output Arguments

lat - Geodetic latitudes

scalar value | vector \| matrix | N-D array
Geodetic latitudes, returned as a scalar value, vector, matrix, or N-D array, in units of degrees.
The geographic CRS of lat matches the geographic CRS of proj. If proj is a projcrs object, then you can find its geographic CRS by querying its GeographicCRS property. For example, this code shows how to create a projcrs object from EPSG code 32610 and find the associated geographic CRS.

```
proj = projcrs(32610);
proj.GeographicCRS.Name
ans =
    "WGS 84"
```


Ion - Geodetic longitudes

scalar value | vector | matrix | N-D array
Geodetic longitudes, returned as a scalar value, vector, matrix, or N-D array, in units of degrees.
The geographic CRS of lat matches the geographic CRS of proj. If proj is a projcrs object, then you can find its geographic CRS by querying its GeographicCRS property. For example, this code shows how to create a projcrs object from EPSG code 32610 and find the associated geographic CRS.

```
proj = projcrs(32610);
proj.GeographicCRS.Name
ans =
    "WGS 84"
```


See Also

Functions

geotiffinfo|projfwd|projlist

Objects

projers

Topics

"Project and Display Raster Data"
"Transform Coordinates to a Different Projected CRS"
Introduced before R2006a

projlist

GeoTIFF info structure support for projfwd and projinv

Syntax

projlist(listmode)
S = projlist(listmode)

Description

projlist(listmode) displays a table of projection names, IDs, and availability. listmode can be 'mapprojection','geotiff', 'geotiff2mstruct', or 'all'. The default value is 'mapprojection'.
$\mathrm{S}=\mathrm{projlist}($ listmode) returns a structure array containing projection names, IDs, and availability. The output of projlist for each listmode is described below:

- mapprojection - Lists the projection IDs that projfwd and projinv use the PROJ library to implement. Starting in R2020b, you can use any valid map projection ID with projfwd and projinv. Return a list of valid map projection IDs using the maplist function. The output structure contains these fields.
- Name - Projection name
- MapProjection - Projection ID
- geotiff - Lists the GeoTIFF projection IDs that are available for use with proj fwd and projinv. The output structure contains these fields.
- GeoTIFF - GeoTIFF projection ID
- Available- Logical array with values 1 or 0
- geotiff2mstruct - Lists the GeoTIFF projection IDs that are available for use with geotiff2mstruct. The output structure contains these fields.
- GeoTIFF - GeoTIFF projection ID
- MapProjection - Projection ID
- all - Lists the map and GeoTIFF projection IDs that are available for use with proj fwd and projinv. The output structure contains these fields.
- GeoTIFF - GeoTIFF projection ID
- MapProjection - Projection ID
- info - Logical array with values 1 or 0
- mstruct - Logical array with values 1 or 0

Examples

```
s=projlist
s =
```

```
1x19 struct array with fields:
    Name
    MapProjection
s=projlist('geotiff2mstruct')
S =
1x19 struct array with fields:
    GeoTIFF
    MapProjection
```


See Also

geotiff2mstruct | projfwd | projinv | maplist|maps

Introduced before R2006a

properties

Return property names of geographic or planar vector

Syntax

prop = properties(v)

Description

prop $=$ properties (v) returns the property names of the geographic or planar vector v .

Examples

View All Properties of a Mapshape Vector

Create a mapshape vector.
ms = mapshape(shaperead('tsunamis.shp', 'UseGeoCoords', true));
Display all properties of the mapshape vector. This includes the Geometry and Metadata collection properties, the X and Y required mapshape Vertex properties, and all dynamic properties.

```
properties(ms)
Properties for class mapshape:
    Geometry
    Metadata
    X
    Y
    Lon
    Lat
    Year
    Month
    Day
    Hour
    Minute
    Second
    Val_Code
    Validity
    Cause Code
    Cause
    Eq_Mag
    Country
    Location
    Max_Height
    Iida_Mag
    Intensity
    Num Deaths
    Desc_Deaths
```


Input Arguments

v - Geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

Output Arguments

prop - Property names
cell array
Property names of geographic or planar vector v , returned as a cell array.

See Also

disp|fieldnames
Introduced in R2012a

putpole

Origin vector to place north pole at specified point

Syntax

origin = putpole(pole)
origin = putpole(pole,units)

Description

origin = putpole(pole) returns an origin vector required to transform a coordinate system in such a way as to put the true North Pole at a point specified by the three- (or two-) element vector pole. This vector is of the form [latitude longitude meridian], specifying the coordinates in the original system at which the true North Pole is to be placed in the transformed system. The meridian is the longitude upon which the new system is to be centered, which is the new pole longitude if omitted. The output is a three-element vector of the form [latitude longitude orientation], where the latitude and longitude are the coordinates in the untransformed system of the new origin, and the orientation is the azimuth of the true North Pole in the transformed system.
origin = putpole(pole,units) allows the specification of the angular units of the origin vector, where units is any valid angle unit. The default is 'degrees'.

Examples

Pull the North Pole down the 0° meridian by 30° to $60^{\circ} \mathrm{N}$. What is the resulting origin vector?

```
origin = putpole([60 0])
origin =
    30.0000 0 0
```

This makes sense: when the pole slid down 30°, the point that was 30° north of the origin slid down to become the origin. Following is a less obvious transformation:

```
origin = putpole([60 80 0]) % constrain to original central
                                % meridian
origin =
    4.9809 0 29.6217
origin = putpole([60 80 40]) % constrain to arbitrary meridian
origin =
    4.9809 40.0000 29.6217
```


Tips

When developing transverse or oblique projections, you need transformed coordinate systems. One way to define these systems is to establish the point in the original (untransformed) system that will become the new (transformed) origin.

See Also

neworig|org2pol

Introduced before R2006a

quiver3m

Project 3-D quiver plot on map axes

Syntax

h = quiver3m(lat,lon,alt,dlat,dlon,dalt)
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec)
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec,'filled')
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,scale)
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec,scale)
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec,scale,'filled')

Description

$\mathrm{h}=$ quiver3m(lat,lon,alt, dlat,dlon, dalt) displays velocity vectors with components (dlat, dlon, dalt) at the geographic points (lat,lon) and altitude alt on a displayed map axes. The inputs dlat, dlon, and dalt determine the direction of the vectors in latitude, longitude, and altitude, respectively. The function automatically determines the length of these vectors to make them as long as possible without overlap. The object handles of the displayed vectors can be returned in h .
$\mathrm{h}=$ quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec) specifies the line style, marker, and color on page 1-1245. If you use markers, they are plotted at the start points of the vectors, i.e., the input points (lat,lon,alt).
$h=q u i v e r 3 m(l a t, l o n, a l t, d l a t, d l o n, d a l t, L i n e S p e c, ' f i l l e d ')$ results in the filling in of any symbols specified by LineSpec.
h = quiver3m(lat,lon,alt,dlat,dlon,dalt,scale), h = quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec,scale) and $h=$ quiver3m(lat,lon,alt,dlat,dlon,dalt,LineSpec,scale,'filled') alter the automatically calculated vector lengths by multiplying them by the scalar value scale. For example, if scale is 2, the displayed vectors are twice as long as they would be if scale were 1 (the default). When scale is set to 0 , the automatic scaling is suppressed and the length of the vectors is determined by the inputs. In this case, the vectors are plotted from (lat,lon,alt) to (lat+dlat,lon+dlon,alt+dalt).

Examples

Plot 3-D Quiver Vectors

Plot 3-D quiver vectors from London ($51.5^{\circ} \mathrm{N}, 0^{\circ}$) and New Delhi ($29^{\circ} \mathrm{N}, 77.5^{\circ} \mathrm{E}$), both at an altitude of 0 . Suppress the automatic scaling. Terminate both vectors at an altitude of 1 ; the London vector should terminate 100° southward and 70° eastward, while the New Delhi vector should terminate 50° northward and 10° eastward.

```
load coastlines
axesm miller;
view(3)
plotm(coastlat,coastlon)
lat0 = [51.5,29];
```

```
lon0 = [0 77.5];
alt = [0 0];
dlat = [-40 50];
dlon = [-70 10];
dalt = [1 1];
quiver3m(lat0,lon0,alt,dlat,dlon,dalt,'m')
tightmap
```


More About

Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' - r'.

Line Style	Description	Resulting Line
' - '	Solid line	
' - - '	Dashed line	-----
' \boldsymbol{I}^{\prime}	Dotted line	$\ldots \ldots \ldots \ldots$

Line Style	Description	Resulting Line
$'-.^{\prime}$	Dash-dotted line	$-\cdots--.--$

Marker	Description	Resulting Marker
'0'	Circle	\bigcirc
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
' x '	Cross	\times
'_'	Horizontal line	-
'I'	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	\checkmark
'p'	Pentagram	$\stackrel{3}{3}$
'h'	Hexagram	\%

Color Name	Short Name	RGB Triplet	Appearance
'red '	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

See Also

quiverm | quiver3

Introduced before R2006a

quiverm

Project 2-D quiver plot on map axes

Syntax

h = quiverm(lat,lon,deltalat,deltalon)
h = quiverm(lat,lon,deltalat,deltalon, LineSpec)
h = quiverm(lat,lon,deltalat,deltalon, LineSpec,'filled')
h = quiverm(lat,lon,deltalat,deltalon,scale)
h = quiverm(lat,lon,deltalat,deltalon,LineSpec,scale,'filled')

Description

h = quiverm(lat,lon, deltalat,deltalon) displays velocity vectors with components (deltalat, deltalon) at the geographic points (lat,lon) on displayed map axes. All four inputs should be in the AngleUnits of the map axes. The inputs deltalat and deltalon determine the direction of the vectors in latitude and longitude, respectively. The function automatically determines the length of these vectors to make them as long as possible without overlap. The object handles of the displayed vectors can be returned in h .
h = quiverm(lat,lon, deltalat,deltalon,LineSpec) specifies the line style, marker, and color on page 1-1250. If you use markers, they are plotted at the start points of the vectors, i.e., the input points (lat,lon).
h = quiverm(lat,lon,deltalat,deltalon,LineSpec,'filled') results in the filling in of any symbols specified by LineSpec.
h = quiverm(lat,lon, deltalat,deltalon,scale) and h =
quiverm(lat,lon,deltalat, deltalon,LineSpec,scale,'filled') alter the automatically calculated vector lengths by multiplying them by the scalar value scale. For example, if scale is 2, the displayed vectors are twice as long as they would be if scale were 1 (the default). When scale is set to 0 , the automatic scaling is suppressed, and the length of the vectors is determined by the inputs. In this case, the vectors are plotted from (lat,lon) to (lat+deltalat,lon+deltalon).

Examples

Plot Quiver Vectors Corresponding to Latitude and Longitude

Load the coast lines dataset.

```
load coastlines
```

Setup an axes specifying latitude and longitude limits. Plot the coast line data.

```
axesm('eqaconic','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
framem;
plotm(coastlat,coastlon)
```


Plot quiver vectors in a direction corresponding to +5 degrees latitude and +3 degrees longitude. Use automatic scaling.

```
lat0 = [50 39.7];
lon0 = [-5.4 2.9];
deltalat = [5 5];
deltalon = [3 3];
quiverm(lat0,lon0,deltalat,deltalon,'r')
```


More About

Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' -r ' .

Line Style	Description	Resulting Line
'-'	Solid line	
'--'	Dashed line	- - - - -
':'	Dotted line
' - .	Dash-dotted line	--------

Marker	Description	Resulting Marker
' O '	Circle	\bigcirc
$'+$ '	Plus sign	+

Marker	Description	Resulting Marker
'*'	Asterisk	*
'.'	Point	-
' \times '	Cross	\times
'-	Horizontal line	-
'1'	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	\checkmark
'p'	Pentagram	\star
'h'	Hexagram	\%

Color Name	Short Name	RGB Triplet	Appearance
' red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	\square
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	\square
'blue'	'b'	[0 0 1]	
' cyan '	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	\square
'magenta'	'm'	[1 001$]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	[00clul	
'white'	'w'	[1 $\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$	\square

See Also

quiver3m | quiver
Introduced before R2006a

rad2km

Convert spherical distance from radians to kilometers

Syntax

```
km = rad2km(rad)
km = rad2km(rad,radius)
km = rad2km(rad,sphere)
```


Description

$\mathrm{km}=\operatorname{rad} 2 \mathrm{~km}(\mathrm{rad})$ converts distances from radians to kilometers, as measured along a great circle on a sphere with a radius of 6371 km , the mean radius of the Earth.
$\mathrm{km}=\operatorname{rad} 2 \mathrm{~km}(\mathrm{rad}$, radius) converts distances from radians to kilometers, as measured along a great circle on a sphere having the specified radius.
$\mathrm{km}=\operatorname{rad} 2 \mathrm{~km}(\mathrm{rad}, \mathrm{sphere})$ converts distances from radians to kilometers, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Radians to Kilometers on Earth

Find the circumference of the Earth in kilometers. By default, the rad2km function assumes your input is a measurement of the Earth, which is represented as sphere with a radius of 6371 kilometers.

```
km = rad2km(2*pi)
km = 4.0030e+04
```


Convert Radians to Kilometers on Mars

Find the circumference of Mars in kilometers.

```
km = rad2km(2*pi,'mars')
km = 2.1300e+04
```


Input Arguments

rad - Distance in radians

numeric array
Distance in radians, specified as a numeric array.
Data Types: single | double

radius - Radius

6371 (default) | numeric scalar
Radius of sphere in units of kilometers, specified as a numeric scalar.

sphere - Sphere

'sun' | 'moon' |'mercury'|'venus'| 'earth' | ...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ' , 'moon','mercury','venus','earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

km - Distance in kilometers

numeric array
Distance in kilometers, returned as a numeric array.
Data Types: single | double

See Also
deg2rad | rad2deg | rad2nm | rad2sm | deg2km | km2rad
Introduced in R2007a

rad2nm

Convert spherical distance from radians to nautical miles

Syntax

```
nm = rad2nm(rad)
nm = rad2nm(rad,radius)
nm = rad2nm(rad,sphere)
```


Description

$\mathrm{nm}=\operatorname{rad} 2 \mathrm{~nm}(\mathrm{rad})$ converts distances from radians to nautical miles, as measured along a great circle on a sphere with a radius of 3440.065 nm , the mean radius of the Earth.
$\mathrm{nm}=$ rad2nm(rad, radius) converts distances from radians to nautical miles, as measured along a great circle on a sphere having the specified radius.
$\mathrm{nm}=$ rad2nm(rad,sphere) converts distances from radians to nautical miles, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Radians to Nautical Miles on Earth

Find the circumference of the Earth in nautical miles. By default, the rad2nm function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3440.065 nautical miles.

```
nm = rad2nm(2*pi)
nm = 2.1615e+04
```


Convert Radians to Nautical Miles on Sphere with Specified Radius

Find the circumference of a sphere with a radius of 3432 nautical miles.

```
nm = rad2nm(2*pi,3432)
nm = 2.1564e+04
```


Input Arguments

rad - Distance in radians

numeric array
Distance in radians, specified as a numeric array.

Data Types: single | double

radius - Radius

3440.065 (default) | numeric scalar

Radius of sphere in units of nautical miles, specified as a numeric scalar.
sphere - Sphere
'sun'|'moon'|'mercury' |'venus'|'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ' , 'moon','mercury', 'venus','earth','mars','jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

nm - Distance in nautical miles

numeric array
Distance in nautical miles, returned as a numeric array.
Data Types: single | double

See Also

deg2rad | rad2deg | rad2sm | rad2km | nm2rad | deg2nm
Introduced in R2007a

rad2sm

Convert spherical distance from radians to statute miles

Syntax

```
sm = rad2sm(rad)
sm = rad2sm(rad,radius)
sm = rad2sm(rad,sphere)
```


Description

$\mathrm{sm}=\mathrm{rad} 2 \mathrm{sm}(\mathrm{rad})$ converts distances from radians to statute miles, as measured along a great circle on a sphere with a radius of 3958.748 sm , the mean radius of the Earth.
$\mathrm{sm}=$ rad2sm(rad, radius) converts distances from radians to statute miles, as measured along a great circle on a sphere having the specified radius.
$\mathrm{sm}=\mathrm{rad} 2 \mathrm{sm}(\mathrm{rad}, \mathrm{sphere})$ converts distances from radians to statute miles, as measured along a great circle on a sphere approximating an object in the Solar System.

Examples

Convert Arc Length to Statute Miles

How long is a trip around the equator in statute miles?

```
sm = rad2sm(2*pi)
sm = 2.4874e+04
```

How about on Jupiter?

```
sm = rad2sm(2*pi,'jupiter')
sm = 2.7283e+05
```


Input Arguments

rad - Distance in radians

numeric array
Distance in radians, specified as a numeric array.
Data Types: single | double

radius - Radius

3958.748 (default) | numeric scalar

Radius of sphere in units of statute miles, specified as a numeric scalar.

sphere - Sphere

'sun'|'moon'|'mercury'|'venus'| 'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: ' sun ', 'moon','mercury','venus','earth','mars','jupiter','saturn','uranus','neptune', or 'pluto'. The value of sphere is case-insensitive.

Output Arguments

sm - Distance in statute miles

numeric array
Distance in statute miles, returned as a numeric array.
Data Types: single | double

See Also

deg2rad | rad2deg | rad2km|deg2sm|rad2nm|sm2rad
Introduced in R2007a

radtodeg

(Not recommended) Convert angles from radians to degrees

Note radtodeg is not recommended. Use the rad2deg function instead. For more information, see "Compatibility Considerations".

Syntax

angleInDegrees = radtodeg(angleInRadians)

Description

angleInDegrees $=$ radtodeg(angleInRadians) converts angle units from radians to degrees.

Examples

Convert Radians to Degrees

Convert pi radians to degrees.
angleInDegrees = radtodeg(pi)
angleInDegrees =
180

Input Arguments

angleInRadians - Angle in radians
scalar | vector | matrix | N-D array
Angle in radians, specified as a scalar, vector, matrix, or N-D array.

Compatibility Considerations

radtodeg is not recommended

Not recommended starting in R2015b
The radtodeg function is not recommended. Use the rad2deg function instead.
To update your code, replace instances of the radtodeg function with the rad2deg function.
While the radtodeg function accepts input arguments of integer types such as uint8, the rad2deg function accepts only single- and double-precision types. You can convert integer types to single- or double-precision types by using the single or double function.

See Also

rad2deg

Introduced in R2009b

RasterInfo

Information about geospatial raster data file

Description

RasterInfo objects contain information about geographic or projected raster data files, such as their file format, their native data type, and how they represent missing data.

Creation

Create a RasterInfo object using georasterinfo.

Properties

Filename - Path to data file

string array
This property is read-only.
Path to data file and any supporting files, returned as a string array.
Data Types: string
FileModifiedDate - Modification date of files
datetime array
This property is read-only.
Modification date of the data file and any supporting files, returned as a datetime array. The order of modification dates in FileModifiedDate corresponds to the order of files in Filename.
Data Types: datetime

FileSize - File size

array
This property is read-only.
File size of the data file and any supporting files, returned as an array. The order of file sizes in FileSize corresponds to the order of files in Filename.
Data Types: double

FileFormat - File format name

```
string scalar
```

This property is read-only.
File format name, returned as a string scalar. For a list of supported file formats, see georasterinfo.

Data Types: string

RasterSize - Dimensions of raster data

two-element vector
This property is read-only.
Dimensions of the raster data embedded in the file, returned as a two-element vector, [m n], where m is the number of rows and n is the number of columns.

Data Types: double

NumBands - Number of bands

positive integer
This property is read-only.
Number of bands, returned as a positive integer.
When you read raster data using the readgeoraster function, the array it returns is of size M-by- N -by- P, where P is the value of NumBands.
Data Types: double

NativeFormat - Data type embedded in file
 string scalar

This property is read-only.
Data type of the data embedded in the file, returned as a string scalar. To read data using a different data type, call readgeoraster and specify the 'OutputType' name-value pair.
Data Types: string

MissingDataIndicator - Value indicating missing data

integer
This property is read-only.
Value indicating missing data, returned as an integer. You can replace missing data with NaN values using the standardizeMissing function.

```
[A,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
A = standardizeMissing(A,m);
Data Types: double
```


Categories - Category names

string array
This property is read-only.
Category names, returned as a string array.
The value of Categories may be empty, even when the data is grouped into categories.

Data Types: string

ColorType - Color type of image

'indexed'|'grayscale'|'truecolor'|'CMYK'|'HSL'|'unknown'
This property is read-only.
Color type of image, returned as one of these values:

- 'indexed ' - Indexed image.
- 'grayscale' - Grayscale intensity image.
- 'truecolor' - True color image using RGB color space.
- 'CMYK' - Image using CMYK color space.
- 'HSL' - Image using HSL color space.
- 'unknown ' - Unknown color type, or raster data does not represent an image.

Data Types: string

Colormap - Colormap

n-by-3 matrix
This property is read-only.
Colormap associated with an indexed image, returned as a n-by- 3 matrix with values in the range $[0,1]$. Each row of Colormap is a three-element RGB triplet that specifies the red, green, and blue components of a single color of the colormap. The value of Colormap is empty unless the value of ColorType is 'indexed'.
Data Types: double

RasterReference - Spatial reference

GeographicCellsReference object | GeographicPostingsReference object | MapCellsReference object | MapPostingsReference object

This property is read-only.
Spatial reference for the raster data, returned as a GeographicCellsReference object, GeographicPostingsReference object, MapCellsReference object, or MapPostingsReference object. The value of RasterReference depends on the raster data contained in the file:

- If the raster data is referenced to a geographic coordinate system, then RasterReference is a GeographicCellsReference object or GeographicPostingsReference object.
- If the raster data is referenced to a projected coordinate system, then RasterReference is a MapCellsReference object or MapPostingsReference object.

If the file does not contain enough information to determine whether the data is projected or geographic, then RasterReference is a MapCellsReference or MapPostingsReference object. If a file contains no valid spatial reference information, then RasterReference is empty.

Regardless of the file format, the ColumnsStartFrom property of the reference object returned by RasterReference has a value of 'north'.

CoordinateReferenceSystem - Coordinate reference system

[] (default) | projcrs object | geocrs object
This property is read-only.
Coordinate reference system (CRS), returned as a geocrs or projcrs object. The value of CoordinateReferenceSystem depends on the raster data contained in the file:

- If the raster data is referenced to a geographic coordinate system, then CoordinateReferenceSystem is a geocrs object.
- If the raster data is referenced to a projected coordinate system, then CoordinateReferenceSystem is a projcrs object.
- If the file does not contain valid coordinate reference system information, then CoordinateReferenceSystem is empty.

Metadata - Metadata

struct
This property is read-only.
Metadata, returned as a struct of additional information that is specific to the data file. Each field of Metadata is returned as a string. The formatting of field names and values is dependent on the data contained in the file.

This property only applies to file formats that have metadata. For example, DTED files may contain metadata such as the datum, coordinates of the data origin, and absolute accuracy.

Examples

Get GeoTIFF Image Information

Get information about a GeoTIFF image by creating a RasterInfo object. Find the native data type embedded in the file by accessing the NativeFormat property of the RasterInfo object.

```
info = georasterinfo('boston.tif');
info.NativeFormat
ans =
"uint8"
```

The data used in this example includes material copyrighted by GeoEye, all rights reserved.

See Also
readgeoraster|georasterinfo
\section*{Topics}
"Find Geospatial Raster Data"

Introduced in R2020a

rcurve

Ellipsoidal radii of curvature

Syntax

r = rcurve(ellipsoid,lat)
r = rcurve('parallel',ellipsoid,lat)
$r=$ rcurve('meridian',ellipsoid,lat)
$r=$ rcurve('transverse',ellipsoid,lat)
r = rcurve(..., angleunits)

Description

 parallel radius of curvature at the latitude lat for a reference ellipsoid defined by ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. r is in units of length consistent with those used for the semimajor axis. lat is in 'degrees'.
$r=$ rcurve('meridian',ellipsoid, lat) returns the meridional radius of curvature, which is the radius of curvature in the plane of a meridian at the latitude lat.
$r=$ rcurve('transverse',ellipsoid,lat) returns the transverse radius of curvature, which is the radius of a curvature in a plane normal to the surface of the ellipsoid and normal to a meridian, at the latitude lat.
$r=$ rcurve(..., angleunits) specifies the units of the input lat. angleunits can be 'degrees' or 'radians'.

Examples

The radii of curvature of the default ellipsoid at 450, in kilometers:

```
r = rcurve('transverse',referenceEllipsoid('earth','km'),...
    45,'degrees')
r=
    6.3888e+03
r = rcurve('meridian',referenceEllipsoid('earth','km'),...
        45,'degrees')
r=
    6.3674e+03
r = rcurve('parallel',referenceEllipsoid('earth','km'),...
    45,'degrees')
r =
    4.5024e+03
```


See Also

rsphere

Introduced before R2006a

readfields

(To be removed) Read fields or records from fixed-format files

Note The readfields function will be removed in a future release. Depending on the file format, use the readmatrix function, the readtable function, or a different file import function. For more information about common supported file formats and their import functions, see "Supported File Formats for Import and Export".

Syntax

struc = readfields(fname,fstruc)
struc = readfields(fname,fstruc,recordIDs)
struc $=$ readfields(fname,fstruc,fieldIDs)
struc $=$ readfields(fname,fstruc, recordIDs,mformat)
struc $=$ readfields(fname,fstruc, recordIDs,mformat,fid)
struc $=$ readfields(fname,fstruc, recordIDs,mformat,fid,'sparse')

Description

struc $=$ readfields(fname,fstruc) reads all the records from a fixed format file. fname is a character vector containing the name of the file. If it is empty, the file is selected interactively.
fstruc is a structure defining the format of the file. The contents of fstruc are described below. The result is returned in a structure.
struc $=$ readfields(fname,fstruc, recordIDs) reads only the records specified in the vector recordIDs. For example, recordIDs $=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$. All the fields in the selected records are read.
struc $=$ readfields(fname,fstruc,fieldIDs) reads only the fields specified in the cell array fieldIDs. For example, fieldIDs = $\left.\begin{array}{lll}1 & 2 & 4\end{array}\right\}$. The selected fields are read from all the records. fieldIDs can be used in place of recordIDs in all calling forms.
struc $=$ readfields(fname,fstruc, recordIDs,mformat) opens the file with the specified machine format. mformat must be recognized by fopen.
struc $=$ readfields(fname,fstruc, recordIDs,mformat,fid) reads from a file that is already open. fid is the file identifier returned by fopen. The records are read starting from the current location in the file.
struc = readfields(fname,fstruc, recordIDs,mformat,fid,'sparse') disables error messages when the number of elements read does not agree with the stated format of the file. This is useful for formatted files with empty fields. Use fid = [] for files that are not already open. This option is only compatible with reading selected records.

Background

Map data is often provided as binary or ASCII files with a fixed format. Writing your own functions to read the data into the MATLAB workspace can be difficult and time-consuming, particularly for binary files. This function allows you to read the data by simply specifying the format of the file.

Examples

Write a binary file and read it.

```
fid = fopen('testbin','wb');
for i = 1:3
    fwrite(fid,['character' num2str(i) ],'char');
    fwrite(fid,i,'int8');
    fwrite(fid,[i i],'int16');
    fwrite(fid,i,'integer*4');
    fwrite(fid,i,'real*8');
end
fclose(fid);
fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8'; fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64'; fs(5).name = 'field 5';
s = readfields('testbin',fs);
s(1)
ans =
    fieldl: 'characterl'
    field2: 1
    field3: [1 1]
    field4: 1
    field5: 1
```


Limitations

Formatted numbers must stay within the width specified for them. Files must have a size that is an integer multiple of the computed record length. This is potentially a problem for formatted files on DOS platforms that use a carriage return/linefeed line ending everywhere except the last record. File sizes are not checked when an open file is provided.

Tips

The format of the file is described in the input argument fstruc. fstruc is a structure with one entry for every field in the file. fstruc has three required fields: length, name, and type. For fields containing binary data of the type that would be read by fread, length is the number of elements to be read, name is a character vector containing the field name under which the read data is stored in the output structure, and type is a format recognized by fread. Repetition modifiers such as ' $40 *$ char' are not supported. Fields with empty field names are omitted from the output.

The following fstruc definition is for a file with a 40 -character field, a field containing two integers, and a field with a single-precision floating-point number.

```
fstruc(1).length = 40;
fstruc(1).name = 'character Field'; % spaces will be suppressed
filestruc(1).type = 'char';
fstruc(2).length = 2;
fstruc(2).name = 'integer Field'; % spaces will be suppressed
fstruc(2).type = 'int16';
fstruc(3).length = 1;
fstruc(3).name = 'float Field'; % spaces will be suppressed
fstruc(3).type = 'real*4';
```

The type can also be a fscanf and sscanf-style format of the form ' $\% \mathrm{nX}$ ', where n is the number of characters within which the formatted data is found, and X is the conversion character such as ' g ' or
'd '. For formatted fields, the length entry in fstruc is the number of elements, each of which has the width specified in the type. Fortran-style double-precision output such as '0.0D00' can be read using a type such as ' $\% \mathrm{nD}$ ', where n is the number of characters per element. This is an extension to the C-style formats accepted by sscanf. Users unfamiliar with C should note that '\%d ' is preferred over ' $\% \mathrm{i}$ ' for formatted integers. MATLAB syntax follows C in interpreting ' $\% \mathrm{i}$ ' integers with leading zeros as octal. Line-ending characters in ASCII files must also be counted in the fstruc specification. Note that the number of line-ending characters differs across platforms.

A field specification for a formatted field with two integers each six characters wide would be of the form
fstruc(4).length $=2$;
fstruc(4).name = 'Elevation Units';
fstruc(4).type = '\%6d'
To summarize, length is the number of elements for binary numbers, the number of characters, and the number of elements for formatted data.

You can omit fields from all output by providing an empty character vector (' ') for the fstruc name field.

See Also

readmatrix|readtable|textread|dlmread
Topics
"Supported File Formats for Import and Export"
Introduced before R2006a

readfk5

(To be removed) Read Fifth Fundamental Catalog of Stars

Note The readfk5 function will be removed in a future release.

Syntax

struc = readfk5(filename)
struc $=$ readfk5(filename,struc)

Description

struc $=$ readfk5(filename) reads the FK5 file and returns the contents in a structure. Each star is an element in the structure, with the different data items stored in appropriately named fields.
struc $=$ readfk5(filename, struc) appends the data in the file to the existing structure struc.

Background

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is a compilation of data on more than 4500 stars. The catalog contains positions, errors in positions, proper motions, and characteristics such as magnitudes, spectral types, parallaxes, and radial velocities. There are also cross-references to the identities of stars in other catalogs. It was compiled by researchers at the Astronomisches Rechen-Institut in Heidelberg.

Examples

```
FK5 = readfk5('FK5.dat');
FK5e = readfk5('FK5_ext.dat');
whos
\begin{tabular}{llrl} 
Name & Size & Bytes & Class \\
FK5 & \(1 \times 1535\) & 5042752 & struct array \\
FK5e & \(1 \times 3117\) & 10226424 & struct array
\end{tabular}
FK5e(1)
ans =
            FK5: 2003
            RAh: 0
            RAm: 5
            RAs: 1.1940
            pmRA: 0.6230
            DEd: 27
            DEm: 40
            DEs: 29.0100
                            pmDE: -1.1100
    RAh1950: 0
    RAm1950: 2
    RAs1950: 26.5900
```

```
pmRA1950: 0.6210
    DEd1950: 27
    DEm1950: 23
    DEs1950: 47.4400
pmDE1950: -1.1100
EpRA1900: 51.7200
        e_RAs: 2
        e_pmRA: 9
EpDE1900: 46.8200
        e DEs: 3.4000
        e_pmDE: 14
            Vmag: 6.4700
    n_Vmag: ''
    SpType: 'G5'
        plx: []
            RV: 12
        AGK3R: '38'
            SRS: ''
            HD: '225292'
            DM: 'BD+26 4744'
            GC: '48'
```


Tips

Positions are given in terms of right ascension and declination. The Fifth Fundamental Catalog of Stars (FK5), Parts I and II data and documentation are available over the Internet by anonymous ftp.

See Also

dms2degrees | scatterm
Introduced before R2006a

readBasemaplmage

Read image from geographic basemap

Syntax

[A,R,attrib] = readBasemapImage(basemap,latlim,lonlim)
[___] = readBasemapImage(basemap,mapCenter)
[___] = readBasemapImage (__, zoomLevel)
[__] = readBasemapImage(basemap,mapCenter,zoomLevel, rasterSize)

Description

[A,R,attrib] = readBasemapImage(basemap,latlim,lonlim) reads an image from the basemap specified by basemap for the geographic limits specified by latlim and lonlim. This syntax returns an image using the highest possible zoom level with a maximum size of 2048-by-2048-by-3.
[___] = readBasemapImage(basemap, mapCenter) reads the basemap at the map center specified by mapCenter. This syntax returns an image using the highest possible zoom level with a maximum size of 1024-by-1024-by-3.
[___] = readBasemapImage (__ , zoomLevel) reads the basemap for the zoom level specified by zoomLevel. You can use the zoomLevel argument with any combination of input arguments from the previous syntaxes.
[___] = readBasemapImage(basemap,mapCenter, zoomLevel, rasterSize) reads the basemap at the specified map center and zoom level and returns an image of size rasterSize.

Examples

Read Image from Basemap by Specifying Latitude and Longitude Limits

Read an image of the "streets" basemap for an area in Boston. Specify the area using latitude and longitude limits.

```
latlim = [42.3441 42.3658];
lonlim = [-71.0939 -71.0585];
[A,RA,attribA] = readBasemapImage("streets",latlim,lonlim);
```

Display the image on a map with no axis labels.

```
figure
mapshow(A,RA)
axis off
```

Add a title and subtitle. Wrap the attribution text.

```
title("Satellite Imagery of Boston")
tA = "Attribution: " + attribA;
```

```
tA = string(textwrap(tA,65));
subtitle(tA)
```


Satellite Imagery of Boston

Attribution: Harvard University, City of Boston, City of Cambridge, Esri, HERE, Garmin, INCREMENT P, Intermap, NGA, USGS

The text is difficult to read because the resolution of the image is greater than the resolution of the figure. View the details of the image by zooming in. Zoom in to an area around Boston Common by changing the $x y$-limits of the map. Specify the limits in world coordinates.
$x \lim ([-7.9115 e+06-7.9105 e+06])$
$y \lim ([5.2139 \mathrm{e}+06$ 5.2147e+06])

Satellite Imagery of Boston

Attribution: Harvard University, City of Boston, City of Cambridge, Esri, HERE, Garmin, INCREMENT P, Intermap, NGA, USGS

Alternatively, you can improve the readability of the map by reading the basemap image at a different zoom level. Read another basemap image using a zoom level of 14.

```
[B,RB,attribB] = readBasemapImage("streets",latlim,lonlim,14);
figure
mapshow(B,RB)
axis off
title("Satellite Imagery of Boston at Different Zoom Level")
tB = "Attribution: " + attribB;
tB = string(textwrap(tB,65));
subtitle(tB)
```


Read Image from Basemap by Specifying Map Center

Read an image for an area centered around a crop circle from the "satellite" basemap.

```
mapcenter = [37.7149 -98.5954];
[A,RA,attribA] = readBasemapImage("satellite",mapcenter);
```

Display the image on a map with no axis labels.
figure
mapshow(A, RA)
title("Satellite Imagery of Crop Circle")
subtitle("Attribution: " + attribA)
axis off

Satellite Imagery of Crop Circle

Attribution: Maxar

The readBasemapImage function reads the image using the highest possible zoom level. Capture a larger area by using a different zoom level. Read another basemap image using a zoom level of 15 .

```
[B,RB,attribB] = readBasemapImage("satellite",mapcenter,15);
```

figure
mapshow(B,RB)
title("Satellite Imagery of Multiple Crop Circles")
subtitle("Attribution: " + attribB)
axis off

Satellite Imagery of Multiple Crop Circles

Attribution: Maxar

Specify Size of Basemap Image

Read an image of size 1000-by-2000 from the "satellite" basemap. Center the image around a crop circle and use a basemap zoom level of 15 .

```
rasterSize = [1000 2000];
```

[A,RA,attrib] = readBasemapImage("satellite",[37.7149 -98.5954],15,rasterSize);

Display the image on a map with no axis labels.
figure
mapshow(A, RA)
title("Basemap Image of Size 1000-by-2000")
subtitle("Attribution: " + attrib)
axis off

Basemap Image of Size 1000-by-2000
Attribution: Maxar

Read Image from Custom Basemap

Add the OpenStreetMap basemap to the list of basemaps available for use with mapping functions. After you add the basemap, you do not need to add it again in future sessions.

```
name = "openstreetmap";
url = "a.tile.openstreetmap.org";
attribution = char(uint8(169)) + "OpenStreetMap contributors";
addCustomBasemap(name,url,Attribution=attribution)
Read an image of the OpenStreetMap basemap for an area in Boston.
```

```
latlim = [42.3441 42.3658];
```

latlim = [42.3441 42.3658];
lonlim = [-71.0939 -71.0585];
lonlim = [-71.0939 -71.0585];
[A,RA,attrib] = readBasemapImage("openstreetmap",latlim,lonlim);

```
[A,RA,attrib] = readBasemapImage("openstreetmap",latlim,lonlim);
```

Display the image on a map with no axis labels.

```
figure
mapshow(A,RA)
title("OpenStreetMap Basemap for Boston")
subtitle("Attribution: " + attrib)
axis off
```


OpenStreetMap Basemap for Boston

 Attribution: ©OpenStreetMap contributors

View details of the image for an area around Boston Common by changing the $x y$-limits.
$x \lim ([-7.9115 e+06-7.9105 e+06])$
$y \lim ([5.2139 e+065.2147 e+06])$

OpenStreetMap Basemap for Boston

Attribution: ©OpenStreetMap contributors

Save Basemap Image as GeoTIFF File

Read an image of the "satellite" basemap for an area in Boston.

```
latlim = [42.3441 42.3658];
lonlim = [-71.0939 -71.0585];
[A,RA,attribA] = readBasemapImage("satellite",latlim,lonlim);
```

Save the image as a GeoTIFF file by using the geotiffwrite function.

- The readBasemapImage function spatially references the image using the Web Mercator projected coordinate reference system (CRS) with EPSG code 3857. Specify the CRS by using the CoordRefSysCode name-value argument.
- Include the attribution by specifying the ImageDescription TIFF tag.

```
tag = struct("ImageDescription",attribA);
geotiffwrite("satelliteBoston.tif",A,RA,CoordRefSysCode=3857,TiffTags=tag)
```

Read the GeoTIFF file and display it on a map with no axis labels.

```
[B,BR] = readgeoraster("satelliteBoston.tif");
figure
mapshow(B,BR)
title("Satellite Imagery of Boston")
axis off
```

Read the attribution from the GeoTIFF file and display it in a subtitle.

```
info = imfinfo("satelliteBoston.tif");
attribB = info.ImageDescription;
subtitle("Attribution: " + attribB)
```


Satellite Imagery of Boston

Attribution: Maxar

Display Basemap Image with Transparency

When the opacity of a basemap obscures your data, you can attract attention to the data rather than the basemap by making the basemap transparent.

Read an image of the "satellite" basemap for an area around the MathWorks Lakeside Campus in Natick, MA.

```
latlim = [42.2994 42.3035];
lonlim = [-71.3774 -71.3729];
[A,RA,attrib] = readBasemapImage("satellite",latlim,lonlim,17);
```

Display the image on a map with no axis labels. Specify an output argument for the mapshow function so you can access the image object it returns.

```
figure
h = mapshow(A,RA);
hold on
title("Satellite Imagery of Lakeside Campus")
```

subtitle("Attribution: " + attrib)
axis off

Make the image semi-transparent by setting the AlphaData property of the image object to a value between 0 and 1.
h.AlphaData = 0.6;

Satellite Imagery of Lakeside Campus Attribution: Maxar

Input Arguments

basemap - Basemap

"satellite"| "streets"|"streets-light" | "streets-dark"| custom basemap | ...
Basemap, specified as one of the values listed in the table. Six of the basemaps in the table are tiled data sets created using Natural Earth. Five of the basemaps are high-zoom-level maps hosted by Esri.

All basemaps except "darkwater" require internet access. The "darkwater" basemap is included with MATLAB and Mapping Toolbox.

If you do not have consistent access to the internet, you can download the basemaps created using Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are not available for download. For more information about downloading basemaps, see "Use Basemaps in Offline Environments".

The basemaps hosted by Esri update periodically. As a result, you might see differences in your visualizations over time.

Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

Latlim - Latitude limits

numeric two-element vector
Latitude limits, specified as a numeric two-element vector of the form [slat nlat], where slat is the southern limit in degrees and nlat is the northern limit in degrees. Both slat and nlat must be in the range $[-90,90]$.

Lonlim - Longitude limits

numeric two-element vector

Latitude limits, specified as a numeric two-element vector of the form [wlon elon], where wlon is the western limit in degrees and elon is the eastern limit in degrees.

mapCenter - Map center

numeric two-element vector
Map center, specified as a numeric two-element vector containing latitude and longitude coordinates.

zoomLevel - Zoom level

numeric scalar
Zoom level, specified as a numeric scalar in the range [0, 25].
The readBasemapImage function rounds the zoom level to the nearest integer.
The readBasemapImage reduces the zoom level in these situations:

- When you specify a zoom level that makes the output argument A bigger than the maximum allowable size.
- When you specify a zoom level that is greater than the maximum zoom level of the basemap. The basemaps hosted by Esri have a maximum zoom level of 25 . The basemaps created using Natural Earth have a maximum zoom level of 7 .

rasterSize - Raster size

positive integer | two-element vector of positive integers
Raster size, specified as one of these options.

- A positive integer, m, where m is the number of rows and columns in the output image.
- A two-element vector of positive integers, [m n], where m is the number of rows and n is the number of columns in the output image.

Each element must be in the range [64, 2048].

Output Arguments

A - RGB image

numeric array
RGB image, returned as an m-by-n-by-3 numeric array.

R - Spatial reference
 MapCellsReference object

Spatial reference for A, returned as a MapCellsReference object with coordinates in the Web Mercator (WGS 84 / Pseudo-Mercator) projected coordinate reference system (CRS) with EPSG code 3857.

You can find information about the projected CRS by querying the ProjectedCRS property of R.

```
[A,R,attrib] = readBasemapImage("satellite",[37.7149 -98.5954]);
R.ProjectedCRS
ans =
```

```
projcrs with properties:
                    Name: "WGS 84 / Pseudo-Mercator"
        GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Popular Visualisation Pseudo Mercator"
            LengthUnit: "meter"
    ProjectionParameters: [1\times1 map.crs.ProjectionParameters]
```


attrib - Basemap attribution

string scalar
Basemap attribution, returned as a string scalar. The readBasemapImage function embeds the attribution in the lower-right corner of the image.

When you read an image from a basemap created using Natural Earth, this argument is empty.

Tips

- Do not crop attributions out of basemap images. If the attribution is not readable, then display the attribution somewhere else on the figure, such as in the title.
- If you do not know the basemap, latitude-longitude limits, map center, or zoom level you want, you can open and explore a geographic axes by using the geoaxes function.
- Change the basemap by using the geobasemap function.
- Get the latitude-longitude limits by using the geolimits function.
- Get the map center by querying the MapCenter property of the axes.

```
gx = geoaxes;
gx.MapCenter
```

- Get the zoom level by querying the ZoomLevel property of the axes.

```
gx = geoaxes;
gx.MapCenter
```


See Also

Functions

readgeoraster|wms read | addCustomBasemap|mapshow|imshow
Objects
MapCellsReference|projcrs
Topics
"Create Common Plots Over Basemap Images"
"Display Data Over Basemaps When Internet Access is Intermittent"
"Change Projection of Basemap Image"

Introduced in R2022a

readgeoraster

Read geospatial raster data file

Syntax

```
[A,R] = readgeoraster(filename)
[A,R] = readgeoraster( __ ,Name,Value)
[___,cmap] = readgeoraster(
```

\qquad

``` )
```


Description

$[A, R]=$ readgeoraster(filename) creates an array by reading geographic or projected raster data from a file. The output argument R contains spatial referencing information for the array.
Supported file formats include Esri Binary Grid, Esri GridFloat, GeoTIFF, and DTED. For a full list of supported formats, see "Supported Formats and Extensions" on page 1-1293.
[A,R] = readgeoraster(__ ,Name,Value) specifies options using one or more Name, Value pair arguments.
[,cmap] = readgeoraster(\qquad) also returns the colormap of A.

Examples

Read and Display GeotIFF Image

Read a GeoTIFF image of Boston as an array and a map cells reference object. The array is of size 2881-by-4481-by-3 and specifies the red, green, and blue components of the image. Display the image using the mapshow function.
$[A, R]=$ readgeoraster('boston.tif'); mapshow(A,R)

The data used in this example includes material copyrighted by GeoEye, all rights reserved.

Read and Display Land Cover Classification

Read and display a land cover classification of Oahu, Hawaii.
First, read the land cover data as an array, a map cells reference object, and a colormap. The elements of A index into the colormap. Each row of the colormap specifies the red, green, and blue components of a single color. Then, display the land cover data.

```
[A,R,cmap] = readgeoraster('oahu_landcover.img');
mapshow(A, cmap,R)
```


The data used in this example is courtesy of the National Oceanic and Atmospheric Administration (NOAA).

Read and Display Elevation Data

Read and display elevation data for an area around South Boulder Peak in Colorado.
First, read the elevation data as an array and a geographic postings reference object. To display the data as a surface, the geoshow function requires data of type double or single. In this case, preserve precision by specifying the output type as 'double'.
[A,R] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');
Create a map. First, create map axes by specifying the latitude and longitude limits of the data. Then, display the data as a surface using the geoshow function. Apply a colormap appropriate for elevation data using the demcmap function.

```
latlim = R.LatitudeLimits;
lonlim = R.LongitudeLimits;
usamap(latlim,lonlim)
geoshow(A,R,'DisplayType','surface')
demcmap(A)
```


The elevation data used in this example is courtesy of the US Geological Survey.

Replace Missing Data with NaN Values

Raster data sets sometimes indicate missing data values using a large negative number. Import raster data, find the missing data indicator, and then replace missing data with NaN values.

Import raster data and a reference object using the readgeoraster function. Find the missing data indicator using the georasterinfo function.

```
[A,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator
m = -32766
```

Verify the raster data contains missing data using the ismember function. The ismember function returns logical 1 (true) if the raster contains the missing data indicator.

```
ismember(m,A)
ans = logical
    1
```

Replace the missing data with NaN values using the standardizeMissing function.
$\mathrm{A}=$ standardizeMissing (A, m);

Input Arguments

filename - Name of file to read

character vector | string scalar
Name of the file to read, specified as a character vector or string scalar. The form of filename depends on the location of your file.

- If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the file, such as 'myFile.dem'.
- If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or relative path name, such as 'C:\myfolder\myFile.tif' or 'dataDir

For a list of supported file formats, see "Supported Formats and Extensions" on page 1-1293.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'OutputType','double','Bands',1:2

OutputType - Data type for A

'native' (default)|'single'|'double'|'int32'|...
Data type for A, specified as the comma-separated pair consisting of 'OutputType' and a character vector or string scalar containing one of these values: 'native', 'single', 'double', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', or 'logical'.

The default for 'OutputType' is 'native', which returns A using the native data type embedded in filename. Using a data type other than 'native' may result in a loss of precision.

Example: 'OutputType','double'
Data Types: char | string

Bands - Bands to read

'all' (default) | positive integer | vector of positive integers
Bands to read, specified as the comma-separated pair consisting of 'Bands ' and 'all', a positive integer, or a vector of positive integers. For example, if you specify the value 3, readgeoraster reads the third band in the file. Bands are returned in the specified order.

The default for 'Bands ' is 'all', where readgeoraster reads all bands in the file.
Example: 'Bands', 3

CoordinateSystemType - Coordinate system type for R
 'auto' (default)|'geographic'|'planar'

Coordinate system type for R, specified as one of these values:

- 'auto ' - Returns R as a raster reference object determined by the contents of the file.
- 'geographic' - Returns R as a geographic cells or postings reference object.
- 'planar' - Returns R as a map cells or postings reference object.

Specify the coordinate system type when your data does not contain projection information.
Example: 'CoordinateSystemType', 'geographic'

Output Arguments

A - Georeferenced image or data grid

numeric array
Georeferenced image or data grid, returned as an M-by- N or M-by- N-by- P numeric array.
By default, the data type of A matches the native data type embedded in filename. Specify a data type using the 'OutputType' name-value pair.

Regardless of how the data is encoded, the first row of A represents the northernmost data, and the last row of A represents the southernmost data.

R - Spatial reference

GeographicCellsReference object | GeographicPostingsReference object | MapCellsReference object | MapPostingsReference object

Spatial reference for A, returned as a GeographicCellsReference object, GeographicPostingsReference object, MapCellsReference object, or MapPostingsReference object. The value of R depends on the data in filename:

- If the data in filename is referenced to a geographic coordinate system, then R is a GeographicCellsReference object or GeographicPostingsReference object.
- If the data in filename is referenced to a projected coordinate system, then R is a MapCellsReference object or MapPostingsReference object.

If the file does not contain enough information to determine whether the data is projected or geographic, then R is a MapCellsReference or MapPostingsReference object. If a file contains no valid spatial reference information, then R is empty. You can specify the spatial reference as 'geographic' or 'planar' using the 'CoordinateSystemType' name-value pair.
cmap - Colormap
n-by-3 matrix
Colormap associated with an indexed image, returned as a n-by- 3 numeric matrix with values in the range [0,1]. Each row of cmap is a three-element RGB triplet that specifies the red, green, and blue components of a single color in the colormap. The value of cmap is empty unless A is an indexed image.

More About

Supported Formats and Extensions

The readgeoraster and georasterinfo functions support these file formats and extensions. In some cases, you can read supported file formats using extensions other than the ones listed.

File Format	Extension
GeotifF	.tif or .tiff
Esri Binary Grid	. adf
Esri ASCII Grid	. asc or .grd
Esri GridFloat	.flt
DTED	.dt0, .dt1, or .dt2
SDTS	. DDF
USGS DEM	. dem
ER Mapper ERS	.ers
ENVI	. dat
ERDAS IMAGINE	.img
Vertical Mapper Numeric Grid	. grd
Vertical Mapper Classified Grid	. grc
SRTM Height	.hgt

Some file formats consist of a data file and multiple supporting files. For example, Esri GridFloat files may have supporting header files (.hdr). When you read a data file with supporting files using readgeoraster or georasterinfo, specify the extension of the data file.

File formats may be referred to using different names. For example, the Esri GridFloat format may also be referred to as Esri .hdr Labelled or ITT ESRI .hdr RAW Raster. The Esri Binary Grid format may also be referred to as ArcGrid Binary, Esri ArcGIS Binary Grid, or Esri ArcInfo Grid.

Tips

- Some functions require input arguments of type single or double, such as the geoshow function for displaying surfaces. To use the output of readgeoraster with these functions, specify the output type as 'single' or 'double' using the 'OutputType' name-value pair.
- Regardless of the file format, the array returned by readgeoraster has columns starting from north and the ColumnsStartFrom property of the reference object has a value of 'north'.

See Also

Functions

georasterinfo

Topics

"Find Geospatial Raster Data"

Introduced in R2020a

readgeotable

Read geospatial table from vector data file

Syntax

$\mathrm{T}=$ readgeotable(filename)
$\mathrm{T}=$ readgeotable(filename,Name=Value)

Description

T = readgeotable(filename) creates a geospatial table by reading geographic or projected vector data from a file. Supported file formats include shapefile, KML, and Esri file geodatabase. For a full list of supported formats, see "Supported Formats and Extensions" on page 1-1303.
$\mathrm{T}=$ readgeotable(filename, Name=Value) specifies options using name-value arguments. For example, specify the coordinate system type using the CoordinateSystemType name-value argument.

Examples

Read Shapefile as Geospatial Table

Read a shapefile, containing a network of roads in Concord, MA, into the workspace as a geospatial table.

```
T = readgeotable("concord_roads.shp");
```

The Shape variable of the table contains information about the road shapes, including the coordinate reference system (CRS). The road shapes in this shapefile use a projected CRS.

```
T.Shape.ProjectedCRS
ans =
    projcrs with properties:
                            Name: "NAD83 / Massachusetts Mainland"
                GeographicCRS: [1x1 geocrs]
            ProjectionMethod: "Lambert Conic Conformal (2SP)"
                    LengthUnit: "meter"
        ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```

Display the roads on a map.

```
mapshow(T)
xlabel("x (meters)")
ylabel("y (meters)")
```


Read Shapefile with No Projection File

An optional projection file (.prj) determines the coordinate system type for a shapefile. When your shapefile does not have a projection file, but you know the coordinate system type, you can specify it by using the CoordinateSystemType name-value argument.

Read a shapefile called tsunamis.shp, containing information about tsunami events, into the workspace. The metadata accompanying the file indicates that the shapefile uses geographic coordinates.

```
T = readgeotable("tsunamis.shp",CoordinateSystemType="geographic");
```

View the Shape variable of the geospatial table. The tsunami source locations are stored as points.

```
T.Shape
ans =
    162\times1 geopointshape array with properties:
            NumPoints: [162\times1 double]
                Latitude: [162\times1 double]
            Longitude: [162×1 double]
                Geometry: "point"
        CoordinateSystemType: "geographic"
```


GeographicCRS: []

Plot the source locations on a web map.
wmmarker(T)

Read Layers from GPX Files

GPX files can contain up to five layers: waypoints, tracks, track points, routes, and route points. When you read a layer containing track points or route points, the geospatial table contains an ID variable that associates the points with a track or route.

Import the tracks layer of a GPX file with two tracks. The Shape variable for each track is a geolineshape object.

T = readgeotable("sample_tracks.gpx", Layer="tracks")
$\mathrm{T}=2 \times 3$ table
Shape
Name
$\begin{array}{ll}\text { geolineshape } & \text { "Track logs from walking the perimeter of the MathWorks campus in Natick on } \\ \text { geolineshape } & \text { "Track logs from biking from Concord to the MathWorks campus in Natick on Ju }\end{array}$

View the shape of each track. The first track has one segment and the second track has five segments.

```
T.Shape(1)
ans =
    geolineshape with properties:
    NumParts: 1
    Geometry: "line"
        CoordinateSystemType: "geographic"
            GeographicCRS: [1×1 geocrs]
```

T.Shape(2)
ans =
geolineshape with properties:
NumParts: 5
Geometry: "line"
CoordinateSystemType: "geographic"
GeographicCRS: [1×1 geocrs]

Import the track points layer. The Shape variable for each point is a geopointshape object.

```
T2 = readgeotable("sample_tracks.gpx",Layer="track_points");
T2.Shape
ans =
    2586x1 geopointshape array with properties:
                            NumPoints: [2586\times1 double]
                        Latitude: [2586\times1 double]
                    Longitude: [2586\times1 double]
                            Geometry: "point"
        CoordinateSystemType: "geographic"
            GeographicCRS: [1×1 geocrs]
```

Create a subtable that contains points in the second track only. For this file, points in the second track have a TrackFID value of 1.

```
rows = (T2.TrackFID == 1);
```

T3 = T2 (rows,:);

Plot the points in the subtable as a blue line.
wmline(T3,Color="b")

Read GeoJSON File from Web Service

Read GeoJSON data from a website and save it in the file storms.geojson. The data contains day 1 convective outlooks from the NOAA/NWS Storm Prediction Center. For more information about convective outlooks, see [1] on page 1-0 . For links to the data, see [2] on page 1-0

```
websave("storms.geojson","https://www.spc.noaa.gov/products/outlook/daylotlk_cat.lyr.geojson");
```

Read the data into a geospatial table. If the file contains no data for the readgeotable function to read, such as when there are no severe thunderstorm threats, create a geospatial table with an empty polygon shape instead.

```
try
    GT = readgeotable("storms.geojson");
catch
    GT = table(geopolyshape,"No Data","none",VariableNames=["Shape" "LABEL2" "fill"]);
end
```

View the Shape variable of the geospatial table. The table stores the geographic areas as polygons.

GT. Shape

ans=3×1 object
3×1 geopolyshape array with properties:
NumRegions: [3×1 double]
NumHoles: [3×1 double]
Geometry: "polygon"

```
CoordinateSystemType: "geographic"
    GeographicCRS: [1×1 geocrs]
```

Day 1 convective outlooks change from day to day, so your results can be different.
Display the convective outlooks over a satellite basemap. To create a legend from the thunderstorm risk categories, plot each row of the table as a separate polygon.

```
figure
geobasemap satellite
hold on
for k = 1:height(GT)
    row = GT(k,:);
    geoplot(row,"DisplayName",row.LABEL2,"FaceColor",row.fill)
end
legend
alpha(0.6)
```

Add a title, including the access date.

```
dt = datetime("today",Format="MMMM d, yyyy");
title("Day 1 Convective Outlooks",dt)
```

Day 1 Convective Outlooks
December 6, 2021

[1] "SPC Products." NOAA/National Weather Service Storm Prediction Center. Accessed December 6, 2021. https://www.spc.noaa.gov/misc/about.html.
[2] "SPC Shapefile/KML/KMZ Links." NOAA/National Weather Service Storm Prediction Center. Accessed December 6, 2021. https://www.spc.noaa.gov/gis/.

Input Arguments

filename - Name of file to read

character vector | string scalar
Name of the file to read, specified as a character vector or string scalar. The form of filename depends on the location of your file.

- If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the file, such as "myFile.shp".
- If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or relative path name, such as "C:\myfolder\myFile.gpx" or "dataDir\myFile.kml".

For a list of supported file formats, see "Supported Formats and Extensions" on page 1-1303.
To read an Esri file geodatabase, you must either specify the full or relative path name or include the geodatabase in your current folder.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: readgeotable("sample_tracks.gpx", Layer="track_points") reads the track points layer from the GPX file.

Layer - Layer to read

positive integer | string scalar | character vector
Layer to read when the file contains multiple layers, specified as a positive integer, a string scalar, or a character vector. If you specify an integer, then it must be less than or equal to the number of vector layers in the file.

The layers contained in a file depend on the file format. Shapefiles have one layer. The content of Esri file geodatabases and GeoJSON files determines the number of layers and the names of the layers. Each folder and subfolder of KML files corresponds to layers, and the folder names match the layer names.

For GPX files, specify the layer as one of these options:

- "waypoints" - Waypoints.
- "tracks" - Track lines.
- "track_points" - Track points. When you read track points, the geospatial table contains an ID variable, TrackFID, that associates each point with a track.
- "routes" - Route lines.
- "route_points" - Route points. When you read route points, the geospatial table contains an ID variable, RouteFID, that associates each point with a route.

Data Types: single | double | char | string

CoordinateSystemType - Coordinate system type

"auto" (default) | "geographic" | "planar"
Coordinate system type, specified as one of these values:

- "auto" - Create the Shape table variable based on the contents of the file.
- "geographic" - Create the Shape table variable using geopointshape, geolineshape, and geopolyshape objects.
- "planar" - Create the Shape table variable using mappointshape, maplineshape, and mappolyshape objects.

Specify the coordinate system type when the readgeotable function is unable to detect the coordinate system type.

For shapefiles, the coordinate system type is determined by an optional projection file (.prj). If your shapefile does not have a projection file, you can try to determine the coordinate system type using one of these options:

- Refer to the metadata.
- Ask your data provider.
- Return information about the shapefile as a structure by using the shapeinfo function. Then, view the limits of the data by querying the BoundingBox field of the structure. The limits might help you predict the coordinate system type.

VariableNamingRule - Flag to preserve variable names

"preserve" (default) | "modify"
Flag to preserve variable names, specified as one of these options:

- "preserve" - Preserve variable names that are not valid MATLAB identifiers, such as variable names that include spaces and non-ASCII characters.
- "modify" - Convert invalid variable names, as identified by the isvarname function, to valid MATLAB identifiers.

Data Types: char | string

Output Arguments

T - Geospatial table

geospatial table
Geospatial table, returned as a geospatial table. A geospatial table is a table object with a Shape variable and attribute variables.

- The Shape variable contains 2-D information about point, line, and polygon shapes. The Shape variable can contain combinations of shape types. All the shapes have the same coordinate reference system (CRS).

The readgeotable function represents shapes with coordinates in geographic CRSs by using geopointshape, geolineshape, and geopolyshape objects.

The readgeotable function represents shapes with coordinates in projected CRSs by using mappointshape, maplineshape, and mappolyshape objects.

- The attribute variables contain data such as names, classifications, and measurements.

When the data file contains CRS information, the readgeotable function stores the information as a projers or geocrs object within each shape object.

More About

Supported Formats and Extensions

The readgeotable function supports these file formats and extensions.

File Format	Extension
Esri file geodatabase	.gdb
GeoJSON	. .json or .geojson
GPX	. gpx
KML	. .kml
Shapefile	.shp

Some file formats consist of a main file and multiple supporting files. For example, shapefiles include a main file (.shp), an index file (.shx), and an attribute file (.dbf). When you read a data file with supporting files using the readgeotable function, specify the extension of the main file.

When the file contains 3-D points, lines, or polygons, the function reads only the 2-D information into the Shape variable of the geospatial table.

For GeoJSON files, all attributes apply to all rows in the geospatial table, even when the GeoJSON file does not apply an attribute to all elements. When the file does not apply an attribute to an element, the corresponding cell in the geospatial table contains a missing data value.

For GPX files, Garmin® extensions are not supported.
For KML files, the readgeotable function reads only shapes, names, and descriptions into the geospatial table.

See Also

Functions

readgeoraster| readtable|websave

Topics

"Create Geospatial Tables"
"Find Geospatial Vector Data"

Introduced in R2021b

readmtx

(To be removed) Read matrix stored in file

Note The readmtx function will be removed in a future release. Depending on the file format, use the readmatrix function, the readtable function, or a different file import function. For more information about common supported file formats and their import functions, see "Supported File Formats for Import and Export".

Syntax

```
mtx = readmtx(fname,nrows,ncols,precision)
mtx = readmtx(fname,nrows,ncols,precision,readrows,readcols)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,readcols,mformat)
mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes)
mtx = readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat,nheadbytes,nRowHeadBytes)
mtx = readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat, nheadbytes,nRowHeadBytes,nRowTrailBytes)
mtx = readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes)
mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes,recordlen)
```


Description

mtx = readmtx(fname, nrows, ncols,precision) reads a matrix stored in a file. The file contains only a matrix of numbers with the dimensions nrows by ncols stored with the specified precision. Recognized precision values are described below.
mtx = readmtx(fname, nrows, ncols,precision, readrows, readcols) reads a subset of the matrix. readrows and readcols specify which rows and columns are to be read. They can be vectors containing the row or column numbers, or two-element vectors of the form [start end], which are expanded using the colon operator to start: end. To read just two rows or columns, without expansion by the colon operator, provide the indices as a column matrix.
$m t x=$ readmtx(fname, nrows,ncols,precision,... readrows, readcols,mformat) specifies the machine format used to write the file. mformat can be any recognized by fopen. This option is used to automatically swap bytes for files written on platforms with a different byte ordering.
mtx = readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat, nheadbytes) skips the file header, whose length is specified in bytes.
mtx $=$ readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat, nheadbytes, nRowHeadBytes) also skips a header that precedes every row of the matrix. The length of the header is specified in bytes.
mtx $=$ readmtx (fname, nrows, ncols,precision,...
readrows, readcols,mformat, nheadbytes, nRowHeadBytes, nRowTrailBytes) also skips a trailer that follows every row of the matrix. The length of the trailer is specified in bytes.
mtx $=$ readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat, nheadbytes,nRowHeadBytes,...
nRowTrailBytes, nFileTrailBytes) accounts for the length of data following the matrix. The sizes of the components of the matrix are used to compute an expected file size, which is compared to the actual file size.
mtx $=$ readmtx(fname,nrows,ncols,precision,...
readrows, readcols,mformat, nheadbytes,nRowHeadBytes,...
nRowTrailBytes, nFileTrailBytes, recordlen) overrides the record length calculated from the precision and number of columns, and instead uses the record length given in bytes. This is used for formatted data with extra spaces or line breaks in the matrix.

Background

Map data is often provided as binary or ASCII files with a fixed format. Writing your own functions to read the data into the MATLAB workspace can be difficult and time-consuming, particularly for binary files. This function allows you to read the data by simply specifying the format of the file.

Examples

Write and read a binary matrix file:

```
fid = fopen('binmat','w');
fwrite(fid,1:100,'int16');
fclose(fid);
mtx = readmtx('binmat',10,10,'int16')
mtx =
\begin{tabular}{rrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100
\end{tabular}
mtx = readmtx('binmat',10,10,'int16',[2 5],3:2:9)
mtx =
\begin{tabular}{llll}
13 & 15 & 17 & 19 \\
23 & 25 & 27 & 29 \\
33 & 35 & 37 & 39 \\
43 & 45 & 47 & 49
\end{tabular}
```


Limitations

Every row of the matrix must have the same number of elements.

Tips

This function reads files that have a general format consisting of a header, a matrix, and a trailer. Each row of the matrix can have a certain number of bytes of extraneous information preceding or following the matrix data.

Both binary and formatted data files can be read. If the file is binary, the precision argument is a format recognized by fread. Repetition modifiers such as ' $40 *$ char' are not supported. If the file is formatted, precision is a fscanf and sscanf-style format of the form ' $\% \mathrm{n} \mathrm{X}^{\prime}$, where n is the number of characters within which the formatted data is found, and X is the conversion character such as ' g ' or ' d '. Fortran-style double-precision output such as ' 0.0 D 00 ' can be read using a precision such as ' $\% \mathrm{nD}^{\prime}$ ', where n is the number of characters per element. This is an extension to the C-style format s accepted by sscanf. Users unfamiliar with C should note that '\%d' is preferred over '\%i' for formatted integers. MATLAB syntax follows C in interpreting '\%i' integers with leading zeros as octal. Formatted files with line endings need to provide the number of trailing bytes per row, which can be 1 for platforms with carriage returns or linefeed (Macintosh, UNIX), or 2 for platforms with carriage returns and linefeeds (DOS).

See Also

readmatrix|readtable|textread|dlmread
Topics
"Supported File Formats for Import and Export"
Introduced before R2006a

reckon

Point at specified azimuth, range on sphere or ellipsoid

Syntax

```
[latout,lonout] = reckon(lat,lon,arclen,az)
[latout,lonout] = reckon(lat,lon,arclen,az,units)
[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid)
[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid,units)
[latout,lonout] = reckon(track,...)
```


Description

[latout,lonout] = reckon(lat,lon,arclen,az), for scalar inputs, calculates a position (latout, lonout) at a given range, arclen, and azimuth, az, along a great circle from a starting point defined by lat and lon. lat and lon are in degrees. arclen must be expressed as degrees of arc on a sphere, and equals the length of a great circle arc connecting the point (lat, lon) to the point (latout, lonout). az, also in degrees, is measured clockwise from north. reckon calculates multiple positions when given four arrays of matching size. When given a combination of scalar and array inputs, the scalar inputs are automatically expanded to match the size of the arrays.
[latout,lonout] = reckon(lat,lon,arclen,az,units), where units is either 'degrees' or 'radians', specifies the units of the inputs and outputs, including arclen. The default value is 'degrees'.
[latout,lonout] = reckon(lat,lon, arclen,az,ellipsoid) calculates positions along a geodesic on an ellipsoid, as specified by ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The range, arclen, must be expressed same unit of length as the semimajor axis of the ellipsoid.
[latout,lonout] = reckon(lat,lon, arclen, az,ellipsoid, units) calculates positions on the specified ellipsoid with lat, lon, az, latout, and lonout in the specified angle units.
[latout,lonout] = reckon(track,...) calculates positions on great circles (or geodesics) if track is ' gc ' and along rhumb lines if track is ' rh '. The default value is ' gc '.

Examples

Find the coordinates of the point 600 nautical miles northwest of London, UK ($51.5^{\circ} \mathrm{N}, 0^{\circ}$) in a great circle sense:

```
% Convert nm distance to degrees.
dist = nm2deg(600)
dist =
    9.9933
% Northwest is 315 degrees.
pt1 = reckon(51.5,0,dist,315)
```

```
pt1 =
    57.8999 -13.3507
```

Now, determine where a plane from London traveling on a constant northwesterly course for 600 nautical miles would end up:

```
pt2 = reckon('rh',51.5,0,dist,315)
pt2 =
    58.5663 -12.3699
```

How far apart are the points above (distance in great circle sense)?

```
separation = distance('gc',pt1,pt2)
separation =
    0.8430
% Convert answer to nautical miles.
nmsep = deg2nm(separation)
nmsep =
    50.6156
```

Over 50 nautical miles separate the two points.

See Also

azimuth | distance | km2deg |dreckon|track|track1|track2
Introduced before R2006a

map.geodesy.RectifyingLatitudeConverter

Convert between geodetic and rectifying latitudes

Description

A RectifyingLatitudeConverter object provides conversion methods between geodetic and rectifying latitudes for an ellipsoid with a given third flattening.

The rectifying latitude maps an ellipsoid (oblate spheroid) to a sphere while preserving the distances along the meridians. Rectifying latitudes are used when implementing map projections, such as Equidistant Cylindrical, that preserve such distances.

Creation

Syntax

```
converter = map.geodesy.RectifyingLatitudeConverter
converter = map.geodesy.RectifyingLatitudeConverter(spheroid)
```


Description

converter = map.geodesy.RectifyingLatitudeConverter returns a
RectifyingLatitudeConverter object for a sphere and sets the ThirdFlattening property to 0.
converter = map.geodesy.RectifyingLatitudeConverter(spheroid) returns a rectifying latitude converter object and sets the ThirdFlattening property to match the specified spheroid object.

Input Arguments

```
spheroid - Reference spheroid
referenceEllipsoid object | oblateSpheroid object | referenceSphere object
```

Reference spheroid, specified as a referenceEllipsoid object, oblateSpheroid object, or referenceSphere object. The term reference spheroid is used synonymously with reference ellipsoid. To create a reference spheroid, use the creation function for the object. To specify the reference ellipsoid for WGS84, use the wgs84Ellipsoid function.

For more information about reference spheroids, see "Reference Spheroids".
Example: spheroid = referenceEllipsoid('GRS 80');

Properties

ThirdFlattening - Third flattening of an ellipsoid

numeric scalar

Third flattening of an ellipsoid, specified as a numeric scalar. ThirdFlattening is in the interval [0, ecc2n(0.5)], or approximately [0, 0.071797]. (Flatter spheroids are possible in theory, but do not occur in practice and are not supported.)
Data Types: double

Object Functions

forward Convert geodetic latitude to authalic, conformal, isometric, or rectifying latitude inverse Convert authalic, conformal, isometric, or rectifying latitude to geodetic latitude

Examples

```
Create a Rectifying Latitude Converter Object and Set Property
grs80 = referenceEllipsoid('GRS 80');
conv1 = map.geodesy.RectifyingLatitudeConverter;
conv1.ThirdFlattening = grs80.ThirdFlattening
conv1 =
    RectifyingLatitudeConverter with properties:
        ThirdFlattening: 0.0017
```


Create a Rectifying Latitude Converter Object, Specifying Spheroid

```
grs80 = referenceEllipsoid('GRS 80');
conv2 = map.geodesy.RectifyingLatitudeConverter(grs80)
conv2 =
    RectifyingLatitudeConverter with properties:
        ThirdFlattening: 0.0017
```


See Also

Functions

geocentricLatitude | parametricLatitude

```
Objects
AuthalicLatitudeConverter|ConformalLatitudeConverter|
IsometricLatitudeConverter
```


Introduced in R2013a

reducem

Reduce density of points in vector data

Syntax

[latout,lonout] = reducem(latin,lonin)
[latout,lonout] = reducem(latin,lonin,tol)
[latout,lonout,cerr] = reducem(...)
[latout,lonout,cerr,tol] = reducem(...)

Description

[latout,lonout] $=$ reducem(latin,lonin) reduces the number of points in vector map data. In this case the tolerance is computed automatically.
[latout,lonout] = reducem(latin,lonin, tol) uses the provided tolerance. The units of the tolerance are degrees of arc on the surface of a sphere.
[latout,lonout, cerr] = reducem(...) in addition returns a measure of the error introduced by the simplification. The output cerr is the difference in the arc length of the original and reduced data, normalized by the original length.
[latout, lonout, cerr, tol] = reducem(...) also returns the tolerance used in the reduction, which is useful when the tolerance is computed automatically.

Examples

Compare Original and Reduced Borders

Compare the original and reduced borders of the District of Columbia from the shapefile usastatehi.shp.

Extract the borders of the District of Colombia.

```
dc = shaperead('usastatehi.shp',...
    'UseGeoCoords', true,...
    'Selector',{@(name) ...
    strcmpi(name,'district of columbia'), 'Name'});
lat = extractfield(dc, 'Lat')';
lon = extractfield(dc, 'Lon')';
```

Reduce the number of points in the border.
[latreduced, lonreduced] = reducem(lat, lon);
Display the original and reduced borders.

```
lonlim = dc.BoundingBox(:,1)' + [-0.02 0.02];
latlim = dc.BoundingBox(:,2)' + [-0.02 0.02];
```

```
subplot(1,2,1)
usamap(latlim, lonlim); axis off
geoshow(lat, lon,...
    'DisplayType', 'polygon', 'FaceColor', 'blue')
subplot(1,2,2)
usamap(latlim, lonlim); axis off
geoshow(latreduced, lonreduced,...
    'DisplayType', 'polygon', 'FaceColor', 'yellow')
```


Simplify Polygon and Line Data

Simplifying polygon and line data can speed up certain calculations without making any noticeable impact on the data. One way to approach simplification is to use reducem with the default tolerance value and view the output. If the results do not meet your requirements, repeat the operation, increasing or decreasing the tolerance value to achieve the result you desire. The reducem function returns the tolerance value used.

Extract Massachusetts coastlines and state borders from the usastatehi. shp shapefile.

```
ma = shaperead('usastatehi.shp','UseGeoCoords',true, ...
    'Selector', {@(name)strcmpi(name,'Massachusetts'),'Name'});
masslat = ma.Lat;
masslon = ma.Lon;
```

The result is a pair of vectors that outline the state with 957 vertices.
numel (masslat)

```
ans = 957
```


Simplify Line Data Using Default Tolerance

Simplify the outline by using the reducem function with the default tolerance value.

```
[masslat1, masslon1, cerr, tol] = reducem(masslat', masslon');
```

Inspect the results. The number of vertices has been reduced to 252 . The vectors have been reduced to about a quarter of their original lengths.

```
numel(masslat1)
```

```
ans = 252
numel(masslat1)/numel(masslat)
ans = 0.2633
```

Examine the error and tolerance values returned by reducem. The cerr value indicates that reducem has reduced the total length of the outline by about 3.3 percent. The tolerance that reducem used to achieve this reduction was 0.006 degrees, or about 660 meters.
[cerr tol]
ans $=1 \times 2$

$$
0.0331 \quad 0.0060
$$

Plot the reduced outline in red over the original outline in blue, using geoshow. At this resolution, it's hard to see any difference between the original outline and the reduced outline.
figure
axesm('MapProjection', 'eqdcyl', 'MapLatLim', [41.1 43.0],...
'MapLonLim', [-73.6, -69.8], 'Frame', 'off', 'Grid', 'off');
geoshow(masslat, masslon, 'DisplayType', 'line', 'color', 'blue')
geoshow(masslat1, masslon1, 'DisplayType', 'line', 'color', 'red')

To get a better look at the two outlines, use x lim and y lim to zoom in on a portion of the map. Notice how the reduced outline conforms to the general contours of the original map but loses a lot of the detail.

```
axesm('MapProjection', 'eqdcyl', 'MapLatLim', [41.1 43.0],...
'MapLonLim', [-73.6, -69.8], 'Frame', 'off', 'Grid', 'off');
xlim([0.0104 0.0198])
ylim([0.7202 0.7264])
geoshow(masslat, masslon, 'DisplayType', 'line', 'color', 'blue')
geoshow(masslat1, masslon1, 'DisplayType', 'line', 'color', 'red')
```


Simplify Line Data Using Specified Tolerance

Perform the operation again, this time doubling the tolerance value.

```
[masslat2,masslon2,cerr2,tol2] = reducem(masslat', masslon', 0.012);
numel(masslat2)
ans = 157
numel(masslat2)/numel(masslat)
ans = 0.1641
```

Examine the error and tolerance values returned by reducem. This time, the cerr value indicates that reducem has reduced the total length of the outline by about 5.2 percent. The tolerance that reducem used to achieve this reduction was 0.012 degrees.
[cerr2 tol2]
ans $=1 \times 2$
$0.0517 \quad 0.0120$

Plot this reduced outline in dark green over the original outline in blue. Note how this reduced outline maintains the general shape of the original map but loses much of the fine detail.

```
geoshow(masslat2, masslon2, 'DisplayType', 'line', 'color', [0 .6 0])
```


Tips

Vector data is reduced using the Douglas-Peucker line simplification algorithm. This method recursively subdivides a polygon until a run of points can be replaced by a straight line segment, with no point in that run deviating from the straight line by more than the tolerance. The distances used to decide on which runs of points to eliminate are computed in a Plate Carrée projection.

Reduced geographic data might not always be appropriate for display. If all intermediate points in a data set are reduced, then lines appearing straight in one projection are incorrectly displayed as straight lines in others.

See Also

Functions

interpm|georesize
Topics
"Simplify Vector Coordinate Data"
Introduced before R2006a

referenceEllipsoid

Reference ellipsoid

Description

A referenceEllipsoid object encapsulates a reference ellipsoid, modeled as an oblate spheroid with three additional properties: name, unit of length of the semi-major and semi-minor axes, and a numerical EPSG code.

Creation

You can create a general referenceEllipsoid object with the referenceEllipsoid function described here. You can also create a referenceEllipsoid with properties specific to the World Geodetic System 1984 reference ellipsoid using the wgs84Ellipsoid function.

Syntax

E = referenceEllipsoid
E = referenceEllipsoid(name)
E = referenceEllipsoid(code)
E = referenceEllipsoid(name,lengthUnit)
E = referenceEllipsoid(code,lengthUnit)

Description

$E=$ referenceEllipsoid creates a referenceEllipsoid object that represents the unit sphere.
E = referenceEllipsoid(name) creates a referenceEllipsoid object corresponding to name. name is case-insensitive. The values of the SemimajorAxis and SemiminorAxis properties are in meters.

E = referenceEllipsoid(code) creates a referenceEllipsoid object corresponding to the numerical EPSG code, code. The unit of length used for the SemimajorAxis and SemiminorAxis properties depends on the ellipsoid selected, and is indicated in the property LengthUnit.

E = referenceEllipsoid(name,lengthUnit) and
E = referenceEllipsoid(code,lengthUnit) create a referenceEllipsoid object with the SemimajorAxis and SemiminorAxis properties in the specified unit of length, LengthUnit. The unit of length can be any length unit supported by the validateLengthUnit function.

Input Arguments

name - Name of the reference ellipsoid
'Unit Sphere' (default)| character vector | string scalar
Name of the reference ellipsoid, specified as one of the values in the "Names of EPSG Ellipsoids" on page 1-1324 table.

Data Types: char | string

code - Numerical EPSG code

[] (default) | integer between 7000 and 8000
Numerical EPSG code, specified as an empty vector or an integer between 7000 and 8000, although not all integers in this range are valid numerical EPSG codes. For information on valid EPSG codes, see the EPSG home page.
Data Types: double

lengthUnit - Length unit

' ' (default) | character vector | string scalar
Length unit, specified as a character vector or string scalar. You can specify any length unit that is supported by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre", "metres"	Meters
"cm", "centimeter", "centimeters", "centimetre", "centimetres"	Centimeters
"mm", "millimeter", "millimeters", "millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers", "kilometre", "kilometers"	Kilometers
"nm", "naut mi", "nautical mile", "nautical miles"	Nautical miles
"ft", "international ft", "foot",	
"international foot", "feet",	
"international feet"	Feet
"in", "inch", "inches"	
"yd", "yds", "yard", "yards"	Inches
"mi", "mile", "miles", "international mile", "international miles"	Miles
"sf", "survey ft", "US survey ft", "U.S. survey ft", "survey foot", "US survey foot", "U.S. survey foot", "survey feet", "US survey feet", "U.S. survey feet"	U.S. survey feet
"sm", "survey mile", "survey miles", "statute mile", "statute miles", "US survey mile", "US survey miles", "U.S. survey mile(s)", "U.S. survey miles"	U.S. survey miles (statute miles)
"Clarke's foot", "Clarkes foot"	Clarke's feet
"German legal metre", "German legal meter"	German legal metres

Value	Unit Name
"Indian foot"	Indian feet

Data Types: char|string

Properties

Code - Numerical EPSG code

[] (default) | integer between 7000 and 8000
Numerical EPSG code, specified as an empty vector or an integer between 7000 and 8000, although not all integers in this range are valid numerical EPSG codes. For information on valid EPSG codes, see the EPSG home page.

When the reference ellipsoid represents the unit sphere or a custom ellipsoid, Code is an empty vector ([]).

Example: 7030

Data Types: double

Name - Name of the reference ellipsoid

'Unit Sphere' (default) | character vector | string scalar
Name of the reference ellipsoid, specified as a character vector or string scalar. When you create a reference ellipsoid by specifying its name, use one of the values in the "Names of EPSG Ellipsoids" on page 1-1324 table.

When the reference ellipsoid represents the unit sphere, Name is the character vector ' Unit Sphere'.

```
Example: 'World Geodetic System 1984'
```

Data Types: char | string

LengthUnit - Unit of length for the ellipsoid axes

' ' (default) | character vector | string scalar
Unit of length for the ellipsoid axes, specified as a character vector. The character vector can be empty, or it can be any unit of length accepted by the validateLengthUnit function.

When the reference ellipsoid represents the unit sphere, LengthUnit is the empty character vector ' '

Example: 'km'
Data Types: char | string

SemimajorAxis - Equatorial radius of ellipsoid

1 (default) | positive, finite scalar
Equatorial radius of ellipsoid, specified as a positive, finite scalar. The SemimajorAxis property is expressed in units of length specified by LengthUnit.

When the SemimajorAxis property is changed, the SemiminorAxis property scales as needed to preserve the shape of the ellipsoid and the values of shape-related properties including

InverseFlattening and Eccentricity. The only way to change the SemimajorAxis property is to set it directly, using dot notation.

Example: 6378137

Data Types: double

SemiminorAxis - Distance from center of ellipsoid to pole

1 (default) | nonnegative, finite scalar
Distance from center of ellipsoid to pole, specified as a nonnegative, finite scalar. The value of SemiminorAxis is always less than or equal to SemimajorAxis, and is expressed in units of length specified by LengthUnit.

When the SemiminorAxis property is changed, the SemimajorAxis property remains unchanged, but the shape of the ellipsoid changes, which is reflected in changes in the values of InverseFlattening, Eccentricity, and other shape-related properties.

Example: 6356752

Data Types: double

InverseFlattening - Reciprocal of flattening

Inf (default) | positive scalar in the range [1, Inf]
Reciprocal of flattening, specified as positive scalar in the range [1, Inf].
The value of inverse flattening, $1 / f$, is calculated using SemimajorAxis value a and SemiminorAxis value b according to $1 / f=a /(a-b)$. A value $1 / f$ of Inf designates a perfect sphere. As $1 / f$ approaches 1 , the reference ellipsoid approaches a flattened disk.

When the InverseFlattening property is changed, other shape-related properties update, including Eccentricity. The SemimajorAxis property remains unchanged, but the value of SemiminorAxis adjusts to reflect the new shape.
Example: 300
Data Types: double

Eccentricity - First eccentricity of ellipsoid

0 (default) | nonnegative scalar in the range [0, 1]
First eccentricity of the ellipsoid, specified as nonnegative scalar in the range [0, 1].
The value of eccentricity, ecc, is calculated using SemimajorAxis value a and SemiminorAxis value b according to ecc $=\operatorname{sqrt}\left(a^{2}-b^{2}\right) / a$. A value ecc of 0 designates a perfect sphere.

When the Eccentricity property is changed, other shape-related properties update, including InverseFlattening. The SemimajorAxis property remains unchanged, but the value of SemiminorAxis adjusts to reflect the new shape.
Example: 0.08
Data Types: double
Flattening - Flattening of ellipsoid
nonnegative scalar in the range [0, 1]
This property is read-only.

Flattening of the ellipsoid, specified as nonnegative scalar in the range $[0,1]$.
The value of flattening, f, is calculated using SemimajorAxis value a and SemiminorAxis value b according to $f=(a-b) / a$.
Data Types: double

ThirdFlattening - Third flattening of ellipsoid

nonnegative scalar in the range $[0,1]$
This property is read-only.
Third flattening of the ellipsoid, specified as nonnegative scalar in the range $[0,1]$.
The value of the third flattening, n, is calculated using SemimajorAxis value a and SemiminorAxis value b according to $n=(a-b) /(a+b)$.
Data Types: double

MeanRadius - Mean radius of the ellipsoid

positive, finite scalar
This property is read-only.
Mean radius of the ellipsoid, specified as positive, finite scalar. The MeanRadius property is expressed in units of length specified by LengthUnit.

The mean radius of the ellipsoid, r, is calculated using SemimajorAxis value a and SemiminorAxis value b according to $r=(2 a+b) / 3$.
Data Types: double

SurfaceArea - Surface area of the ellipsoid

positive, finite scalar
This property is read-only.
Surface area of the ellipsoid, specified as positive, finite scalar. The SurfaceArea property is expressed in units of area consistent the unit of length specified by the LengthUnit property.
Data Types: double

Volume - Volume of the ellipsoid

positive, finite scalar
This property is read-only.
Volume of the ellipsoid, specified as positive, finite scalar. The Volume property is expressed in units of volume consistent with the unit of length specified by the LengthUnit property.
Data Types: double

Examples

Construct GRS80 Reference Ellipsoid

Create a reference ellipsoid object by specifying the name of the ellipsoid.

```
e = referenceEllipsoid('GRS 1980')
e =
referenceEllipsoid with defining properties:
    Code: 7019
                            Name: 'GRS 1980'
            LengthUnit: 'meter'
        SemimajorAxis: 6378137
        SemiminorAxis: 6356752.31414036
        InverseFlattening: 298.257222101
            Eccentricity: 0.0818191910428158
        and additional properties:
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume
```

Create the same reference ellipsoid object by specifying the EPSG code 7019.

```
e = referenceEllipsoid(7019)
e =
referenceEllipsoid with defining properties:
                Code: 7019
                    Name: 'GRS 1980'
            LengthUnit: 'meter'
            SemimajorAxis: 6378137
            SemiminorAxis: 6356752.31414036
        InverseFlattening: 298.257222101
            Eccentricity: 0.0818191910428158
        and additional properties:
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume
```

Create a reference ellipsoid object, specifying the units. For length unit, you can specify any unit of length accepted by the validateLengthUnit function.

```
e = referenceEllipsoid('GRS80','km')
e =
referenceEllipsoid with defining properties:
    Code: 7019
```

```
                                    Name: 'GRS 1980'
                LengthUnit: 'kilometer'
            SemimajorAxis: 6378.137
            SemiminorAxis: 6356.75231414036
    InverseFlattening: 298.257222101
            Eccentricity: 0.0818191910428158
and additional properties:
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume
```

Create a reference ellipsoid, specifying the GeoTIFFCodes.Ellipsoid field from a file.

```
info = geotiffinfo('boston.tif');
```

e = referenceEllipsoid(info.GeoTIFFCodes.Ellipsoid)
e =
referenceEllipsoid with defining properties:
Code: 7019
Name: 'GRS 1980'
LengthUnit: 'meter'
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

Create Custom Model for Planet

Create a custom reference ellipsoid by modifying the properties of a default reference ellipsoid.

```
customPlanet = referenceEllipsoid;
customPlanet.Name = 'Tiny Planet';
customPlanet.LengthUnit = 'meter';
customPlanet.SemimajorAxis = 8000;
customPlanet.SemiminorAxis = 7900
customPlanet =
referenceEllipsoid with defining properties:
    Code: []
    Name: 'Tiny Planet'
```

LengthUnit: 'meter'
SemimajorAxis: 8000
SemiminorAxis: 7900
InverseFlattening: 80
Eccentricity: 0.157619002661481
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

More About

Names of EPSG Ellipsoids

All of the nearly 60 codes in the EPSG ellipsoid table are supported. A subset of these ellipsoids can be created by specifying their name. The short and long names of these ellipsoids, along with their corresponding code, appear in the table. You can create a reference ellipsoid by specifying either its code, short name, or long name.

EPSG Code	Short Name	Long Name
-	'unitsphere'	'Unit Sphere'
7019	'grs80'	'GRS 1980'
7030	'wgs84'	'WGS 84'
7015	'everest'	'Everest $1830 \quad(1837$ Adjustment)'
7004	'bessel'	'Bessel 1841'
7001	'airy1830'	'Airy 1830'
7002	'airy1849'	'Airy Modified 1849'
7008	'clarke66'	'Clarke 1866'
7012	'clarke80'	'Clarke 1880 (RGS)'
7022	'international'	'International 1924'
7024	'krasovsky'	'Krassowsky 1940'
7043	'wgs72'	'WGS 72'
-	'wgs60'	$\begin{aligned} & \text { 'World Geodetic System } \\ & \text { 1960' } \end{aligned}$
-	'iau65'	' International Astronomical Union 1965'
-	'wgs66'	$\begin{aligned} & \text { 'World Geodetic System } \\ & \text { 1966' } \end{aligned}$
-	'iau68'	'International Astronomical Union 1968'

EPSG Code	Short Name	Long Name
7030	'earth'	'WGS 84'
-	'sun'	'Sun'
-	'moon'	'Moon'
-	'mercury'	'Mercury'
-	'venus'	'Venus'
-	'mars'	'Jupiter'
-	'supiter'	'Saturn'
-	'uranus'	'Uranus'
-	'neptune	'Pluto '
-		
-		

Tips

- When you define an ellipsoid in terms of semimajor and semiminor axes (rather than semimajor axis and inverse flattening, or semimajor axis and eccentricity), a small loss of precision in the last few digits of Flattening, Eccentricity, and ThirdFlattening may occur. This is unavoidable, but does not affect the results of practical computation.

Compatibility Considerations

Name property for some ReferenceEllipsoid objects has changed

Behavior changed in R2020b
Starting in R2020b, the Name property of referenceEllipsoid objects always contains the names of the ellipsoids as they appear in the EPSG Geodetic Database. In R2020a and previous releases, the value of the Name property depended on the name or code you used to create the object.

For example, create two referenceEllipsoid objects using the WGS84 reference system. Create the first object by specifying its EPSG code, and create the second object by specifying its name. In R2020b and later releases the value of the Name property is the same for both referenceEllipsoid objects. In R2020a and earlier releases the value of the Name property is not the same.
r1 = referenceEllipsoid(7030);
r2 = referenceEllipsoid('World Geodetic System 1984');
r1.Name
r2. Name

R2020b and later	R2020a and earlier
ans =	ans =
'WGS 84'	'WGS 84'
ans =	ans =
'WGS 84'	'World Geodetic System 1984'

If you have existing code in which you create a reference ellipsoid object by specifying a name to the referenceEllipsoid creation function, you do not need to update your code to correspond to a name in the EPSG Geodetic Database.

For more information about the EPSG Geodetic Database, see the EPSG home page.

See Also

oblateSpheroid|referenceSphere|validateLengthUnit | wgs84Ellipsoid|geocrs
Introduced in R2012a

referenceSphere

Reference sphere

Description

A referenceSphere object represents a sphere with a specific name and radius that you can use in map projections and other geodetic operations.

Creation

Syntax

$S=$ referenceSphere
S = referenceSphere(name)
S = referenceSphere(name, lengthUnit)

Description

$S=$ referenceSphere creates a referenceSphere object that represents the unit sphere.
S = referenceSphere(name) creates a referenceSphere object corresponding to the specified spherical body given by name. The radius of the reference sphere is in meters.

S = referenceSphere(name,lengthUnit) creates a referenceSphere object with radius in the specified unit of length, LengthUnit. The unit of length can be any length unit supported by the validateLengthUnit function.

Input Arguments

name - Name of predefined reference sphere
'Unit Sphere' (default)|'earth'|'sun'|'moon'|...
Name of predefined reference sphere, specified as 'earth', 'sun', 'moon', 'mercury', 'venus', 'mars','jupiter','saturn','uranus','neptune','pluto', or 'unit sphere'. The name argument is not case-sensitive.

Data Types: char|string

lengthUnit - Length unit

' ' (default) | character vector | string scalar
Length unit, specified as a character vector or string scalar. You can specify any length unit that is supported by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre", "metres"	Meters

Value	Unit Name
"cm", "centimeter", "centimeters", "centimetre", "centimetres"	Centimeters
"mm", "millimeter", "millimeters", "millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers", "kilometre", "kilometers"	Kilometers
"nm", "naut mi", "nautical mile", "nautical miles"	Nautical miles
"ft", "international ft", "foot", "international foot", "feet", "international feet"	Feet
"in", "inch", "inches"	Inches
"yd", "yds", "yard", "yards"	Yards
```"mi", "mile", "miles", "international mile","international miles"```	Miles
"sf", "survey ft", "US survey ft", "U.S. survey ft", "survey foot", "US survey foot", "U.S. survey foot", "survey feet", "US survey feet","U.S. survey feet"	U.S. survey feet
"sm", "survey mile", "survey miles", "statute mile", "statute miles", "US survey mile", "US survey miles", "U.S. survey mile(s)", "U.S. survey miles"	U.S. survey miles (statute miles)
"Clarke's foot", "Clarkes foot"	Clarke's feet
"German legal metre", "German legal meter"	German legal metres
"Indian foot"	Indian feet

Data Types: char | string

## Properties

## Name - Name of reference sphere

'Unit Sphere' (default)| character vector | string scalar
Name of the reference sphere, specified as a string scalar or character vector.
Example: 'Sun'
Data Types: char | string

## LengthUnit - Unit of length of the radius

' ' (default) | character vector | string scalar

Unit of length of the radius, specified as a string scalar or character vector. You can specify any unit of length accepted by the validateLengthUnit function. When the reference sphere represents the unit sphere, LengthUnit is the empty character vector ' '.
Example: 'km'
Data Types: char | string

## Radius - Radius of the sphere

positive, finite scalar
Radius of the sphere, specified as positive, finite scalar.
Data Types: double

## SemimajorAxis - Equatorial radius of the sphere

1 (default) | positive, finite scalar
This property is read-only.
Equatorial radius of the sphere, specified as a positive, finite scalar. The value of SemimajorAxis is equal to the value of Radius.
Data Types: double

## SemiminorAxis - Distance from center of sphere to pole

1 (default) | positive, finite scalar
This property is read-only.
Distance from center of sphere to pole, specified as a positive, finite scalar. The value of SemiminorAxis is equal to the value of Radius.
Data Types: double

## InverseFlattening - Reciprocal of flattening

Inf (default)
This property is read-only.
Reciprocal of flattening, specified as the value Inf.
Data Types: double

## Eccentricity - First eccentricity of sphere <br> 0 (default)

This property is read-only.
First eccentricity of the sphere, specified as the value 0 .
Data Types: double

## Flattening - Flattening of sphere

0 (default)
This property is read-only.
Flattening of the sphere, specified as the value 0 .

## Data Types: double

## ThirdFlattening - Third flattening of sphere

0 (default)
This property is read-only.
Third flattening of the sphere, specified as the value 0 .
Data Types: double

## MeanRadius - Mean radius of the sphere

positive, finite scalar
This property is read-only.
Mean radius of the sphere, specified as positive, finite scalar. The value of MeanRadius is equal to the value of Radius.
Data Types: double

## SurfaceArea - Surface area of the sphere

positive, finite scalar
This property is read-only.
Surface area of the sphere, specified as positive, finite scalar.
The SurfaceArea property is expressed in units of area consistent with the unit of length specified by the LengthUnit property.
Data Types: double

## Volume - Volume of the sphere

positive, finite scalar
This property is read-only.
Volume of the sphere, specified as positive, finite scalar.
The Volume property is expressed in units of volume consistent with the unit of length specified by the LengthUnit property.
Data Types: double

## Examples

## Create Model of Earth in Kilometers

Construct a reference sphere that models the Earth as a sphere with a radius of 6371000 meters. Note that the unit of length is meters.

```
s = referenceSphere('Earth')
s =
```

```
referenceSphere with defining properties:
 Name: 'Earth'
 LengthUnit: 'meter'
 Radius: 6371000
 and additional properties:
 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```

Switch the unit of length in the reference sphere to kilometers.

```
s.LengthUnit = 'kilometer'
s =
referenceSphere with defining properties:
 Name: 'Earth'
 LengthUnit: 'kilometer'
 Radius: 6371
 and additional properties:
 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```

Determine the surface area of the sphere in square kilometers.
s.SurfaceArea
ans =
$5.1006 e+08$
Find the volume of the sphere in cubic kilometers.
s.Volume
ans =
$1.0832 \mathrm{e}+12$

## Create Custom Model for Planet

Create a custom reference sphere for a planet by modifying the properties of a default reference sphere.

```
customPlanet = referenceSphere;
customPlanet.Name = 'Tiny Planet';
customPlanet.LengthUnit = 'meter';
customPlanet.Radius = 8000
customPlanet =
referenceSphere with defining properties:
 Name: 'Tiny Planet'
 LengthUnit: 'meter'
 Radius: 8000
 and additional properties:
 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```


## See Also <br> oblateSpheroid | referenceEllipsoid | validateLengthUnit <br> Introduced in R2012a

## refine

Refine search of WMS layers

## Syntax

```
refined = refine(layers,querystr)
refined = refine(___,Name,Value,...)
```


## Description

refined = refine(layers,querystr) searches fields of Web map service layers, layers, for a partial match with the string or character vector in querystr. By default, refine searches the Layer or LayerName properties but you can include other fields in the search using the SearchFields parameter.
refined $=$ refine( ___ ,Name,Value, ...) modifies the search based on the values of the named parameters.

## Examples

## Refine Search by Text

Find layers in the WMS Database that contain information about temperature.

```
temperature = wmsfind('temperature');
```

Refine the search of temperature layers to find only those layers that contain annual temperature information.

```
annual = refine(temperature,'annual');
```

Refine the search of temperature layers to find layers containing only sea surface temperatures.

```
sst = refine(temperature,'sea surface');
```

Refine the search of sea surface temperature layers to include only layers that include annual information.

```
annual_and_sst = refine(sst,'annual');
annual_or_sst = [sst;annual];
```


## Input Arguments

## layers - Layers to search

array of WMSLayer objects
Layers to search, specified as an array of WMSLayer objects.

## querystr - Characters to search for in WMSLayer object fields

character vector | string
Characters to search for in WMSLayer object fields, specified as a string or character vector. querystr can contain the asterisk wildcard character (*).
Example: 'temperature'
Data Types: char \| string

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: 'IgnoreCase',false
```


## SearchFields - Fields to search in the WMSLayer objects

```
'layer'(default)|'server'|'layertitle'|'layername'|'servertitle'|'serverurl'|
'any'|'abstract'
```

Fields to search in the WMSLayer objects, specified as a string, string array, character vector, or cell array of character vectors. The function searches the values of the specified fields in the WMSLayer objects for a partial or exact match with querystr. Multiple options may be included in a string array or cell array of character vectors.

The table lists valid values of searchFields.

Field	Behavior
' layer'	Search both the LayerTitle and the LayerName fields.
' layername '	Search the LayerName field in the WMSLayer objects. The layer   name is an abbreviated form of the LayerTitle field and is the   keyword the server uses to retrieve the layer.
' layertitle'	Search the LayerTitle field in the WMSLayer objects. The layer   title includes descriptive information about a layer and facilitates   understanding the meaning of the raster values of the layer.
'server'	Search the ServerURL in the WMSLayer objects. The server   URL and layer information facilitate the reading of raster layers   by the function wms read.
' servertitle'	Search the ServerTitle field in the WMSLayer objects. A   server title includes descriptive information about the server.
'serverurl '	Search the ServerURL in the WMSLayer objects. The server   URL and layer information facilitate the reading of raster layers   by the function wms read.
'abstract '	Search the abstract field in the WMSLayer objects.
'any'	Search all fields.

Data Types: char | string

## MatchType - Strictness of match

'partial' (default)| 'exact'
Strictness of match, specified as the string or character vector 'partial' or 'exact'. If 'MatchType' is 'exact' and querystr is ' $*$ ', a match occurs when the search field matches the character ' $*$ '.

Data Types: char | string
IgnoreCase - Ignore case when comparing field values to querystr
true (default) | false
Ignore case when comparing field values to querystr, specified as the logical value true or false. Data Types: logical

## Output Arguments

refined - Refined layers
array of WMSLayer objects
Refined layers, returned as an array of WMSLayer objects. Each layer in the array has a searched field that matches the text query, querystr.

## See Also

wmsfind|refineLimits
Introduced in R2009b

## refineLimits

Refine search of WMS layers based on geographic limits

## Syntax

```
refined = refineLimits(layers,Name,Value,...)
```


## Description

refined = refineLimits(layers,Name, Value, ...) searches for elements of Web map service layers, layers, that match specific latitude or longitude limits. The results include a given layer only if the quadrangle specified by the optional 'Latlim' and 'Lonlim' parameters fully contains the boundary quadrangle, as defined by the Latlim and Lonlim properties. Partial overlap does not result in a match. All angles are in units of degrees.

## Examples

## Refine Search by Geographic Limits

Find layers in the WMS Database that contain information about hurricanes.

```
layers = wmsfind('hurricane');
num_layers = length(layers)
num_layers = 79
```

Refine the search by finding layers that are in the western hemisphere.

```
refined = refineLimits(layers, ...
 'Latlim',[-90 90],'Lonlim',[-180 0]);
num_refined = length(refined)
num_refined = 32
```

Note that the refined array contains fewer layers.
Your results might be different because the WMS Database changes each release.

## Find Layers Containing Global Elevation Data

Search the WMS Database for layers containing elevation data.

```
elevation = wmsfind('elevation');
```

Refine the search by specifying latitude and longitude limits.

```
latlim = [-90, 90];
lonlim = [-180, 180];
```

```
globalElevation = ...
 refineLimits(elevation,'Latlim',latlim,'Lonlim',lonlim);
```

Display the server titles as a column vector. Your results might be different because the WMS Database changes each release.

```
serverTitles(globalElevation)'
ans = 6x1 cell
 {'NASA WorldWind WMS' }
 {'CubeSERV WMS' }
 {'NASA WorldWind WMS' }
 {'NASA Earth Observations (NEO) WMS'}
 {'World Map' }
 {'World Map' }
```


## Input Arguments

## layers - Layers to search

array of WMSLayer object
Layers to search, specified as an array of WMSLayer objects.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Latlim',[0 90]
Latlim - Latitudinal limits to search
two-element vector
Latitudinal limits to search, specified as a two-element vector. Latlim is in the form [southern_limit northern_limit] or a scalar value representing the latitude of a single point.
Example: [-90, 90]
Lonlim - Longitudinal limits to search
numeric scalar | two-element numeric vector
Longitudinal limits to search, specified as a numeric scalar or two-element numeric vector. Lonlim is in the form [western_limit eastern_limit] or a scalar value representing the longitude of a single point.

Example: [-180, 180]

## Output Arguments

refined - Refined layers
array of WMSLayer objects

Refined layers, specified as an array of WMSLayer objects. Each layer in the array has a boundary quadrangle that is fully contained in the quadrangle defined by the specified 'Latlim' and 'Lonlim' parameters.

## Tips

- The default value of [ ] for either 'Latlim' or 'Lonlim' implies that all layers match the criteria. For example, if you specify the following, then the results include all the layers that cover the northern hemisphere.

```
refineLimits(layer,'Latlim', [0 90], 'Lonlim', [])
```


## See Also

wmsfind | refine
Introduced in R2009b

## refmat2vec

(To be removed) Convert referencing matrix to referencing vector

Note refmat2vec will be removed in a future release. Instead, convert referencing matrices to geographic raster reference objects using the refmatToGeoRasterReference function. For more information, see "Compatibility Considerations".

## Syntax

refvec = refmat2vec(R,s)

## Description

refvec $=$ refmat2vec $(R, s)$ converts a referencing matrix, $R$, to the three-element referencing vector refvec. $R$ is a 3 -by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to spatial coordinates. $s$ is the size of the array (data grid) that is being referenced. refvec is a 1 -by- 3 referencing vector having elements [cells/degree northlatitude west-longitude] with latitude and longitude limits specified in degrees.

## Examples

\% Convert a sample referencing matrix to a
\% referencing vector.
$\mathrm{N}=\mathrm{rand}(180,360)$;
refmat = [0 1; 1 0; -0.5 -90.5];
$\mathrm{V}=$ refmat2vec(refmat,size(N));

## Compatibility Considerations

## refmat2vec will be removed

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the refmat2vec function. Instead, convert referencing matrices to geographic raster reference objects using the refmatToGeoRasterReference function. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

To update your code, replace instances of the refmat2vec function with the refmatToGeoRasterReference function.
rasterRef = refmatToGeoRasterReference(refmat,rasterSize);

## See Also <br> refmatToGeoRasterReference <br> Introduced before R2006a

## refvec $2 m a t$

(To be removed) Convert referencing vector to referencing matrix

Note refvec2mat will be removed in a future release. Instead, convert referencing vectors to geographic raster reference objects using the refvecToGeoRasterReference function. For more information, see "Compatibility Considerations".

## Syntax

$R=$ refvec2mat(refvec,s)

## Description

$R=$ refvec2mat(refvec,s) converts a referencing vector, refvec, to the referencing matrix $R$. refvec is a 1-by-3 referencing vector having elements [cells/degree north-latitude westlongitude] with latitude and longitude limits specified in degrees. $s$ is the size of the array (data grid) that is being referenced. $R$ is a 3 -by-2 referencing matrix defining a two-dimensional affine transformation from pixel coordinates to spatial coordinates.

## Examples

\% Create a sample data set and referencing vector N = rand(180,360);
refvec = [1 90 0];
\% Convert the referencing vector to a referencing matrix
R = refvec2mat(refvec,size(N));

## Compatibility Considerations

## refvec2mat will be removed

Warns starting in R2022a
Some functions that return referencing matrices will be removed, including the refvec2mat function. Instead, convert referencing vectors to geographic raster reference objects using the refvecToGeoRasterReference function. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, replace instances of the refvec2mat function with the refvecToGeoRasterReference function.

R = refvecToGeoRasterReference(refvec,rasterSize);

## See Also

refvecToGeoRasterReference
Introduced before R2006a

## refmatToGeoRasterReference

Referencing matrix to geographic raster reference object

## Syntax

R = refmatToGeoRasterReference(refmat, rasterSize)
R = refmatToGeoRasterReference( $\qquad$ ,rasterInterpretation)
R = refmatToGeoRasterReference( $\qquad$ funcName, varName, argIndex)
R = refmatToGeoRasterReference(Rin, rasterSize, $\qquad$ )

## Description

R = refmatToGeoRasterReference(refmat,rasterSize) constructs a cell-oriented geographic raster reference object, R , from a referencing matrix, refmat, and a size vector, rasterSize.

R = refmatToGeoRasterReference( $\qquad$ , rasterInterpretation) uses the rasterInterpretation input to determine which type of geographic raster reference object to construct. The rasterInterpretation input indicates basic geometric nature of the raster, and can equal either 'cells' or 'postings'.

R = refmatToGeoRasterReference( $\qquad$ , funcName, varName, argIndex) uses up to three optional arguments to provide additional information. This information is used to construct error messages if either the refmat or rasterSize inputs turn out to be invalid. Thus, you can use refmatToGeoRasterReference for both validating and converting a referencing matrix. The optional inputs work just like their counterparts in the function validateattributes.
$R=$ refmatToGeoRasterReference(Rin, rasterSize,___) verifies that size of the geographic raster reference object, Rin is consistent with the size specified by rasterSize, and then copies Rin to R. refmatToGeoRasterReference gets size information from the Rin. RasterSize property.

## Input Arguments

## refmat

Any valid referencing matrix. The matrix must lead to valid latitude and longitude limits when combined with rasterSize, and the matrix columns and rows must be aligned with meridians and parallels, respectively.

## rasterSize

Size vector [ $M$ N ...] ] specifying the number of rows $(M)$ and columns $(N)$ in the raster or image to be associated with the geographic raster reference object, R. For convenience, rasterSize may be a row vector with more than two elements. This flexibility allows you to specify the size in the following way:
$R=$ refmatToGeoRasterReference(refmat, size(RGB))
where RGB is $M$-by- $N$-by-3. However, in such cases, only the first two elements of the size vector are actually used. The higher (non-spatial) dimensions are ignored.

## rasterInterpretation

Basic geometric nature of the raster, specified as either 'cells' or 'postings'.

## funcName

Name used in the formatted error message to identify the function checking the input, specified as a character vector.

## varName

Name used in the formatted error message to identify the referencing matrix, specified as a character vector.

## argIndex

Positive integer that indicates the position of the referencing matrix checked in the function argument list. refmatToGeoRasterReference includes this information in the formatted error message.

## Rin

Geographic raster reference object.

## Output Arguments

## R

Geographic raster reference object.

## Examples

Convert a referencing matrix to a geographic raster reference object:

```
% Specify the size of a sample raster and referencing matrix.
rasterSize = [180 360];
refmat = [0 1; 1 0; -0.5 -90.5];
% Convert the referencing matrix to a
% geographic raster reference object.
R = refmatToGeoRasterReference(refmat,rasterSize);
% For comparison, construct a referencing object directly.
R2 = georasterref(...
 'RasterSize',rasterSize,'Latlim',[-90 90],'Lonlim',[0 360]);
```


## See Also

```
georasterref|refvecToGeoRasterReference
```


## Introduced in R2011a

## refmatToMapRasterReference

Referencing matrix to map raster reference object

## Syntax

R = refmatToMapRasterReference(refmat, rasterSize)
R = refmatToMapRasterReference( $\qquad$ , rasterInterpretation)
R = refmatToMapRasterReference( $\qquad$ ,func_name, var_name, arg_pos)
$\mathrm{R}=$ refmatToMapRasterReference( $\overline{\mathrm{Rin}}$, rasterSize, $\qquad$ )

## Description

R = refmatToMapRasterReference(refmat, rasterSize) constructs a map raster reference object, R, from a referencing matrix, refmat, and a size vector, rasterSize.

R = refmatToMapRasterReference( $\qquad$ , rasterInterpretation) uses the rasterInterpretation input to determine which type of map raster reference object to construct. The rasterInterpretation input indicates basic geometric nature of the raster, and can equal either 'cells' or 'postings'.

R = refmatToMapRasterReference( $\qquad$ , func_name, var_name, arg_pos) uses up to three optional arguments to provide additional information. This information is used to construct error messages if either the refmat or rasterSize inputs turn out to be invalid. Thus, you can use refmatToMapRasterReference for both validating and converting a referencing matrix. The optional inputs work just like their counterparts in the function validateattributes.

R = refmatToMapRasterReference(Rin,rasterSize, $\qquad$ ) verifies that Rin. RasterSize is consistent with rasterSize, then copies Rin to R.

## Input Arguments

refmat
Referencing matrix
rasterSize
Size vector [M N ...] specifying the number of rows ( $M$ ) and columns ( $N$ ) in the raster or image to be associated with the MapRasterReference object, R. For convenience, rasterSize may be a row vector with more than two elements. This flexibility allows you to specify the size in the following way:

R = refmatToMapRasterReference(refmat, size(RGB))
where RGB is $M$-by- $N$-by-3. However, in such cases, only the first two elements of the size vector are actually used. The higher (non-spatial) dimensions are ignored.

## rasterInterpretation

Basic geometric nature of the raster, specified as either 'cells' or 'postings'.

## func_name

Name used in the formatted error message to identify the function checking the input, specified as a character vector.

## var_name

Name used in the formatted error message to identify the referencing matrix, specified as a character vector.

## arg_pos

Positive integer that indicates the position of the referencing matrix checked in the function argument list. refmatToMapRasterReference includes this information in the formatted error message.

## Rin

Map raster reference object.

## Output Arguments

## R

Map raster reference object.

## Examples

Convert a referencing matrix manually versus using the maprasterref function.

```
% Create a sample referencing matrix for a 2000-by-2000
% orthoimage referenced to the Massachusetts State
% Plane Mainland coordinate system.
refmat = [0 -1; 1 0; 208999.5 913000.5];
% Import the corresponding TIFF image and use its size to
% help convert the referencing matrix to a referencing object.
[X, cmap] = imread('concord_ortho_e.tif');
R = refmatToMapRasterReference(refmat, size(X));
% Obtain the map limits.
xLimWorld = R.XWorldLimits;
yLimWorld = R.YWorldLimits;
% Construct a referencing object directly, for comparison.
R2 = maprasterref('RasterSize',size(X),'ColumnsStartFrom','north', ...
 'XLimWorld',xLimWorld,'YLimWorld',yLimWorld);
```


## See Also

maprasterref|refmatToGeoRasterReference

## Introduced in R2011a

## refmatToWorldFileMatrix

Convert referencing matrix to world file matrix

## Syntax

W = refmatToWorldFileMatrix(refmat)

## Description

W = refmatToWorldFileMatrix(refmat) converts the 3-by-2 referencing matrix refmat to a 2 -by-3 world file matrix W .

For a definition of a world file matrix, see the worldFileMatrix method of the map raster reference and geographic raster reference classes.

See Also<br>georasterref |maprasterref | georefpostings | georefcells<br>Introduced in R2011a

## refvecToGeoRasterReference

Referencing vector to geographic raster reference object

## Syntax

R = refvecToGeoRasterReference(refvec,rasterSize)
R = refvecToGeoRasterReference (__, funcName, varName, argIndex)
$R=$ refvecToGeoRasterReference(Rin, rasterSize, $\qquad$ )

## Description

$R=$ refvecToGeoRasterReference(refvec, rasterSize) constructs a geographic raster reference object, $R$, from a referencing vector, refvec, and a size vector, rasterSize.

R = refvecToGeoRasterReference( $\qquad$ , funcName, varName, argIndex) uses up to three optional arguments to provide additional information. This information is used to construct error messages if either the refvec or rasterSize inputs turn out to be invalid. Thus, you can use refvecToGeoRasterReference for both validating and converting a referencing vector. The optional inputs work just like their counterparts in the MATLAB function validateattributes.

R = refvecToGeoRasterReference(Rin, rasterSize, $\qquad$ ) verifies that Rin. RasterSize is consistent with rasterSize, then copies Rin to R.

## Input Arguments

```
refvec
```

Any valid 1-by-3 referencing vector, as long as the cell size 1/refvec(1), northwest corner latitude refvec(2), and northwest corner longitude refvec (3) lead to valid latitude and longitude limits when combined with the rasterSize vector.

## rasterSize

Size vector [ $M$ N ...] specifying the number of rows $(M)$ and columns $(N)$ in the raster or image to be associated with the GeoRasterReference object, R.

## funcName

Name used in the formatted error message to identify the function checking the input, specified as a character vector.

## varName

Name used in the formatted error message to identify the referencing vector, specified as a character vector.

## argIndex

Positive integer that indicates the position of the referencing vector checked in the function argument list. refvecToGeoRasterReference includes this information in the formatted error message.

## Rin

Geographic raster reference object.

## Output Arguments

R
Geographic raster reference object.

## Examples

Convert a referencing vector manually versus using the georasterref function.

```
% Construct a referencing vector for a regular 180-by-240 grid
% covering an area that includes the Korean Peninsula, with 12 cells
% per degree.
refvec = [l12 45 115];
% Convert to a geographic raster reference object:
rasterSize = [180 240];
R = refvecToGeoRasterReference(refvec,rasterSize);
% Construct a reference object with the same limits.
latlim = R.LatitudeLimits;
lonlim = R.LongitudeLimits;
R2 = georasterref('RasterSize',rasterSize,'Latlim',latlim, ...
 'Lonlim',lonlim);
```


## See Also

georasterref
Introduced in R2011a

# removeCustomBasemap 

Remove custom basemap

## Syntax

removeCustomBasemap(basemapName)

## Description

removeCustomBasemap (basemapName) removes the custom basemap specified by basemapName from the list of available basemaps.

If the custom basemap specified by basemapName has not been previously added using the addCustomBasemap function, the removeCustomBasemap function returns an error.

## Examples

## Remove Custom Basemap

Add a custom basemap to view locations as bubbles on an OpenStreetMap® basemap.

```
name = 'openstreetmap';
url = 'a.tile.openstreetmap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)
```

Use the custom basemap with a geographic bubble chart.

```
lat = [42.3501 42.3515 42.3598 42.3584 42.3529];
lon = [-71.0870 -71.0926 -71.0662 -71.0598 -71.0662];
gb = geobubble(lat,lon,'Basemap','openstreetmap', ...
 'BubbleWidthRange',25,'MapLayout','maximized', ...
 'ZoomLevel',14);
```



Remove the custom basemap.
removeCustomBasemap (name)

## Input Arguments

## basemapName - Name of custom basemap

string scalar | character vector
Name of the custom basemap to remove, specified as a string scalar or character vector. You define the basemap name when you add the basemap using the addCustomBasemap function.

Data Types: string | char

## See Also

geoaxes | geobasemap| geobubble| geodensityplot | geoplot | geoscatter | addCustomBasemap | webmap

Introduced in R2018b

## removeCustomTerrain

Remove custom terrain data

## Syntax

removeCustomTerrain(terrainName)

## Description

removeCustomTerrain(terrainName) removes the custom terrain data specified by the userdefined terrainName. You can use this function to remove terrain data that is no longer needed. The terrain data to be removed must have been previously added using addCustomTerrain.

## Examples

## Display Custom Terrain Using Geographic Globe

Display a line from the surface of Gross Reservoir to a point above South Boulder Peak using custom terrain.

First, add terrain for an area around South Boulder Peak by calling addCustomTerrain and specifying a DTED file. The DTED file is from the SRTM Void Filled data set, available from the US Geological Survey. Name the terrain 'southboulderpeak'.

```
addCustomTerrain('southboulderpeak','n39_w106_3arc_v2.dt1')
```

Create a geographic globe. Specify the terrain by name, using the 'Terrain' argument of the geoglobe function. Preserve the terrain after plotting by calling the hold function. Then, plot the line. Tilt the view by holding Ctrl and dragging.

```
uif = uifigure;
g = geoglobe(uif,'Terrain','southboulderpeak');
hold(g,'on')
lat = [39.95384 39.95];
lon = [-105.29916 -105.3608];
hTerrain = [10 0];
geoplot3(g,lat,lon,hTerrain,'y','HeightReference','Terrain', ...
 'LineWidth',3)
```



Close the geographic globe and remove the custom terrain.
close(uif)
removeCustomTerrain('southboulderpeak')

## Input Arguments

## terrainName - User-defined identifier for terrain data

string scalar | character vector
User-defined identifier for terrain data previously added using addCustomTerrain, specified as a string scalar or a character vector.
Data Types: char | string

## See Also

addCustomTerrain | geoglobe

## Topics

"Access Basemaps and Terrain for Geographic Globe"
Introduced in R2020a

## removeExtraNanSeparators

Clean up NaN separators in polygons and lines

## Syntax

[xdata, ydata] = removeExtraNanSeparators(xdata,ydata)
[xdata, ydata, zdata] = removeExtraNanSeparators(xdata,ydata,zdata)

## Description

[xdata, ydata] = removeExtraNanSeparators(xdata, ydata) removes NaNs from the vectors xdata and ydata, leaving only isolated NaN separators. If present, one or more leading NaNs are removed entirely. If present, a single trailing NaN is preserved. NaNs are removed, but never added, so if the input lacks a trailing NaN , so will the output. xdata and ydata must match in size and have identical NaN locations.
[xdata, ydata, zdata] = removeExtraNanSeparators(xdata,ydata,zdata) removes NaNs from the vectors xdata, ydata, and zdata, leaving only isolated NaN separators and optionally, if consistent with the input, a single trailing NaN .

## Examples

```
xin = [NaN NaN 1:3 NaN 4:5 NaN NaN NaN 6:9 NaN NaN];
yin = xin;
[xout, yout] = removeExtraNanSeparators(xin, yin);
xout
xout =
 1 2 2 3 NaN 4 4 5 NaN 6 % 7 8 8 9 NaN
xin = [NaN 1:3 NaN NaN 4:5 NaN NaN NaN 6:9]'
yin = xin;
zin = xin;
[xout, yout, zout] = removeExtraNanSeparators(xin, yin, zin);
xout
xout =
 1
 2
 3
 NaN
 4
 5
 NaN
 6
 7
 8
 9
```

Introduced in R2006a

## removeToolbarMapButton

Remove map button from toolbar

## Syntax

removeToolbarMapButton(tb)
removeToolbarMapButton(tb,"basemap")

## Description

removeToolbarMapButton(tb) removes all map buttons from the axes toolbar tb.
removeToolbarMapButton(tb,"basemap") remove the basemap picker from the axes toolbar.

## Examples

## Add and Remove Map Buttons from Toolbar

Create a figure by using the uifigure function. Place a geographic axes in the figure.

```
uif = uifigure;
```

gx = geoaxes(uif);

Create a custom axes toolbar. Add all map buttons to the toolbar.

```
tb = axtoolbar(gx,"default");
```

addToolbarMapButton(tb)

Remove all map buttons from the toolbar.

```
removeToolbarMapButton(tb)
```



## Input Arguments

## tb - Axes toolbar

AxesToolbar object | array of AxesToolbar objects
Axes toolbar, specified as an AxesToolbar object or an array of AxesToolbar objects.

## See Also

## Functions

addToolbarMapButton | axtoolbar|geoaxes | geobasemap

## Topics

"Access Basemaps for Geographic Axes and Charts"
Introduced in R2021b

## resizem

(To be removed) Resize regular data grid

Note resizem will be removed in a future release. Use the georesize or imresize function instead. For more information, see "Compatibility Considerations".

## Syntax

```
Zscaled = resizem(Z,scale)
Zscaled = resizem(Z,[numrows numcols])
[Zscaled,Rscaled] = resizem(Z,scale,R)
[Zscaled,Rscaled] = resizem(Z,[numrows numcols],R)
[___] = resizem(___,method)
[___] = resizem(___, method,n)
[____] = resizem(___,h)
```


## Description

Zscaled $=$ resizem( $Z$, scale) returns a regular data grid Zscaled that is scale times the size of the input, $Z$. resizem uses interpolation to resample to a new sample density (cell size). By default, resizem uses nearest neighbor interpolation.

Zscaled = resizem(Z,[numrows numcols]) resizes $Z$ to have numrows rows and numcols columns.
[Zscaled,Rscaled] = resizem(Z,scale,R) and
[Zscaled,Rscaled] = resizem(Z,[numrows numcols],R) resizes a regular data grid that is spatially referenced by R.
[ ___ ] = resizem( ___ , method) specifies alternate interpolation methods.
[___] = resizem(___ , , method, n ) applies a low-pass filter of size n -by- n before bilinear or bicubic interpolation to reduce aliasing.
[__ ] = resizem (__ h ) applies 2-D FIR filter h to the data grid before resizing, for all interpolation methods.

## Examples

## Resize Regular Data Grid

Define a sample data grid.
Z = [1 2; 3 4]
$z=2 \times 2$

1	2
3	4

Double the size of the grid using nearest neighbor interpolation.

```
neargrid = resizem(Z,2)
neargrid = 4×4
\begin{tabular}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2 \\
3 & 3 & 4 & 4 \\
3 & 3 & 4 & 4
\end{tabular}
```

Double the size of the grid using bilinear interpolation.

```
bilingrid = resizem(Z,2,'bilinear')
bilingrid = 4×4
\begin{tabular}{llll}
1.0000 & 1.3333 & 1.6667 & 2.0000 \\
1.6667 & 2.0000 & 2.3333 & 2.6667 \\
2.3333 & 2.6667 & 3.0000 & 3.3333 \\
3.0000 & 3.3333 & 3.6667 & 4.0000
\end{tabular}
```

Resize the grid to have three rows and two columns using bicubic interpolation.
bicubgrid = resizem(bilingrid,[3 2],'bicubic')
bicubgrid $=3 \times 2$

0.7406	1.2994
1.6616	2.3462
1.9718	2.5306

## Input Arguments

Z - Regular data grid
$M$-by- $N$ numeric array
Regular data grid, specified as an $M$-by- $N$ numeric array that may contain $N a N$ values. $Z$ is either a georeferenced data grid, or a regular data grid associated with a geographic reference R.

## scale - Resizing scale factor

positive scalar
Resizing scale factor, specified as a positive scalar. If scale is between 0 and 1 , then the size of Zscaled is smaller than the size of Z. If scale is greater than 1, then the size of Zscaled is larger. For example, if scale is 0.5 , then the number of rows and the number of columns are halved.

## [numrows numcols] - Output grid size

1-by-2 vector of positive integers
Output grid size, specified as a 1-by-2 vector of positive integers.

## R - Geographic reference

geographic raster reference object | vector | matrix
Geographic reference, specified as one of the following. For more information about referencing vectors and matrices, see "Georeferenced Raster Data".

Type	Description
Geographic raster reference   object	GeographicCellsReference geographic raster reference   object that relates the subscripts of Z to geographic coordinates.   The Rastersize property must be consistent with the size of   the data grid, size(Z). The RasterInterpretation must be   'cells '.
Vector	1-by-3 numeric vector with elements:   [cells/degree northern_latitude_limit western_longitude_limit]
Note When R is a referencing vector, then the argument [nrows   ncols] is not supported and the resizing factor scale must be   a scalar.	
Matrix	3-by-2 numeric matrix that transforms raster row and column   indices to or from geographic coordinates according to:   [lon lat] = [ row col 1] * R   R defines a (non-rotational, non-skewed) relationship in which   each column of the data grid falls along a meridian and each row   falls along a parallel. Nearest-neighbor interpolation is used by   default. NaN is returned for points outside the grid limits or for   which lat or lon contain NaN. All angles are in units of degrees.

Interpolation method, specified as one of the following.

Method	Description
'nearest'	Nearest neighbor interpolation
'bilinear'	Bilinear interpolation
'bicubic'	Bicubic interpolation

Note If the grid size is being reduced (that is, when scale is less than 1 or [numrows numcols] is less than the size of the input grid) and method is 'bilinear' or 'bicubic', then resizem applies a low-pass filter before interpolation to reduce aliasing. The default filter size is 11 -by-11. You can specify a different length for the default filter using the n argument. You can specify a nondefault filter using the h argument.

## Data Types: char | string

## n - Low-pass filter size

11 (default) | nonnegative integer
Low-pass filter size, specified as a nonnegative integer. The filter size is $n$-by- $n$. If $n$ is 0 , or if method is 'nearest', then resizem does not perform low-pass filtering.

## h - 2-D FIR filter

numeric matrix
2-D FIR filter, specified as a numeric matrix. You can define a FIR filter using Image Processing Toolbox functions such as ftrans2, fwind1, fwind2, or fsamp2.

## Output Arguments

## Zscaled - Rescaled data grid

numeric array
Rescaled data grid, returned as a numeric array.

## Rscaled - Rescaled geographic reference

geographic raster reference object | vector | matrix
Rescaled geographic reference, returned as a geographic raster reference object, numeric vector, or numeric matrix, consistent with the format of R .

## Compatibility Considerations

## resizem will be removed

Warns starting in R2022a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the resizem function. Use a geographic reference object and the georesize function instead. If your data is not geographically referenced, then use the imresize function instead. Reference objects have several advantages over referencing vectors and matrices.

- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of geographic rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of geographic rasters associated with reference objects using the georesize function.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, replace uses of the resizem function with the georesize function. This table shows typical uses of the resizem function and how to update your code to use the georesize function instead. Note that the default method of interpolation for the georesize function is 'cubic' instead of 'nearest'.

Will Be Removed	Recommended
$[B, R B]=\operatorname{resizem}(A, s c a l e, R)$;	[ $\mathrm{B}, \mathrm{RB}]=$ georesize(A,R,scale, 'nearest');
[ $\mathrm{B}, \mathrm{RB}$ ] = resizem( $\mathrm{A},[$ numrows numcols], R$)$;	$\begin{aligned} & \hline \text { latscale = numrows / R.RasterSize(1); } \\ & \text { lonscale = numcols / R.RasterSize(2); } \\ & {[B, R B]=\text { georesize(A,R,latscale,lonscale, }} \end{aligned}$
[ $\mathrm{B}, \mathrm{RB}$ ] = resizem(A,scale, R,method);	[B,RB] = georesize(A,R,scale,method);
$[B, R B]=\operatorname{resizem}(\mathrm{A},[$ numrows numcols],R,met	$\begin{aligned} & \text { Thadtscale = numrows / R.RasterSize(1); } \\ & \text { lonscale = numcols / R.RasterSize(2); } \\ & {[B, R B]=\text { georesize(A,R,latscale,lonscale,me }} \end{aligned}$

If your data is not geographically referenced, then use the imresize function instead. This table shows typical uses of the resizem function without reference object information and how to update your code to use the imresize function instead.

Will Be Removed	Recommended
$B=\operatorname{resizem}(A$, scale,R);	$B=$ imresize $(A$, scale $) ;$
$B=\operatorname{resizem}(A,[$ numrows numcols],R);	$B=$ imresize(A,[numrows numcols]);
$B=\operatorname{resizem(A,scale,R,method);~}$	$B=$ imresize(A,scale,method);
$B=\operatorname{resizem(A,[numrows~numcols],R,method)~} ;$	$B=$ imresize(A,[numrows numcols],method);

## See Also

filter2|georesize|imresize

## Introduced before R2006a

## restack

(Removed) Restack objects within map axes

Note The restack function has been removed. Use the uistack function instead.

## Syntax

restack(h,position)

## Description

restack( h , position) changes the stacking position of the object h within the axes. h can be a handle, a vector of handles to graphics objects, or a name recognized by handlem. The position argument can have any of the following values: 'top', 'bottom', 'bot', 'up', or 'down'.

## See Also

uistack
Introduced before R2006a

## rhxrh

Intersection points for pairs of rhumb lines

## Syntax

```
[newlat,newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2)
```

[newlat, newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units)

## Description

[newlat, newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2) returns in newlat and newlon the location of the intersection point for each pair of rhumb lines input in rhumb line notation. For example, the first line in the pair passes through the point (lat1,lon1) and has a constant azimuth of az1. When the two rhumb lines are identical or do not intersect (conditions that are not, in general, apparent by inspection), two NaNs are returned instead and a warning is displayed. The inputs must be column vectors.
[newlat,newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units) specifies the units used, where units is any valid units. The default units are 'degrees'.

For any pair of rhumb lines, there are three possible intersection conditions: the lines are identical, they intersect once, or they do not intersect at all (except at the poles, where all nonequatorial rhumb lines meet-this is not considered an intersection). rhxrh does not allow multiple rhumb line intersections, although it is possible to construct cases in which such a condition occurs. See the following discussion of Limitations on page 1-1363.

Rhumb line notation consists of a point on the line and the constant azimuth of the line.

## Examples

## Calculate Point of Intersection of Two Paths

Given a starting point at ( $10^{\circ} \mathrm{N}, 56^{\circ} \mathrm{W}$ ), a plane maintains a constant heading of $35^{\circ}$. Another plane starts at $\left(0^{\circ}, 10^{\circ} \mathrm{W}\right)$ and proceeds at a constant heading of $310^{\circ}\left(-50^{\circ}\right)$. Where would their two paths cross each other?

## Calculate Point of Intersection

Use the rhxrh function to calculate the point of intersection of two paths.

```
[newlat,newlon] = rhxrh(10,-56,35,0,-10,310)
newlat = 26.9774
newlon = -43.4088
```


## Limitations

Rhumb lines are specifically helpful in navigation because they represent lines of constant heading, whereas great circles have, in general, continuously changing heading. In fact, the Mercator
projection was originally designed so that rhumb lines plot as straight lines, which facilitates both manual plotting with a straightedge and numerical calculations using a Cartesian planar representation. When a rhumb line proceeds off the left or right edge of this representation at some latitude, it reappears on the other edge at the same latitude and continues on the same slope. For rhumb lines where this occurs-for example, one with a heading of 85 - it is easy to imagine another rhumb line, say one with a heading of 0 o, repeatedly intersecting the first. The real-world uses of rhumb lines make this merely an intellectual exercise, however, for in practice it is always clear which crossing line segment is relevant. The function rhxrh returns at most one intersection, selecting in each case that line segment containing the input starting point for its computation.

## See Also

gcxgc|gcxsc|scxsc|crossfix|polyxpoly|navfix

Introduced before R2006a

## rmfield

Remove dynamic property from geographic or planar vector

## Syntax

```
vout = rmfield(vin,name)
vout = rmfield(vin,names)
```


## Description

vout = rmfield(vin, name) removes the dynamic property specified by name from the geographic or planar vector vin.
vout = rmfield(vin, names) removes all dynamic properties specified by names from vin.

Note rmfield cannot remove Metadata, and Geometry properties from any geographic or planar vector. Further, it cannot remove Latitude and Longitude properties from geopoint and geoshape objects, nor X and Y properties from mappoint and mapshape objects.

## Examples

## Remove a Single Property from a Geopoint Vector

Create a geopoint vector with dynamic properties.

```
gp = geopoint([42 42.2],[-110.5 -110.7],'Temperature',[65.6 63.2],'Humidity',[44 41])
gp =
 2x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 Latitude: [42 42.2000]
 Longitude: [-110.5000 -110.7000]
 Temperature: [65.6000 63.2000]
 Humidity: [44 41]
```

Remove only the Humidity property from the geopoint vector.

```
gp2 = rmfield(gp,'Humidity')
gp2 =
 2x1 geopoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
```

```
Feature properties:
 Latitude: [42 42.2000]
 Longitude: [-110.5000 -110.7000]
 Temperature: [65.6000 63.2000]
```


## Remove Multiple Properties from a Mapshape Vector

Create a mapshape vector.

```
ms = mapshape(shaperead('tsunamis.shp'))
ms =
 162x1 mapshape vector with properties:
 Collection properties:
 Geometry: 'point
 Metadata: [1x1 struct]
 Vertex properties:
 (162 features concatenated with 161 delimiters)
 X: [128.3000 NaN -156 NaN 157.9500 NaN 143.8500 NaN -155 NaN]
 Y: [-3.8000 NaN 19.5000 NaN -9.0200 NaN 42.1500 NaN 19.1000 NaN ...]
 Feature properties:
 Year: [1950 1951 1951 1952 1952 1952 1952 1953 1953 1953 1953 1954 ...]
 Month: [10 8 12 3 3 5 11 3 6 9 11 6 10 4 11 3 6 7 1 4 7 11 11 5 8 8 ...]
 Day: [8 21 22 4 17 6 4 18 27 14 25 26 NaN 19 2 9 22 28 19 22 10 6 12 ...]
 Hour: [3 10 NaN 1 3 NaN 16 NaN NaN 0 17 NaN NaN 20 NaN 14 23 8 14]
 Minute: [23 57 NaN 22 58 NaN 58 NaN NaN 26 48 NaN NaN 24 NaN 22 50]
 Second: [NaN NaN NaN 41 NaN NaN NaN NaN NaN 36 NaN NaN NaN NaN NaN ...]
 Val Code: [2 4 2 4 4 1 4 3 3 4 4 1 2 4 3 4 3 4 4 2 4 4 2 4 4 4 4 4 4 ...]
 Validity: {1x162 cell}
 Cause Code: [1 1 6 1 1 9 1 1 6 3 1 9 0 1 1 1 1 1 1 1 3 1 1 1 0 3 1 1 ...]
 Cause: {1x162 cell}
 Eq_Mag: [7.6000 6.9000 NaN 8.1000 4.5000 NaN 9 5.8000 NaN 6.8000 ...]
 Country: {1x162 cell}
 Location: {1x162 cell}
 Max_Height: [2.8000 3.6000 6 6.5000 1 1.5200 18 1.5000 1.4000 3 3 3 ...]
 Iida Mag: [1.5000 1.8000 2.6000 2.7000 NaN NaN 4.2000 0.6000 0.5000 ...]
 Intensity: [1.5000 NaN NaN 2 NaN NaN 4 NaN 1 1.5000 1.5000 NaN NaN ...]
 Num Deaths: [NaN NaN NaN 33 NaN NaN 2236 NaN NaN NaN NaN 7 NaN 3 NaN ...]
 Desc_Deaths: [NaN NaN NaN 1 NaN NaN 3 NaN NaN NaN NaN 1 NaN 1 NaN]
```

Attempt to remove multiple properties from the mapshape vector.

```
s2 = rmfield(ms,{'Geometry','Second','Minute','intensity'})
s2 =
 162x1 mapshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Vertex properties:
 (162 features concatenated with 161 delimiters)
 X: [128.3000 NaN -156 NaN 157.9500 NaN 143.8500 NaN -155 NaN ...]
```

```
 Y: [-3.8000 NaN 19.5000 NaN -9.0200 NaN 42.1500 NaN 19.1000 NaN ...]
Feature properties:
 Year: [1950 1951 1951 1952 1952 1952 1952 1953 1953 1953 1953 1954]
 Month: [10 8 12 3 3 5 11 3 6 9 11 6 10 4 11 3 6 7 1 4 7 11 11 5 8 8 ...]
 Day: [8 21 22 4 17 6 4 18 27 14 25 26 NaN 19 2 9 22 28 19 22 10 6 12 ...]
 Hour: [3 10 NaN 1 3 NaN 16 NaN NaN 0 17 NaN NaN 20 NaN 14 23 8 14 ...]
 Val_Code: [2 4 2 4 4 1 4 3 3 4 4 1 2 4 3 4 3 4 4 2 4 4 2 4 4 4 4 4 4 ...]
 Validity: {1x162 cell}
 Cause_Code: [1 1 6 1 1 9 1 1 6 3 1 9 0 1 1 1 1 1 1 1 3 1 1 1 0 3 1 1 ...]
 C}\mathrm{ Cause: {1x162 cell}
 Eq_Mag: [7.6000 6.9000 NaN 8.1000 4.5000 NaN 9 5.8000 NaN 6.8000 ...]
 Country: {1x162 cell}
 Location: {1x162 cell}
 Max_Height: [2.8000 3.6000 6 6.5000 1 1.5200 18 1.5000 1.4000 3 3 3 ...]
 Iida_Mag: [1.5000 1.8000 2.6000 2.7000 NaN NaN 4.2000 0.6000 0.5000 ...]
 Intensity: [1.5000 NaN NaN 2 NaN NaN 4 NaN 1 1.5000 1.5000 NaN NaN ...]
 Num_Deaths: [NaN NaN NaN 33 NaN NaN 2236 NaN NaN NaN NaN 7 NaN 3 NaN ...]
 Desc_Deaths: [NaN NaN NaN 1 NaN NaN 3 NaN NaN NaN NaN 1 NaN 1 NaN ...]
```

The Second and Minute properties have been removed successfully. Note that the Geometry property still exists because it cannot be removed. Also, Intensity has not been removed because property names are case-sensitive.

## Input Arguments

## vin - Input geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object
Input geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## name - Name of single property to remove

character vector
Name of a single property to remove, specified as a character vector. The property in name is case sensitive.

## names - Name of multiple properties to remove

cell array of character vectors
Name of multiple properties to remove, specified as a cell array of character vectors. The properties in names are case-sensitive.

## Output Arguments

## vout - Output geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object
Output geographic or planar vector, returned as a geopoint, geoshape, mappoint, or mapshape object. The object type of vout matches the object type of vin.

## See Also

append|isfield|rmprop

Introduced in R2012a

## rmprop

Remove property from geographic or planar vector

## Syntax

```
vout = rmprop(vin,name)
vout = rmprop(vin,names)
```


## Description

vout $=$ rmprop(vin, name) removes the property specified by name from the geographic or planar vector vin.
vout $=$ rmprop(vin, names) removes all properties specified by names from vin.

Note rmprop cannot remove Metadata, and Geometry properties from any geographic or planar vector. Further, it cannot remove Latitude and Longitude properties from geopoint and geoshape objects, nor X and Y properties from mappoint and mapshape objects.

## Examples

## Remove Single Property from a Geoshape Vector

Create a geoshape vector with dynamic properties.

```
gs = geoshape(shaperead('worldcities.shp', 'UseGeoCoords', true))
gs =
 318x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Vertex properties:
 (318 features concatenated with 317 delimiters)
 Latitude: [5.2985 NaN 24.6525 NaN 5.6106 NaN 37.0613 NaN 9.0235 NaN ...]
 Longitude: [-3.9509 NaN 54.7589 NaN -0.2121 NaN 35.3894 NaN 38.7575 ...]
 Feature properties:
 Name: {1x318 cell}
```

Remove only the Name property from the geoshape vector.

```
gs2 = rmprop(gs,'Name')
gs2 =
 318x1 geoshape vector with properties:
 Collection properties:
 Geometry: 'point'
```

```
 Metadata: [1x1 struct]
Vertex properties:
 (318 features concatenated with 317 delimiters)
 Latitude: [5.2985 NaN 24.6525 NaN 5.6106 NaN 37.0613 NaN 9.0235 NaN ...]
 Longitude: [-3.9509 NaN 54.7589 NaN -0.2121 NaN 35.3894 NaN 38.7575 ...]
```


## Remove Multiple Properties from a Mappoint Vector

Create a mappoint vector.

```
mp = mappoint(-33.961,18.484,'Name','Cape Town','Temperature',64)
mp =
 lx1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 X: -33.9610
 Y: 18.4840
 Name: 'Cape Town'
 Temperature: 64
```

Attempt to remove multiple properties from the mappoint vector.

```
s2 = rmfield(mp,{'X','Name','temperature'})
s2 =
 1x1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 X: -33.9610
 Y: 18.4840
 Temperature: 64
```

The Name property has been removed successfully. Note that the X property still exists because it cannot be removed. Also, the Temperature property still exists because property names are casesensitive.

## Input Arguments

## vin - Input geographic or planar vector

geopoint, geoshape, mappoint, or mapshape object
Input geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## name - Name of single property to remove

character vector
Name of a single property to remove, specified as a character vector. The character vector is case sensitive.

## names - Name of multiple properties to remove

cell array of character vectors
Name of multiple properties to remove, specified as a cell array of character vectors. The character vectors are case-sensitive.

## Output Arguments

vout - Output geographic or planar vector<br>geopoint, geoshape, mappoint, or mapshape object

Output geographic or planar vector, returned as a geopoint, geoshape, mappoint, or mapshape object. The object type of vout matches the object type of vin.

See Also<br>append |isprop|rmfield<br>Introduced in R2012a

## rootlayr

(Removed) Construct cell array of workspace variables for mlayers tool

Note The rootlayr function has been removed.

## Syntax

rootlayr

## Description

rootlayr allows the mlayers tool to be used with workspace variables. It constructs a cell array that contains all the structure variables in the current workspace. This cell array is returned in the variable ans, which can then be an input to mlayers. If there is an existing variable named ans, it is overwritten.

The recommended calling procedure is rootlayr;mlayers(ans);

## Examples

rootlayr creates a cell array named ans, consisting of the three structure variables in the following workspace.

```
whos
 Name Size Bytes Class
 borders 1x1 38390 struct array
 lats 2345x1 18760 double array
 lons 2345x1 18760 double array
 nation 1x1 70224 struct array
 states 1x51 254970 struct array
rootlayr
ans
 ans =
 [1x1 struct] 'borders'
 [1x1 struct] 'nation'
 [1\times51 struct] 'states'
```

The function mlayers(ans) can now be used to activate the mlayers tool for the structures contained in ans.

## See Also

Introduced before R2006a

## rotatem

Transform vector map data to new origin and orientation

## Syntax

[lat1,lon1] = rotatem(lat,lon,origin,'forward')
[lat1,lon1] = rotatem(lat,lon,origin,'inverse')
[lat1,lon1] = rotatem(lat,lon,origin,'forward', units)
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units)

## Description

[lat1,lon1] = rotatem(lat,lon,origin,'forward') transforms latitude and longitude data (lat and lon) to their new coordinates (lat1 and lon1) in a coordinate system resulting from Euler angle rotations as specified by origin. The input origin is a three- (or two-) element vector having the form [latitude longitude orientation]. The latitude and longitude are the coordinates of the point in the original system, which is the center of the output system. The orientation is the azimuth from the new origin point to the original North Pole in the new system. If origin has only two elements, the orientation is assumed to be 0 . This origin vector might be the output of putpole or newpole.
[lat1,lon1] = rotatem(lat,lon,origin,'inverse') transforms latitude and longitude data (lat and lon) in a coordinate system that has been transformed by Euler angle rotations specified by origin to their coordinates (lat1 and lon1) in the coordinate system from which they were originally transformed. In a sense, this undoes the ' forward ' process. Be warned, however, that if data is rotated forward and then inverted, the final data might not be identical to the original. This is because of roundoff and data collapse at the original and intermediate singularities (the poles).
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units) and [lat1,lon1] = rotatem(lat,lon, origin, 'forward', units) specify the angle units of the data, where units is any recognized angle unit. The default is 'radians '. Note that this default is different from that of most functions.

The rotatem function transforms vector map data to a new coordinate system.
An analytical use of the new data can be realized in conjunction with the newpole function. If a selected point is made the north pole of the new system, then when new vector data is created with rotatem, the distance of every data point from this new north pole is its new colatitude ( 900 minus latitude). The absolute difference in the great circle azimuths between every pair of points from their new pole is the same as the difference in their new longitudes.

## Examples

What are the coordinates of Rio de Janeiro ( $23-5,43$ W) in a coordinate system in which New York ( $41^{\circ} \mathrm{N}, 74^{\circ} \mathrm{W}$ ) is made the North Pole? Use the newpole function to get the origin vector associated with putting New York at the pole:

```
nylat = 41; nylon = -74;
riolat = -23; riolon = -43;
```

```
origin = newpole(nylat,nylon);
[riolat1,riolon1] = rotatem(riolat,riolon,origin,...
 forward','degrees')
riolat1 =
 19.8247
riolon1 =
 -149.7375
```

What does this mean? For one thing, the colatitude of Rio in this new system is its distance from New York. Compare the distance between the original points and the new colatitude:

```
dist = distance(nylat,nylon,riolat,riolon)
dist =
 70.1753
90-riolat1
ans =
 70.1753
```


## See Also

neworig|newpole|org2pol|putpole

## Introduced before R2006a

## rotatetext

Rotate text to projected graticule

## Syntax

```
rotatetext
rotatetext(objects)
rotatetext(objects,'inverse')
```


## Description

rotatetext rotates displayed text objects to account for the curvature of the graticule. The objects are selected interactively from a graphical user interface.
rotatetext (objects) rotates the selected objects. objects can be a name recognized by handlem or a vector of handles to displayed text objects.
rotatetext(objects,'inverse') removes the rotation added by an earlier use of rotatetext. If omitted, ' forward' is assumed.

## Examples

Add text to a map and rotate the text to the graticule.

```
figure
worldmap('south america')
geoshow('landareas.shp','facecolor','yellow')
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Santiago = strcmp('Santiago',{cities(:).Name});
h=textm(cities(Santiago).Lat, cities(Santiago).Lon, ...
 'Santiago');
rotatetext(h)
```



## Tips

You can rotate meridian and parallel labels automatically by setting the map axes LabelRotation property to 'on'.

## See Also

vfwdtran | vinvtran
Introduced before R2006a

## roundn

(Not recommended) Round to multiple of $10^{\mathrm{n}}$

Note The roundn function is not recommended. Use the round function instead. For more information, see "Compatibility Considerations".

## Syntax

$Y=\operatorname{roundn}(X, n)$

## Description

$Y=\operatorname{roundn}(X, n)$ rounds each element of $X$ to the nearest multiple of $10^{n}$.

## Examples

## Round to Nearest Hundredth

Round pi to the nearest hundredth.
$Y=\operatorname{roundn}(p i,-2)$
$Y=$
3.1400

## Input Arguments

X - Input array
scalar | vector | matrix | multidimensional array
Input array, specified as a scalar, vector, matrix, or multidimensional array. For complex values of X , the function rounds the real and imaginary parts independently.
Data Types: single | double
Complex Number Support: Yes
n - Exponent of 10
scalar integer
Exponent of 10, specified as a scalar integer.

## Compatibility Considerations

## roundn is not recommended

Not recommended starting in R2014b

The roundn function is not recommended. Use the round function instead. Note that when you update your code, you must reverse the sign of $n$.

Not Recommended	Recommended
$Y=\operatorname{roundn}(X, n)$	$Y=\operatorname{round}(X,-n)$

## See Also

round

## Introduced before R2006a

## RPCCoefficientTag

Rational Polynomial Coefficients Tag

## Description

RPCCoefficientTag contains the Rational Polynomial Coefficients (RPC) TIFF tag, which describes the relationship of latitude, longitude, and height locations with row and column locations in an image.

The RPCCoefficientTag object contains properties with names and permissible values corresponding to the tag elements listed in the technical note RPCs in GeoTIFF technical note, viewable at http://geotiff.maptools.org/rpc_prop.html. RPCCoefficientTag is used by the functions geotiffinfo and geotiffwrite.

## Creation

You can use the map.geotiff.RPCCoefficientTag function to create an RPCCoefficientTag object.

## Properties

## BiasErrorInMeters - Root mean square bias error in meters per horizontal axis

- 1 (default) | nonnegative scalar

Root mean square bias error in meters per horizontal axis, specified as the number - 1 or a nonnegative scalar. The value is -1 only if BiasErrorInMeters is not specified

Data Types: double

## RandomErrorInMeters - Root mean square random error in meters per horizontal axis

- 1 (default) | nonnegative scalar

Root mean square random error in meters, specified as the number - 1 or a nonnegative scalar. The value is - 1 only if RandomErrorInMeters is not specified.

## Data Types: double

## LineOffset - Line offset in pixels

0 (default) | nonnegative scalar
Line offset in pixels, specified as a nonnegative scalar, with a value of 0 by default.
Data Types: double

## SampleOffset - Sample offset in pixels

0 (default) | nonnegative scalar
Sample offset in pixels, specified as a nonnegative scalar, with a value of 0 by default.
Data Types: double

## GeodeticLatitudeOffset - Geodetic latitude offset in degrees

0 (default) | numeric scalar
Geodetic latitude offset in degrees, specified as a numeric scalar. The value can range from -90<= value <= 90.
Data Types: double
GeodeticLongitudeOffset - Geodetic longitude offset in degrees
0 (default) | numeric scalar
Geodetic longitude offset in degrees, specified as a numeric scalar. The value can range from - 180
<= value <= 180.
Data Types: double

## GeodeticHeightOffset - Geodetic height offset in meters

0 (default) | numeric scalar
Geodetic height offset in meters, specified as a numeric scalar.
Data Types: double

## LineScale - Line scale factor in pixels

1 (default) | positive scalar
Line scale factor in pixels, specified as a positive scalar.
Data Types: double

## SampleScale - Sample scale factor in pixels

1 (default) | positive scalar
Sample scale factor in pixels, specified as a positive scalar.
Data Types: double
GeodeticLatitudeScale - Geodetic latitude scale in degrees
1 (default) | positive scalar
Geodetic latitude scale in degrees, specified as a positive scalar in the range $(0,90]$.
Data Types: double

## GeodeticLongitudeScale - Geodetic longitude scale in degrees

1 (default) | positive scalar
Geodetic longitude scale in degrees, specified as positive scalar in the range ( 0,180 ].
Data Types: double
GeodeticHeightScale - Geodetic height scale factor in meters
1 (default) | positive scalar
Geodetic height scale factor in meters, specified as a positive scalar.
Data Types: double

## LineNumeratorCoefficients - Coefficients for the polynomial in the numerator of the $r(n)$ equation

20-element row vector of zeros (default) | 20-element row vector
Coefficients for the polynomial in the numerator of the $r(n)$ equation, specified as a 20 -element row vector of class double.

Data Types: double
LineDenominatorCoefficients - Coefficients for the polynomial in the denominator of the $r(n)$ equation
20 -element row vector of zeros (default) | 20 -element row vector
Coefficients for the polynomial in the denominator of the $r(n)$ equation, specified as a 20 -element row vector of class double.

Data Types: double

## SampleNumeratorCoefficents - Coefficients for the polynomial in the numerator of the $c(n)$ equation <br> 20 -element row vector of zeros (default) | 20 -element row vector

Coefficients for the polynomial in the numerator of the $c(n)$ equation, specified as a 20 -element row vector of class double.

Data Types: double
SampleDenominatorCoefficients - Coefficients for the polynomial in the denominator of the $c(n)$ equation
20 -element row vector of zeros (default) | 20 -element row vector
Coefficients for the polynomial in the denominator of the $c(n)$ equation, specified as a 20 -element row vector of class double.

Data Types: double

## Methods

double Convert TIFF tag property values to row vector of doubles

See Also<br>geotiffinfo|geotiffwrite|Tiff<br>Introduced in R2015b

## rsphere

Radii of auxiliary spheres

## Syntax

r = rsphere('biaxial',ellipsoid)
$r=r s p h e r e(' b i a x i a l ', e l l i p s o i d, m e t h o d)$
$r=r s p h e r e(' t r i a x i a l ', e l l i p s o i d)$
$r=r s p h e r e(' t r i a x i a l ', e l l i p s o i d, m e t h o d)$
$r=r s p h e r e(' e q a v o l ', e l l i p s o i d)$
$r=r s p h e r e(' a u t h a l i c ', e l l i p s o i d)$
$r=r s p h e r e(' r e c t i f y i n g ', e l l i p s o i d)$
$r=r s p h e r e(' c u r v e ', e l l i p s o i d, l a t)$
$r=$ rsphere('curve',ellipsoid,lat,method)
r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid)
$r=r s p h e r e(' c u r v e ', ~ . . ., ~ a n g l e U n i t s) ~$
$r=r s p h e r e(' e u l e r ', \ldots$, angleUnits)

## Description

$r=r s p h e r e(' b i a x i a l ', e l l i p s o i d)$ computes the arithmetic mean i.e., ( $a+b$ )/2 where a and $b$ are the semimajor and semiminor axes of the specified ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity].
$r=r s p h e r e(' b i a x i a l ', e l l i p s o i d, m e t h o d)$ computes the arithmetic mean if method is 'mean' and the geometric mean, sqrt( $a * b$ ), if method is 'norm'.
$r=r s p h e r e(' t r i a x i a l ', e l l i p s o i d)$ computes the triaxial arithmetic mean of the semi-major axes, $a$, and semi-minor axes, $b$ of the ellipsoid, ( $2 * a+b$ )/3.
$r=r s p h e r e(' t r i a x i a l '$ 'ellipsoid, method) computes the arithmetic mean if method is 'mean' and the triaxial geometric mean, ( $\left.a^{\wedge} 2^{*} b\right)^{\wedge}(1 / 3)$, if method is 'norm'.
$r=r s p h e r e(' e q a v o l ', e l l i p s o i d)$ returns the radius of a sphere with a volume equal to that of the ellipsoid.
$r=r s p h e r e(' a u t h a l i c '$, ellipsoid) returns the radius of a sphere with a surface area equal to that of the ellipsoid.
$r=r s p h e r e(' r e c t i f y i n g ', e l l i p s o i d)$ returns the radius of a sphere with meridional distances equal to those of the ellipsoid.
$r=r s p h e r e(' c u r v e ', e l l i p s o i d, l a t)$ computes the arithmetic mean of the transverse and meridional radii of curvature at the latitude, lat. lat is in degrees.
$r=r s p h e r e(' c u r v e ', e l l i p s o i d, l a t$, method) computes an arithmetic mean if method is 'mean' and a geometric mean if method is 'norm'.
$r=r s p h e r e(' e u l e r ', l a t 1, l o n 1, l a t 2, l o n 2, e l l i p s o i d)$ computes the Euler radius of curvature at the midpoint of the geodesic arc defined by the endpoints (lat1, lon1) and (lat2,lon2). lat1, lon1, lat2, and lon2 are in degrees.
$r=r s p h e r e(' c u r v e ', ~ . . ., ~ a n g l e U n i t s) ~ a n d r=r s p h e r e(' e u l e r ', . .$, angleUnits) where angleUnits specifies the units of the latitude and longitude inputs as either 'degrees' or 'radians'.

## Examples

Different criteria result in different spheres:

```
r = rsphere('biaxial',referenceEllipsoid('earth','km'))
r =
 6.3674e+03
r = rsphere('triaxial',referenceEllipsoid('earth','km'))
r =
 6.3710e+03
r = rsphere('curve',referenceEllipsoid('earth','km'))
r =
 6.3781e+03
```


## See Also

rcurve

Introduced before R2006a

## satbath

(To be removed) Read 2-minute terrain/bathymetry from Smith and Sandwell

Note satbath will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[latgrat,longrat,z] = satbath
[latgrat,longrat,z] = satbath(scalefactor)
[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim)
[latgrat,longrat, z] = satbath(scalefactor,latlim,lonlim,gsize)

## Description

[latgrat,longrat, z] = satbath reads the global topography file for the entire world (topo_8.2.img), returning every $50^{\text {th }}$ point. The result is returned as a geolocated data grid. If you use a different version of the global topography file, you need to rename it to "topo_8.2.img". If the file is not found on the MATLAB path, a dialog opens to request the file.
[latgrat,longrat,z] = satbath(scalefactor) returns the data for the entire world, subsampled by the integer scalefactor. A scalefactor of 10 returns every 10 th point. The matrix at full resolution has 6336 by 10800 points.
[latgrat,longrat, z] = satbath(scalefactor,latlim,lonlim) returns data for the specified region. The returned data extends slightly beyond the requested area. If omitted, the entire area covered by the data file is returned. The limits are two-element vectors in units of degrees, with latlim in the range [-90 90] and lonlim in the range [-180 180].
[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim,gsize) controls the size of the graticule matrices. gsize is a two-element vector containing the number of rows and columns desired. If omitted, a graticule the size of the data grid is returned.

## Background

This is a global bathymetric model derived from ship soundings and satellite altimetry by W.H.F. Smith and D.T. Sandwell. The model was developed by iteratively adjusting gravity anomaly data from Geosat and ERS-1 against historical track line soundings. This technique takes advantage of the fact that gravity mirrors the large variations in the ocean floor as small variations in the height of the ocean's surface. The computational procedure uses the ship track line data to calibrate the scaling between the observed surface undulations and the inferred bathymetry. Land elevations are reducedresolution versions of GTOPO30 data.

## Examples

Read the data for the Falklands Islands (Islas Malvinas) at full resolution.

```
[latgrat,longrat,mat] = satbath(1,[-55 -50],[-65 -55]);
```

whos

Name	Size	Bytes	Class
latgrat	$247 \times 301$	594776	double array
longrat	$247 \times 301$	594776	double array
mat	$247 \times 301$	594776	double array

## Tips

Land elevations are given in meters above mean sea level. The data is stored in a Mercator projection grid. As a result, spatial resolution varies with latitude. The grid spacing is 2 minutes (about 4
kilometers) at the equator.
This data is available over the Internet, but subject to copyright. The data file is binary, and should be transferred with no line-ending conversion or byte swapping. This function carries out any byte swapping that might be required. The data requires about 133 MB uncompressed.

The data and documentation are available over the Internet via http and anonymous ftp. Download the latest version of file topo_x.2.img, where $x$ is the version number, and rename it topo_8.w.img for compatibility with the satbath function.
satbath returns a geolocated data grid rather than a regular data grid and a referencing vector or matrix. This is because the data is in a Mercator projection, with columns evenly spaced in longitude, but with decreasing spacing for rows at higher latitudes. Referencing vectors and matrices assume that the number of cells per degrees of latitude and longitude are both constant across a data grid.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

## Compatibility Considerations

## satbath will be removed

Warns starting in R2021b
Some raster reading functions that return latitude-longitude grids will be removed, including satbath. Instead, use readgeoraster, which returns a map raster reference object. Reference objects have several advantages over latitude-longitude grids.

- Unlike latitude-longitude grids, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see MapCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the mapresize function.

This table shows some typical usages of satbath and how to update your code to use readgeoraster instead. Unlike satbath, which requires a single file with extension .img, the readgeoraster function requires both a data file with extension .ers and a supporting file with extension .img. When you call readgeoraster, specify the file with extension .ers.

Will Be Removed	Recommended
[latgrat,longrat,z] = satbath;	[Z,R] = readgeoraster(filename);
[latgrat,longrat,z] = satbath(scalefactor);	$\begin{aligned} & {[Z, R]=\text { readgeoraster(filename); }} \\ & {[Z, R]=\text { georesize(Z,R,1/scalefactor) }} \end{aligned}$
[latgrat, longrat,z] = satbath(scalefactor,	$\begin{aligned} & \text { dZl, RN] , もomeardgeoraster(filename); } \\ & {[Z, R]=\text { geocrop }(Z, R, \text { latlim, lonlim); }} \\ & {[Z, R]=\text { georesize(Z,R,1/scalefactor); }} \end{aligned}$

The readgeoraster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use $[Z, R]=$ readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, you can replace them with NaN values using the standardizeMissing function.
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);

## See Also

egm96geoid | readgeoraster|georasterinfo

Introduced before R2006a

## scaleruler

Add or modify graphic scale on map axes

## Syntax

```
scaleruler
scaleruler on
scaleruler off
scaleruler(property,value,...)
h = scaleruler(...)
```


## Description

scaleruler toggles the display of a graphic scale. If no graphic scale is currently displayed in the current map axes, one is added. If any graphic scales are currently displayed, they are removed.
scaleruler on adds a graphic scale to the current map axes. Multiple graphic scales can be added to the same map axes.
scaleruler off removes any currently displayed graphic scales.
scaleruler(property, value,...) adds a graphic scale and sets the properties to the values specified. You can display a list of graphic scale properties using the command setm(h), where $h$ is the handle to a graphic scale object. The current values for a displayed graphic scale object can be retrieved using getm. The properties of a displayed graphic scale object can be modified using setm.
$\mathrm{h}=\mathrm{scaleruler}(\ldots$ ) returns the hggroup handle to the graphic scale object.

## Background

Cartographers often add graphic elements to the map to indicate its scale. Perhaps the most commonly used is the graphic scale, a ruler-like object that shows distances on the ground at the correct size for the projection.

## Examples

## Add Graphic Scale to Map Axes

Create a map display of Florida.

```
usamap('Florida')
geoshow('usastatelo.shp','FaceColor','yellow')
```

Add a graphic scale. Change the location of the scale by setting the XLoc and YLoc properties. Specify tick locations using the MajorTick property.

```
scaleruler on
setm(handlem('scaleruler1'), ...
```

'XLoc',-3.21e5,'YLoc',2.81e6, ...
'MajorTick',0:200:600)
Add a second graphics scale that shows distance in nautical miles. Change the direction of the tick marks and text by setting the TickDir property.

```
scaleruler('units','nm')
setm(handlem('scaleruler2'), ...
 'XLoc',-3.2e5, ...
 'YLoc',2.78e6, ...
 'TickDir','down', ...
 'MajorTick',0:100:300, ...
 'MinorTick',0:25:50, ...
 'MajorTickLength',km2nm(25),...
 'MinorTickLength',km2nm(12.5))
```



## Customize Appearance of Graphic Scale

Create a map of Texas and the surrounding states. Your map might look different because the polcmap function randomizes colors.

```
states = readgeotable("usastatehi.shp");
figure
usamap("Texas")
```

```
h = height(states);
faceColors = makesymbolspec("Polygon",...
 {'INDEX',[1 h],'FaceColor',polcmap(h)});
geoshow(states,"DisplayType","polygon", ...
 "SymbolSpec",faceColors)
```

Add a default graphic scale. Change the location and set the font size to 8 points.

```
scaleruler on
setm(handlem("scaleruler1"), ...
 "XLoc",-6.2e5,"YLoc",3.1e6, ...
 "MajorTick",0:200:600, ...
 "FontSize",8)
```



The location units of scaleruler default to kilometers. Note that handlem accepts the keyword "scaleruler" or "scaleruler1" for the first scaleruler, "scaleruler2" for the second one, etc. If there is more than one scaleruler on the current axes, specifying the keyword "scaleruler" returns a vector of handles.

Return the scaleruler as a Group object using the handlem function. Inspect its properties using the getm function.

```
s = handlem("scaleruler");
getm(s)
ans = struct with fields:
 Azimuth: 0
```

```
 Children: []
 Color: [0 0 0]
 FontAngle: 'normal'
 FontName: 'Helvetica'
 FontSize: 8
 FontUnits: 'points'
 FontWeight: 'normal'
 Label: '
 Lat: 29.6479
 Long: -101.7263
 LineWidth: 0.5000
 MajorTick: [0 200 400 600]
MajorTickLabel: {4x1 cell}
MajorTickLength: 20
 MinorTick: [0 25 50 75 100]
 MinorTickLabel: '100'
MinorTickLength: 12.5000
 Radius: 'earth'
 RulerStyle: 'ruler'
 TickDir: 'up'
 TickMode: 'manual'
 Units: 'km'
 XLoc: -620000
 YLoc: 3100000
 ZLoc: []
```

Create a second graphic scale using units of nautical miles. Modify the tick properties of the second graphic scale.

```
scaleruler("units","nm")
setm(handlem("scaleruler2"),"YLoc",3.0e6, ...
 "MajorTick",0:100:300,...
 "MinorTick",0:25:50,"TickDir","down", ...
 "MajorTickLength",km2nm(25),...
 "MinorTickLength",km2nm(12.5))
```



Change the ruler styles.

```
setm(handlem("scaleruler1"),"RulerStyle","lines")
```

setm(handlem("scaleruler2"), "RulerStyle","patches")


## Object Properties

## Properties That Control Appearance

Color
ColorSpec \{no default\}
Color of the displayed graphic scale - Controls the color of the graphic scale lines and text. You can specify a color using a vector of RGB values or one of the MATLAB predefined names. By default, the graphic scale is displayed in black ([lllll 00000 ).
FontAngle
\{normal\} | italic | oblique
Angle of the graphic scale label text - Controls the appearance of the graphic scale text components. Use any MATLAB font angles.

## FontName

```
courier | {helvetica} | symbol | times
```

Font family name for all graphic scale labels - Sets the font for all displayed graphic scale labels. To display and print properly FontName must be a font that your system supports.

```
FontSize
 scalar in units specified in FontUnits {9}
```

Font size - Specifies the font size to use for all displayed graphic scale labels, in units specified by the FontUnits property. The default point size is 9 .
FontUnits
inches | centimeters | normalized | \{points\} | pixels
Units used to interpret the FontSize property - When set to normalized, the toolbox interprets the value of FontSize as a fraction of the height of the axes. For example, a normalized FontSize of 0.16 sets the text characters to a font whose height is one-tenth of the axes' height. The default units, points, are equal to $1 / 72$ of an inch.
FontWeight
light | \{normal\} | demi | bold
Select bold or normal font - The character weight for all displayed graphic scale labels.
Label
character vector
Label text for the graphic scale - Contains a character vector used to label the graphic scale. The text is displayed centered on the scale. The label is often used to indicate the scale of the map, for example "1:50,000,000."
LineWidth
scalar \{0.5\}
Graphic scale line width - Sets the line width of the displayed scale. The value is a scalar representing points, which is 0.5 by default.
MajorTick
vector
Graphic scale major tick locations - Sets the major tick locations for the graphic scale. The default values are chosen to give a reasonably sized scale. You can specify the locations of the tick marks by providing a vector of locations. These are usually equally spaced values as generated by start:step:end. The values are distances in the units of the Units property.
MajorTickLabel
Cell array of character vectors
Graphic scale major tick labels - Sets the text labels associated with the major tick locations. By default, the labels are identical to the major tick locations. You can override these by providing a cell array of character vectors. There must be as many character vectors as tick locations.
MajorTickLength
scalar
Length of the major tick lines - Controls the length of the major tick lines. The length is a distance in the units of the Units property.
MinorTick
vector
Graphic scale minor tick locations - Sets the minor tick locations for the graphic scale. The default values are chosen to give a reasonably sized scale. You can specify the locations of the tick marks by providing a vector of locations. These are usually equally spaced values as generated by start:step: end. The values are distances in the units of the Units property.

## MinorTickLabel <br> character vectors

Graphic scale minor tick labels - Sets the text labels associated with the minor tick locations. By default, the label is identical to the last minor tick location. You can override this by providing a character vector label.

MinorTickLength
scalar
Length of the minor tick lines - Controls the length of the minor tick lines. The length is a distance in the units of the Units property.
RulerStyle
\{ruler\} | lines | patches
Style of the graphic scale - Selects among three different kinds of graphic scale displays. The default ruler style looks like $n$ axes' $x$-axis. The lines style has three horizontal lines across the tick marks. This type of graphic scale is often used on maps from the U.S. Geological Survey. The patches style has alternating black and white rectangles in place of lines and tick marks.
TickDir
\{up\} | down
Direction of the tick marks and text - Controls the direction in which the tick marks and text labels are drawn. In the default up direction, the tick marks and text labels are placed above the baseline, which is placed at the location given in the XLoc property. In the down position, the tick marks and labels are drawn below the baseline.
TickMode \{auto\} | manual

Tick locations mode - Controls whether the tick locations and labels are computed automatically or are user-specified. Explicitly setting the tick labels or locations results in a 'manual' tick mode. Setting any of the tick labels or locations to an empty matrix resets the tick mode to 'auto'. Setting the tick mode to 'auto' clears any explicitly specified tick locations and labels, which are then replaced by default values.
XLoc
scalar
X-location of the graphic scale - Controls the horizontal location of the graphic scale within the axes. The location is specified in the axes Cartesian projected coordinates. Use showaxes to make the Cartesian grid labels visible. You can also move the graphic scale by dragging the baseline with the mouse.
YLoc
scalar
Y-location of the graphic scale - Controls the vertical location of the graphic scale within the axes. The location is specified in the axes Cartesian projected coordinates. Use showaxes to make the Cartesian grid labels visible. You can also move the graphic scale by dragging the baseline with the mouse.

## Properties That Control Scaling

Azimuth
scalar
Azimuth of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the azimuth along which the scaling between geographic and projected coordinates is computed. The azimuth is given in the current angle units of the map axes. The default azimuth is 0 .
Lat
scalar
Latitude of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the geographic location at which the scaling between geographic and projected coordinates is computed. The latitude is given in the current angle units of the map axes. The default location is the center of the displayed map.
Long
scalar
Longitude of scale computation - The scale of a map varies, within the projection, with geographic location and azimuth. This property controls the geographic location at which the scaling between geographic and projected coordinates is computed. The longitude is given in the current angle units of the map axes. The default location is the center of the displayed map.
Radius
Name or radius of reference sphere
Reference sphere name or radius - The radius property controls the scaling between angular and surface distances. radius can be one of the character vectors supported by km2deg, or it can be the (numerical) radius of the desired sphere in the same units as the Units property. The default is 'earth'.
Units
(valid distance unit)
Surface distance units - Defines the distance units displayed in the graphic scale. Units can be any distance unit recognized by unitsratio. The distance character vector is also used in the last graphic scale text label.

## Other Properties

## Children

(read-only)
Name of graphic scale elements - Contains the tag assigned to the graphic elements that compose the graphic scale. All elements of the graphic scale have hidden handles except the baseline. You do not normally need to access the elements directly.

## Tips

You can reposition graphic scale objects by dragging them with the mouse. You can also change their positions by modifying the XLoc and YLoc properties using setm.

Use scaleruler off, clmo scaleruler, or clmo scalerulerN to remove the scale rulers. You can also remove a graphic scale object with delete(h), or delete(handlem(`scalerulerN')), where N is the corresponding integer.

```
See Also
distance|surfdist|axesscale| paperscale|mdistort|distortcalc
```

Introduced before R2006a

## scatterm

Project point markers with variable color and area

## Syntax

```
scatterm(lat,lon,s,c)
scatterm(lat,lon)
scatterm(lat,lon,s)
scatterm(...,m)
scatterm(...,'filled')
scatterm(ax,...)
h = scatterm(...)
```


## Description

scatterm(lat,lon, s, c) displays colored circles at the locations specified by the vectors lat and lon (which must be the same size). The area of each marker is determined by the values in the vector $s$ (in points ${ }^{2}$ ) and the colors of each marker are based on the values in $c$. $s$ can be a scalar, in which case all the markers are drawn the same size, or a vector the same length as lat and lon.

When c is a vector the same length as lat and lon, the values in c are linearly mapped to the colors in the current colormap. When c is a length(lat)-by-3 matrix, the values in c specify the colors of the markers as RGB values. c can also be a color character vector.
scatterm(lat, lon) draws the markers in the default size and color.
scatterm(lat,lon, s) draws the markers with a single color.
scatterm(...,$m$ ) uses the marker $m$ instead of $\mathrm{o}^{\prime}$ '.
scatterm(...,'filled') fills the markers.
scatterm (ax,...) plots into axes ax instead of gca. ax is a handle to a map axes.
h = scatterm(...) returns a handle to an hggroup.

## Examples

Plot the seamount MATLAB data as symbols with the color proportional to the height.

```
load seamount
worldmap([-49 -47.5],[-150 -147.5])
scatterm(y,x,5,z)
scaleruler
set(gca,'Visible','off')
```



## See Also

stem3m

Introduced before R2006a

## scircle1

Small circles from center, range, and azimuth

## Syntax

```
[lat,lon] = scircle1(lat0,lon0,rad)
[lat,lon] = scircle1(lat0,lon0,rad,az)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid)
[lat,lon] = scirclel(lat0,lon0,rad,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units,npts)
[lat,lon] = scirclel(track,...)
```


## Description

[lat,lon] = scircle1(lat0,lon0, rad) computes small circles (on a sphere) with a center at the point lat0, lon0 and radius rad. The inputs can be scalar or column vectors. The input radius is in degrees of arc length on a sphere.
[lat,lon] = scircle1(lat0,lon0, rad, az) uses the input az to define the small circle arcs computed. The arc azimuths are measured clockwise from due north. If az is a column vector, then the arc length is computed from due north. If az is a two-column matrix, then the small circle arcs are computed starting at the azimuth in the first column and ending at the azimuth in the second column. If az $=[]$, then a complete small circle is computed.
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid) computes small circles on the ellipsoid defined by the input ellipsoid, rather than by assuming a sphere. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. If the semimajor axis is non-zero, rad is assumed to be in distance units matching the units of the semimajor axis. However, if ellipsoid = [], or if the semimajor axis is zero, then rad is interpreted as an angle and the small circles are computed on a sphere as in the preceding syntax.
[lat,lon] = scircle1(lat0,lon0,rad,units),
[lat,lon] = scircle1(lat0,lon0,rad,az,units), and
[lat,lon] = scirclel(lat0,lon0,rad,az,ellipsoid,units)
are all valid calling forms, which use the input units to define the angle units of the inputs and outputs. If you omit units, ' degrees ' is assumed.
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units,npts) uses the scalar input npts to determine the number of points per small circle computed. The default value of npts is 100 .
[lat,lon] = scircle1(track,...) uses track to define either a great circle or rhumb line radius. If track = 'gc', then small circles are computed. If track = 'rh', then the circles with radii of constant rhumb line distance are computed. If you omit track, ' gc ' is assumed.
mat $=$ scircle1(...) returns a single output argument where mat $=$ [lat lon]. This is useful if a single small circle is computed.

Multiple circles can be defined from a single starting point by providing scalar lat0, lon0 inputs and column vectors for rad and az if desired.

## Examples

Create and plot a small circle centered at ( $0^{\circ}, 0^{\circ}$ ) with a radius of $10^{\circ}$.

```
axesm('mercator','MapLatLimit',[-30 30],'MapLonLimit',[-30 30]);
[latc,longc] = scirclel(0,0,10);
plotm(latc,longc,'g')
```

If the desired radius is known in some nonangular distance unit, use the radius returned by the earthRadius function as the ellipsoid input to set the range units. (Use an empty azimuth entry to indicate a full circle.)
[latc,longc] = scircle1(0,0,550,[],earthRadius('nm'));
plotm(latc,longc,'r')
For just an arc of the circle, enter an azimuth range.

```
[latc,longc] = scircle1(0,0,5,[-30 70]);
plotm(latc,longc,'m')
```



## More About

## Small Circle

A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense; however, the scirclel function allows a locus to be calculated using distances in a rhumb line sense as well. An example of a small circle is all points exactly 100 miles from the Washington Monument. Parallels on the globe are all small circles. Great circles are a subset of small circles, specifically those with a radius of 900 or its angular equivalent, so all meridians on the globe are small circles as well.

## Small Circle Notation

Small circle notation consists of a center point and a radius in units of angular arc length.

## See Also

## Functions

scircle2|scircleg|track|trackg|track1|track2

## Topics

"Generate Small Circles"
Introduced before R2006a

## scircle2

Small circles from center and perimeter

## Syntax

[lat,lon] = scircle2(lat1,lon1,lat2,lon2)
[lat,lon] $=$ scircle2(lat1,lon1,lat2,lon2,ellipsoid)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,units)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
[lat,lon] = scircle2(track,...)
mat = scircle2(...)
mat $=$ [lat lon]

## Description

[lat,lon] = scircle2(lat1,lon1,lat2,lon2) computes small circles (on a sphere) with centers at the points lat1, lon1 and points on the circles at lat2, lon2. The inputs can be scalar or column vectors.
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid) computes the small circle on the ellipsoid defined by the input ellipsoid, rather than by assuming a sphere. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. Default is a unit sphere.
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,units) and
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid, units) are valid calling forms, which use the input units to define the angle units of the inputs and outputs. If you omit units, 'degrees ' is assumed.
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts) uses the scalar input npts to determine the number of points per track computed. The default value of npts is 100 .
[lat,lon] = scircle2(track,...) uses track to define either a great circle or a rhumb line radius. If track' $=$ ' gc ', then small circles are computed. If track $=$ ' rh ', then circles with radii of constant rhumb line distance are computed. If you omit track, ' gc ' is assumed.
mat $=$ scircle2(...) returns a single output argument where mat = [lat lon]. This is useful if a single circle is computed.

Multiple circles can be defined from a single center point by providing scalar lat1, lon1 inputs and column vectors for the points on the circumference, lat2, lon2.

## Examples

## Plot Locus of Points Equidistant from New Delhi

Plot the locus of all points the same distance from New Delhi as Kathmandu.

```
axesm('mercator','MapLatlimit',[0 40],'MapLonLimit',[60 110]);
load coastlines
% For reference
plotm(coastlat,coastlon,'k');
% New Delhi
lat1 = 29; lon1 = 77.5;
% Kathmandu
lat2 = 27.6; lon2 = 85.5;
% Plot the cities
plotm([lat1 lat2],[lon1 lon2],'b*')
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2);
plotm(latc,lonc,'b')
```



## More About

## Small Circle

A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense. However, the scircle2 function allows a locus to be calculated using distances in a rhumb line sense as well. An example of a small circle is all points exactly 100 miles from the Washington Monument.

## See Also

## Functions

scircle1|track|track1|track2

## Topics

"Generate Small Circles"

Introduced before R2006a

## scircleg

Small circle defined via mouse input

## Syntax

h = scircleg(ncirc)
h = scircleg(ncirc, npts)
h = scircleg(ncirc, LineSpec)
h = scircleg(ncirc,PropertyName,PropertyValue,...)
[lat,lon] = scircleg(ncirc,npts,...)
h = scircleg(track,ncirc,...)

## Description

$\mathrm{h}=\mathrm{scircleg}(\mathrm{ncirc})$ brings forward the current map axes and waits for the user to make (2 * ncirc) mouse clicks. The output $h$ is a vector of handles for the ncirc small circles, which are then displayed.
h = scircleg(ncirc,npts) specifies the number of plotting points to be used for each small circle. npts is 100 by default.
$\mathrm{h}=\mathrm{scircleg}(\mathrm{ncirc}$, LineSpec) specifies the line style, marker, and color on page 1-1406.
h = scircleg(ncirc,PropertyName,PropertyValue,...) allows property name/property value pairs to be set, where PropertyName and PropertyValue are recognized by the line function.
[lat,lon] = scircleg(ncirc,npts,...) returns the coordinates of the plotted points rather than the handles of the small circles. Successive circles are stored in separate columns of lat and lon.
h = scircleg(track, ncirc,...) specifies the logic with which ranges are calculated. If track is ' gc ' (the default), great circle distance is used. If track is ' rh ' , rhumb line distance is used.

This function is used to define small circles for display using mouse clicks. For each circle, two clicks are required: one to mark the center of the circle and one to mark any point on the circle itself, thereby defining the radius.

## Background

A small circle is the locus of all points an equal surface distance from a given center. For true small circles, this distance is always calculated in a great circle sense; however, the scircleg function allows a locus to be calculated using distances in a rhumb line sense as well. You can modify the circle after creation by shift+clicking it. The circle is then in edit mode, during which you can change the size and position by dragging control points, or by entering values into a control panel. Shift + clicking again exits edit mode.

## More About

## Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' - - $r$ '.

Line Style	Description	Resulting Line
' - '	Solid line	$\square$
'--'	Dashed line	- - - -
':'	Dotted line	................
'-.'	Dash-dotted line	--------


Marker	Description	Resulting Marker
'0'	Circle	$\bigcirc$
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
' x '	Cross	$\times$
'_'	Horizontal line	-
' 1 '	Vertical line	1
's'	Square	$\square$
'd'	Diamond	$\diamond$
'^1	Upward-pointing triangle	$\triangle$
'v'	Downward-pointing triangle	$\nabla$
'>'	Right-pointing triangle	$D$
'<'	Left-pointing triangle	$<$
'p'	Pentagram	A
'h'	Hexagram	5


Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$		
'cyan'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$		
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$		
'white'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$		

## See Also

scirclel|scircle2
Introduced before R2006a

## SCXSC

Intersection points for pairs of small circles

## Syntax

[lat,lon] = scxsc(lat1,lon1,range1,lat2,lon2,range2)
[lat,lon] = scxsc(lat1,lon1,range1,lat2,lon2,range2,units)
latlon = scxsc( $\qquad$ )

## Description

[lat,lon] = scxsc(lat1,lon1,range1,lat2,lon2,range2) returns in lat and lon the locations where pairs of small circles intersect. The small circles are defined using small circle notation, which consists of a center point and a radius in units of angular arc length. For example, the first small circle in a pair would be centered on the point (lat1,lon1) with a radius of rangel (in angular units).

For any pair of small circles, there are four possible intersection conditions: the circles are identical, they do not intersect, they are tangent to each other and hence they intersect once, or they intersect twice.
[lat,lon] = scxsc(lat1,lon1,range1,lat2,lon2,range2,units) specifies the angular units used for all inputs, where units is any valid angular unit.
latlon $=\operatorname{scxsc}(\ldots \quad)$ returns a single output consisting of the concatenated latitude and longitude coordinates of the small circle intersection points.

## Examples

## Find Intersection Points of Two Small Circles

Given a small circle centered at ( $10^{\circ} \mathrm{S}, 170^{\circ} \mathrm{W}$ ) with a radius of $20^{\circ}$ ( $\sim 1200$ nautical miles), where does it intersect with a small circle centered at ( $3^{\circ} \mathrm{N}, 179^{\circ} \mathrm{E}$ ), with a radius of $15^{\circ}$ ( $\sim 900$ nautical miles)?

```
[newlat,newlon] = scxsc(-10,-170,20,3,179,15)
newlat =
 -8.8368 9.8526
newlon =
 169.7578 -167.5637
```

Note that in this example, the two small circles cross the date line.

## Input Arguments

lat1, lon1 - Center coordinate of first small circle<br>numeric scalar | $n$-element numeric vector

Latitude or longitude coordinate of the center of the first small circle in each pair, specified as one of these values.

- A numeric scalar to find the intersection of a single pair of small circles.
- A $n$-element numeric vector to find the intersection of $n$ pairs of small circles.
lat1 and lon1 must have the same length.
Example: - 10
Example: [-10 20 90-45]
range1 - Radius of first small circle
positive numeric scalar | $n$-element vector of positive numbers
Radius of the first small circle of each pair, in angular units, specified as one of these values.
- A positive numeric scalar to find the intersection of a single pair of small circles.
- A $n$-element vector of positive numbers to find the intersection of $n$ pairs of small circles. The length of range1 matches the length of lat1 and lon1.

Example: 20
Example: [20 1045 45]

## lat2, lon2 - Center coordinate of second small circle

numeric scalar | numeric vector
Latitude or longitude coordinate of the center of the second small circle in each pair, specified as one of these values.

- A numeric scalar to find the intersection of a single pair of small circles.
- A $n$-element numeric vector to find the intersection of $n$ pairs of small circles.
lat2 and lon2 must have the same length as lat1 and lon1.


## Example: 3

Example: $\left[\begin{array}{llll}3 & 30 & 85 & -45\end{array}\right]$

## range2 - Radius of second small circle

positive numeric scalar $\mid n$-element vector of positive numbers
Radius of the second small circle of each pair, in angular units, specified as one of these values.

- A positive numeric scalar to find the intersection of a single pair of small circles.
- A $n$-element vector of positive numbers to find the intersection of $n$ pairs of small circles. The length of range 2 matches the length of lat2 and lon2.

Example: 15
Example: [15 1545 50]
units - Angular units
'degrees' (default)|'radians '
Angular units, specified as 'degrees' or 'radians'.

## Output Arguments

## lat, lon - Coordinates of small circle intersections

2 -element vector | $n$-by-2 matrix
Coordinates of small circle intersections, returned as one of the following.

- 2-element vector when you find the intersection of a single pair of small circles.
- $n$-by- 2 matrix when you find the intersection of $n$ pairs of small circles.

If a pair of small circles do not intersect, or are identical, then scxsc displays a warning and returns NaNs for the latitude and longitude coordinates of the intersection points. If a pair of small circles are tangent, then the single intersection point is returned twice.

## latlon - Concatenated coordinates of small circle intersections <br> 4 -element vector | $n$-by-4 matrix

Concatenated coordinates of small circle intersections, returned as one of the following. This output is identical to [lat lon].

- 4 -element vector when you find the intersection of a single pair of small circles.
- $n$-by- 4 matrix when you find the intersection of $n$ pairs of small circles.

If a pair of small circles do not intersect, or are identical, then scxsc displays a warning and returns NaNs for the latitude and longitude coordinates of the intersection points. If a pair of small circles are tangent, then the single intersection point is returned twice.

## Tips

Great circles are a subset of small circles - a great circle is just a small circle with a radius of $90^{\circ}$. This provides two methods of notation for defining great circles. Great circle notation consists of a point on the circle and an azimuth at that point. Small circle notation for a great circle consists of a center point and a radius of $90^{\circ}$ (or its equivalent in radians).

## See Also

gc2sc|gcxgc|gcxsc|rhxrh|crossfix|polyxpoly

## Introduced before R2006a

## sdtsdemread

(To be removed) Read data from SDTS raster/DEM data set

Note sdtsdemread will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z, R] = sdtsdemread(filename)

## Description

[Z, R] = sdtsdemread(filename) reads data from an SDTS DEM data set. Z is a matrix containing the elevation values. R is a referencing matrix. NaNs are assigned to elements of Z corresponding to null data values or fill data values in the cell module.
filename can be the name of the SDTS catalog directory file (*CATD.DDF) or the name of any of the other files in the data set. filename can include the directory name; otherwise filename is searched for in the current directory and the MATLAB path. If any of the files specified in the catalog directory are missing, sdtsdemread fails.

## Examples

filename = fullfile(matlabroot,'examples','map','data','sdts','9129CATD.DDF'); [Z,R] = sdtsdemread(filename);
mapshow(Z,R,'DisplayType', 'contour')

## Tips

Elevation values can be imported with sdtsdemread from DEMs that use the SPRE Raster Profile (in use since January, 2001) as well as from older SDTS DEM data sets. Under this profile, elevations can be encoded either as 32 -bit floating-point numbers (when their units are "decimal meters"), or as 16bit integers (when units are "feet" or "meters"). The output class from sdtsdemread for both types of elevation encoding is double.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

## Compatibility Considerations

## sdtsdemread will be removed

Warns starting in R2021b
Raster reading functions that return referencing matrices will be removed, including sdtsdemread. Instead, use readgeoraster, which returns a raster reference object. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop functions.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize functions.
- Most functions that accept referencing matrices as input also accept reference objects.

To update your code, change instances of the function name sdtsdemread to readgeoraster and specify an extension for the data file. The readgeoraster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType ' namevalue pair.

```
filename = fullfile(matlabroot,'examples','map','data','sdts','9129CATD.DDF');
[Z,R] = readgeoraster(filename,'OutputType','double');
```

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, replace them with NaN values using the standardizeMissing function.

```
filename = fullfile(matlabroot,'examples','map','data','sdts','9129CATD.DDF');
[Z,R] = readgeoraster(filename);
info = georasterinfo(filename);
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## See Also

mapshow|sdtsinfo|readgeoraster|georasterinfo
Introduced before R2006a

## sdtsinfo

Information about SDTS data set

## Syntax

info = sdtsinfo(filename)

## Description

info = sdtsinfo(filename) returns a structure whose fields contain information about the contents of a SDTS data set.
filename is a string scalar or character vector that specifies the name of the SDTS catalog directory file, such as 7783CATD.DDF. The file name can also include the directory name. If filename does not include the directory, then it must be in the current directory or in a directory on the MATLAB path. If sdtsinfo cannot find the SDTS catalog file, it returns an error.

If any of the other files in the data set as specified by the catalog file is missing, a warning message is returned. Subsequent calls to read data from the file might also fail.

## Field Descriptions

The info structure contains the following fields:

Filename	Name of the catalog directory file of the SDTS transfer set, specified as   a character vector.
Title	Name of the data set, specified as a character vector.   Profile Identifier, e.g., 'SRPE: SDTS RASTER PROFILE and   EXTENSIONS', specified as a character vector.
ProfileID	Profile Version Identifier, e.g., 'VER 1.11998 01', specified as a   character vector.
MapDate	Date associated with the cartographic information contained in the   data set, specified as a character vector.
DataCreationDate	Creation date of the data set, specified as a character vector.
HorizontalDatum	Horizontal datum to which the data is referenced, specified as a   character vector.
MapRefSystem	Projection and reference system used, specified as one of the following   values: 'GEO', 'SPCS', 'UTM' , 'UPS', or ' '.
ZoneNumber	Scalar value representing the zone number   Scalar value representing the X component of the horizontal   Coordinate resolution
YResolution	Scalar value representing the Y component of the horizontal coordinate   resolution
NumberOfRows	Scalar value representing the number of rows of the DEM


NumberOfCols	Scalar value representing the number of columns of the DEM
HorizontalUnits	Units used for the horizontal coordinate values, specified as a   character vector.
VerticalUnits	Units used for the vertical coordinate values, specified as a character   vector.
MinElevation	Scalar value of the minimum elevation value for the data set   MaxElevation
Scalar value of the maximum elevation value for the data set	

## Examples

```
filename = fullfile(matlabroot,'examples','map','data','sdts','9129CATD.DDF');
```

info = sdtsinfo(filename);

## See Also

georasterinfo|readgeoraster
Introduced before R2006a

## sectorg

Sector of small circle defined via mouse input

## Syntax

sectorg

## Description

sectorg prompts the user to indicate by two successive mouse clicks two points that define the center and radius of a small circle arc. By default, the angular width of the sector is $60^{\circ}$. The sector is constructed using the vector defined by the mouse clicks as the reference azimuth (defined to run through the center of the sector).

Once a sector has been drawn, Shift+clicking on it displays four control points (center point, arc resize, radial resize, and rotation controls), and the associated Sector control window. You can graphically interact with sectors as follows:

- To translate the circle, click and drag the center (o) control.
- To change the arc size, click and drag the resize control (square).
- To change the radial size of the sector, click and drag the radial control (down triangle).
- To rotate the arc, click and drag the rotation control (x).

You can also modify a selected sector by entering the appropriate values in the Sector control window and then pressing Enter or clicking the Close button. Display of the control panel is toggled by Shift+clicking the sector. If you select multiple sectors, a separate Sector control window will appear for each one.

## Tips

Sector control windows are superimposed at the same location. A valid map axes must exist prior to running this function.

## See Also <br> scircleg|trackg

Introduced before R2006a

## setltln

(To be removed) Convert data grid rows and columns to latitude-longitude

Note The setltln function will be removed in a future release. Use the intrinsicToGeographic function instead. For more information, see "Compatibility Considerations".

## Syntax

[lat, lon] = setltln(Z, R, row, col)
[lat, lon, indxPointOutsideGrid] = setltln(Z, R, row, col)
latlon = setltln(Z, R, row, col)

## Description

[lat, lon] = setltln(Z, R, row, col) returns the latitude and longitudes associated with the input row and column coordinates of the regular data grid Z . R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] $=[$ row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Points falling outside the grid are ignored in row and col. All input angles are in degrees.
[lat, lon, indxPointOutsideGrid] = setltln(Z, R, row, col) returns the indices of the elements of the row and col vectors that lie outside the input grid. The outputs lat and lon always ignore these points; the third output accounts for them.
latlon = setltln(Z, R, row, col) returns the coordinates in a single two-column matrix of the form [latitude longitude].

## Examples

Load elevation raster data and a geographic cells reference object. Then, find the coordinates of row 45 and column 65.

```
load topo60c
[lat,lon,indxPointOutsideGrid] = setltln(topo60c,topo60cR,45,65)
lat =
```

$-45.5000$
lon =
64.5000
indxPointOutsideGrid =
[]
The third output argument is empty because the point is valid.

## Compatibility Considerations

## setltln will be removed

Not recommended starting in R2021a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the setltln function. Use a geographic raster reference object and the intrinsicToGeographic function instead. Reference objects have several advantages over referencing vectors and matrices.

- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors or matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, replace uses of the setltln function with the intrinsicToGeographic function according to these patterns. Note that the intrinsicToGeographic function does not round the row and column coordinates. Additionally, the intrinsicToGeographic function extrapolates points outside the raster limits instead of discarding them.

Will Be Removed	Recommended
[lat,lon] = setltln(A,R,row, col);	```[lat,lon] = intrinsicToGeographic(R,round(c lat(~contains(R,lat,lon)) = []; lon(~contains(R,lat,lon)) = [];```
[lat,lon,indxPointOutsideGrid] = setltln(A,	```RladwlooT) = intrinsicToGeographic(R,round(d lat(~contains(R,lat,lon)) = []; lon(~contains(R,lat,lon)) = []; indxPointOutsideGrid = find(~contains(R,lat```


Will Be Removed	Recommended
latlon $=$ setltln(A,R,row, col);	```[lat,lon] = intrinsicToGeographic(R,round(d lat(~contains(R,lat,lon)) = []; lon(~contains(R,lat,lon)) = []; latlon = [lat(:) lon(:)];```

## See Also

geointerp|geographicToDiscrete | intrinsicToGeographic

Introduced before R2006a

## setm

Set properties of map axes and graphics objects

## Syntax

```
setm(h,MapAxesPropertyName,PropertyValue,...)
setm(texthndl,'MapPosition',position)
setm(surfhndl,'Graticule',lat,lon,alt)
setm(surfhndl,'MeshGrat',npts,alt)
```


## Description

setm( h, MapAxesPropertyName, PropertyValue, ...), where $h$ is a valid map axes handle, sets the map axes properties specified in the input list. The map axes properties must be recognized by axesm. For a list of map axes properties, see Map Axes Properties.
setm(texthndl,'MapPosition', position) alters the position of the projected text object specified by its handle to the [latitude longitude] or the [latitude longitude altitude] specified by the position vector.
setm(surfhndl, 'Graticule', lat,lon, alt) alters the graticule of the projected surface object specified by its handle. The graticule is specified by the latitude and longitude matrices, specifying locations of the graticule vertices. The altitude can be specified by a scalar, or by a matrix providing a value for each vertex.
setm(surfhndl, 'MeshGrat',npts,alt) alters the mesh graticule of projected surface objects displayed using the meshm function. In this case, the two-element vector npts specifies the graticule size in the manner described under meshm. The altitude can be a scalar or a matrix with a size corresponding to npts.

## Examples

Display a map axes and alter it:

```
axesm('bonne','Frame','on','Grid','on')
```

The standard Bonne projection has a standard parallel at $30^{\circ} \mathrm{N}$.


Setting this standard parallel to 0 응 results in a Sinusoidal projection:
setm(gca,'MapParallels',0)


## See Also

axesm | getm
Introduced before R2006a

## setpostn

(To be removed) Convert latitude-longitude to data grid rows and columns

Note The setpostn function will be removed in a future release. Use the geographicToDiscrete function instead. For more information, see "Compatibility Considerations".

## Syntax

[row, col] = setpostn(Z, R, lat, lon)
indx $=$ setpostn(...)
[row, col, indxPointOutsideGrid] = setpostn(...)

## Description

[row, col] = setpostn(Z, R, lat, lon) returns the row and column indices of the regular data grid $Z$ for the points specified by the vectors lat and lon. $R$ can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to/from geographic coordinates according to:
[lon lat] = [row col 1] * R
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Points falling outside the grid are ignored in row and col. All input angles are in degrees.
indx $=$ setpostn(...) returns the indices of $Z$ corresponding to the points in lat and lon. Points falling outside the grid are ignored in indx.
[row, col, indxPointOutsideGrid] = setpostn(...) returns the indices of lat and lon corresponding to points outside the grid. These points are ignored in row and col.

## Examples

Load elevation raster data and a geographic cells reference object. Then, find the matrix coordinates of Denver, Colorado.
load topo60c
[row,col] = setpostn(topo60c,topo60cR,39.7,105)
row =

## Compatibility Considerations

## setpostn will be removed

Not recommended starting in R2021a
Some functions that accept referencing vectors or referencing matrices as input will be removed, including the setpostn function. Use a geographic raster reference object and the geographicToDiscrete function instead. Reference objects have several advantages over referencing vectors and matrices.

- Unlike referencing vectors and matrices, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and GeographicPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors or matrices as inputs also accept reference objects.

To update your code, first create a reference object for either a raster of cells using the georefcells function or a raster of regularly posted samples using the georefpostings function. Alternatively, convert from a referencing vector or a referencing matrix to a reference object using the refvecToGeoRasterReference or refmatToGeoRasterReference function, respectively.

Then, replace uses of the setpostn function with the geographicToDiscrete function according to these patterns. Note that the geographicToDiscrete function includes NaN values in row and col for points outside the raster limits instead of discarding them. Additionally, the geographicToDiscrete function does not issue a warning for points outside the raster limits.

Will Be Removed	Recommended
[row, col] = setpostn(A,R,lat,lon);	```[row,col] = geographicToDiscrete(R,lat,lon) n = isnan(row); row(n) = []; col(n) = [];```
indx $=$ setpostn(A,R,lat,lon);	[row, col] = geographicToDiscrete(R,lat,lon) indx = sub2ind(R.RasterSize, row, col);
[row, col,indexPointOutsideGrid] = setpostn	```A r(WWl,बठ\\o#) geographicToDiscrete(R, lat,lon) n = isnan(row); row(n) = []; col(n) = []; indexPointOutsideGrid = find(n);```

## See Also

geographicToDiscrete | geographicToIntrinsic|intrinsicToGeographic

Introduced before R2006a

## servers

Return URLs of unique WMS servers

## Syntax

serverURLs = servers(layers)

## Description

serverURLs $=$ servers(layers) returns the URLs of unique servers associated with Web map service layers, layers.

## Examples

## Find Unique URLs of Servers

Search the WMS Database for government servers. Set the unique URLs to a variable.

```
layers = wmsfind('*.gov*','SearchField','serverurl');
serverURLs = servers(layers);
```


## List Server URLs and Number of Layers

Search the WMS Database for servers that contain information about clouds. Set the unique server URLs to a variable.

```
temperature = wmsfind('clouds');
serverURLs = servers(temperature);
```

Display the server URLs and the number of layers that reference the URL.

```
for k=1:numel(serverURLs)
 querystr = serverURLs{k};
 layers = refine(temperature,querystr, ...
 'SearchFields', 'serverurl');
 fprintf('Server URL\n%s\n', layers(1).ServerURL);
 fprintf('Number of layers: %d\n\n', numel(layers));
end
Server URL
https://discl.gsfc.nasa.gov/daac-bin/wms_omi?
Number of layers: 2
Server URL
https://svs.gsfc.nasa.gov/cgi-bin/wms?
Number of layers: 8
```

Your results might be different because the WMS Database changes each release.

## Input Arguments

## layers - Layers to provide server URLs

array of WMSLayer objects
Layers to provide server URLs, specified as an array of WMSLayer objects.

## Output Arguments

serverURLs - URLs of unique servers
cell array of character vectors
URLs of unique servers, returned as a cell array of character vectors.

## See Also

wmsfind | refine | serverTitles

Introduced in R2009b

## serverTitles

Return titles of unique WMS servers

## Syntax

titles = serverTitles(layers)

## Description

titles = serverTitles(layers) returns the titles of unique servers associated with Web map service layers, layers.

## Examples

## List Titles of Unique Servers

Search the WMS Database for government servers. Set the titles of unique servers to a variable.

```
layers = wmsfind('*.gov*', 'SearchField', 'serverurl');
titles = serverTitles(layers);
```

Display the first ten servers titles as a column vector.

```
titles(1:10)'
ans = 10x1 cell
 {'LRS-SDI WMS' }
 {'Geologic Map of Arizona' }
 {'WMS' }
 {'Geologic Map of Arizona' }
 {'AZGS HIGS Geology' }
 {'AZGS IDGS Geology' }
 {'aasggeothermal_AKBoreholeTemperatures'}
 {'aasggeothermal_AKaqSpringChemistry' }
 {'aasggeothermal_AZActiveFaults' }
 {'aasggeothermal_AZBoreholeTemperatures'}
```

Your results might be different because the WMS Database changes each release.

## Input Arguments

## layers - Layers to provide server URLs <br> array of WMSLayer objects

Layers to provide server URLs, specified as an array of WMSLayer objects.

## Output Arguments

titles - Titles of unique WMS servers
cell array of character vectors
Titles of unique WMS servers, returned as a cell array of character vectors.

## See Also

wmsfind | servers

Introduced in R2009b

## shaderel

Construct cdata and colormap for shaded relief

## Syntax

[cindx, cimap, clim] $=$ shaderel ( $X, Y, Z$, cmap $)$
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev])
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl)
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,clim)

## Description

[cindx, cimap,clim] = shaderel(X,Y,Z,cmap) constructs the colormap and color indices to allow a surface to be displayed in colored shaded relief. The colors are proportional to the magnitude of $Z$, but modified by shades of gray based on the surface normals to simulate surface lighting. This representation allows both large and small-scale differences to be seen. $X, Y$, and $Z$ define the surface. cmap is the colormap used to create the new shaded colormap cimap. cindx is a matrix of color indices to cimap, based on the elevation and surface normal of the $Z$ matrix element. clim contains the color axis limits.
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev]) places the light at the specified azimuth and elevation. By default, the direction of the light is East ( 90 azimuth) at an elevation of 45 .
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl) chooses the number of grays to give a cimap of length cmapl. By default, the number of grayscales is chosen to keep the shaded colormap below 256. If the vector of azimuth and elevation is empty, the default locations are used.
[cindx, cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,clim) uses the color limits to index $Z$ into cmap.

## Examples

Display the peaks surface with a shaded colormap:

```
[X,Y,Z] = peaks(100);
cmap = hot(16);
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap);
surf(X,Y,Z,cindx); colormap(cimap); caxis(clim)
shading flat
```



## Tips

This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new colormap. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

See Also<br>colormap|light|meshlsrm|surf|surflsrm

Introduced before R2006a

## shapeinfo

Information about shapefile

## Syntax

info = shapeinfo(filename)

## Description

info = shapeinfo(filename) returns a structure, info, whose fields contain information about the contents of a shapefile. filename can be the base name or the full name of any one of the component files. shapeinfo reads all three files as long as they exist in the same folder and the unit of length or angle is not specified. If the main file (with extension.SHP) is missing, shapeinfo returns an error. If either of the other files is missing, shapeinfo returns a warning.

## Examples

## Get CRS Information from Shapefile

Get projected or geographic CRS information from a shapefile by using the shapeinfo function.
First, return information about a shapefile as a structure. For this example, specify a shapefile that uses projected coordinates. Then, get information about the coordinate reference system by querying the CoordinateReferenceSystem field of the structure.

```
S = shapeinfo('boston_placenames.shp');
S.CoordinateReference\overline{System}
ans =
 projcrs with properties:
 Name: "NAD83 / Massachusetts Mainland"
 GeographicCRS: [1x1 geocrs]
 ProjectionMethod: "Lambert Conic Conformal (2SP)"
 LengthUnit: "meter"
 ProjectionParameters: [1x1 map.crs.ProjectionParameters]
```

Note that the value of the CoordinateReferenceSystem field is a projcrs object because the shapefile uses projected coordinates.

## Input Arguments

filename - File name
string scalar | character vector
File name of the shapefile, specified as a string scalar or character vector. filename can be the base name or the full name of any one of the component files.

## Output Arguments

## info - Information about shapefile contents

structure
Information about shapefile contents, returned as a structure contains the following fields.

Filename
ShapeType
BoundingBox

Attributes

NumFeatures
CoordinateReferenceSys tem
NumFeatures
CoordinateReferenceSys
tem

Char array containing the names of the files that were read
Character vector containing the shape type
Numerical array of size 2 -by- $N$ that specifies the minimum (row 1 ) and maximum (row 2 ) values for each dimension of the spatial data in the shapefile
Structure array of size 1-by-numAttributes that describes the attributes of the data. The structure contains these fields:

- Name - Character vector containing the attribute name as given in the xBASE table
- Type - Character vector specifying the MATLAB class of the attribute data returned by shaperead. The following attribute (xBASE) types are supported: Numeric, Floating, Character, and Date
The number of spatial features in the shapefile
Coordinate reference system (CRS), returned as a geocrs or projcrs object. The value of CoordinateReferenceSystem depends on the data contained in the file:
- If the data is referenced to a geographic coordinate system, then CoordinateReferenceSystem is a geocrs object.
- If the data is referenced to a projected coordinate system, then CoordinateReferenceSystem is a projcrs object.
- If the file does not contain valid coordinate reference system information, then CoordinateReferenceSystem is empty.


## See Also

shaperead | shapewrite

## Topics

"Geographic Data Structures"

Introduced before R2006a

## shaperead

Read vector features and attributes from shapefile

## Syntax

S = shaperead(filename)
S = shaperead(filename, Name, Value)
[S,A] = shaperead( $\qquad$ )

## Description

$\mathrm{S}=$ shaperead(filename) reads the shapefile, filename, and returns an $N$-by-1 geographic data structure array in projected map coordinates (a mapstruct). The geographic data structure combines geometric and feature attribute information. shaperead supports the ordinary 2-D shape types: 'Point', 'Multipoint', 'PolyLine', and 'Polygon'.
$\mathrm{S}=$ shaperead(filename, Name, Value) returns a subset of the shapefile contents in S , as determined by the name-value pair arguments. Use RecordNumbers, BoundingBox, and Selector to select which features to read. If you use more than one of these parameters in the same call, you receive the intersection of the records that match the individual specifications. For instance, if you specify values for both RecordNumbers and BoundingBox, you import only those features with record numbers that appear in your list and that also have bounding boxes intersecting the specified bounding box.

If you do not specify any parameters, shaperead returns an entry for every non-null feature and creates a field for every attribute.
[S,A] = shaperead( $\qquad$ ) returns an $N$-by-1 geographic data structure array, S, containing geometric information, and a parallel $N$-by-1 attribute structure array, A, containing feature attribute information.

## Examples

## Read Entire Shapefile

Read the entire shapefile called concord_hydro_line.shp, including the attributes in concord_hydro_line.dbf. The shaperead function returns a mapstruct with $x$ and $y$ coordinate vectors.

```
S = shaperead('concord_hydro_line.shp')
S=237\times1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 LENGTH
```


## Read Portion of Shapefile Based on Bounding Box

Specify a bounding box to limit the data returned by shaperead. In addition, specify the names of the attributes you want to read.

```
bbox = [2.08 9.11; 2.09 9.12] * 1e5;
S = shaperead('concord_roads.shp','BoundingBox',bbox,...
 'Attributes',{'STREETNAME','CLASS'})
S=87\times1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 CLASS
```


## Read road data by class from shapefile

Read road data only for class 4 and higher road segments that are at least 200 meters in length. Note the use of an anonymous function in the selector.

```
S = shaperead('concord roads.shp','Selector',...
 {@(v1,v2) (\overline{v}1 >= 4) && (v2 >= 200),'CLASS','LENGTH'})
S=115\times1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLĀSS
 ADMIN TYPE
 LENGTH
```

Determine the number of roads of each class.

```
n = histcounts([S.CLASS],'BinLimits',[1 7],'BinMethod','integer')
n = 1\times7
```

    \(\begin{array}{lllllll}0 & 0 & 0 & 7 & 93 & 15 & 0\end{array}\)
    Display a histogram of the number of roads that fall in each category of length.

```
figure
histogram([S.LENGTH])
```



## Read Shapefile with Geographic Coordinates

Specify that a shapefile uses latitude and longitude coordinates using the 'UseGeoCoords ' namevalue pair.

For instance, return information about a shapefile as a structure. Verify the shapefile uses latitude and longitude coordinates by querying the CoordinateReferenceSystem field. The shapefile uses latitude and longitude coordinates if the field contains a geocrs object.

```
info = shapeinfo('landareas.shp');
crs = info.CoordinateReferenceSystem
crs =
 geocrs with properties:
 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1x1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"
```

Read the shapefile by using the shaperead function. Indicate that the shapefile uses latitude and longitude coordinates using the 'UseGeoCoords' name-value pair.

```
S = shaperead('landareas.shp','UseGeoCoords',true)
S=537\times1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat
 Name
```

Note that the shaperead function returns a geographic data structure with latitude and longitude fields (a geostruct).

## Input Arguments

## filename - File name

character vector | string scalar
File name, specified as a string scalar or character vector. filename refers to the base name or full name of one of the component files in a shapefile. If the main file (with extension .shp) is missing, shaperead throws an error. If either of the other files is missing, shaperead issues a warning.

Make sure that your machine is set to the same character encoding scheme as the data you are importing. For example, if you are trying to import a shapefile that contains Japanese characters, configure your machine to support the Shift-JIS encoding scheme.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Attributes', \{'STREETNAME','LENGTH'\}

## RecordNumbers - Record numbers

vector of integers
Record numbers, specified as the comma-separated pair consisting of 'RecordNumbers ' and a vector of integers. Use the parameter RecordNumbers to import only features with listed record numbers.
Data Types: double

## BoundingBox - Bounding box

2-by-2 matrix
Bounding box, specified as the comma-separated pair consisting of 'BoundingBox' and a 2-by-2 matrix. BoundingBox has the form [xmin, ymin; xmax, ymax], for map coordinates, or [lonmin, latmin; lonmax, latmax] for geographic coordinates. Use the parameter BoundingBox to import only features whose bounding boxes intersect the specified box. The shaperead function does not trim features that partially intersect the box.
Data Types: double

## Selector - Selector <br> cell array

Selector, specified as the comma-separated pair consisting of 'Selector' and a cell array containing a function handle and one or more attribute names. The function must return a logical scalar. Use the Selector parameter to import only features for which the function, when applied to the corresponding attribute values, returns true. For more information about function handles, see "Create Function Handle".

## Attributes - Attribute names

cell array
Attribute names, specified as the comma-separated pair consisting of 'Attributes ' and a cell array of attribute names. Use the parameter Attributes to include listed attributes and set the order of attributes in the structure array. Use \{\} to omit all attributes.

## UseGeoCoords - Flag to return shapefile contents in a geostruct false (default) | true

Flag to return shapefile contents in a geostruct, specified as the comma-separated pair consisting of 'UseGeoCoords' and false or true.

When UseGeoCoords is set to true, the shapefile contents are returned in a geostruct. Use this parameter when you know that the $x$ - and $y$-coordinates in the shapefile actually represent longitude and latitude data.

To determine whether a shapefile uses latitude and longitude data, first use the shapeinfo function to return information about the shapefile as a structure. Then query the CoordinateReferenceSystem field of the structure. The shapefile uses geographic coordinates if CoordinateReferenceSystem is a geocrs object.

This code shows how to query the CoordinateReferenceSystem field of a structure associated with the shapefile landareas.shp.
info = shapeinfo('landareas.shp');
info. CoordinateReferenceSystem

## Output Arguments

## S - Vector geographic features

$N$-by-1 geographic data structure array
Vector geographic features, returned as an $N$-by-1 map geographic data structure array. Unless UseGeoCoords is true, S is a mapstruct and contains an element for each non-null, spatial feature in the shapefile.

## A - Feature attribute information

N -by-1 attribute structure array
Feature attribute information, returned as an $N$-by-1 attribute structure array corresponding to array S.

The fields in the output structure arrays S and A depend on the type of shape contained in the file and the names and types of attributes included in the file. The shaperead function supports the following
four attribute types: numeric and floating (stored as type double in MATLAB) and character and date (stored as char array).

## Tips

To get information about the coordinate reference system (CRS) associated with a shapefile, use the shapeinfo function.

## See Also

shapeinfo| shapewrite | readgeotable

## Topics

"Geographic Data Structures"
"Find Geospatial Data Online"
Introduced before R2006a

## shapewrite

Write geographic vector data structure to shapefile

## Syntax

shapewrite(S,filename)
shapewrite(S,filename,'DbfSpec',dbfspec)

## Description

shapewrite(S,filename) writes the vector geographic features stored in S to the file specified by filename in shapefile format.
shapewrite(S,filename,'DbfSpec',dbfspec) writes a shapefile in which the content and layout of the DBF file is controlled by dbfspec, a DBF specification.

## Examples

## Write Feature Data to Shapefile

Import a shapefile, remove a subset of the data, and write the modified data to a new shapefile.
Get information about a shapefile as a structure. The shapefile contains a network of road segments in Concord, MA.

```
shapeinfo("concord_roads.shp")
ans = struct with fields:
 Filename: [3x84 char]
 ShapeType: 'PolyLine'
 BoundingBox: [2x2 double]
 NumFeatures: 609
 Attributes: [5x1 struct]
 CoordinateReferenceSystem: [1x1 projcrs]
```

The NumFeatures field indicates that the shapefile contains 609 features.
Import the shapefile as a geospatial table.

```
GT = readgeotable("concord_roads.shp");
```

The CLASS attribute of the shapefile includes information about road types. For example, a value of 2 indicates a multilane highway and a value of 6 indicates a minor road. Create a subtable containing major roads such that the value of CLASS is less than 4.

```
rows = GT.CLASS < 4;
majorGT = GT(rows,:);
```

Export the geospatial table as a shapefile.

```
shapewrite(majorGT,"main_concord_roads.shp")
```

Get information about the new shapefile as a structure.

```
shapeinfo("main_concord_roads.shp")
ans = struct with fields:
 Filename: [3x89 char]
 ShapeType: 'PolyLine'
 BoundingBox: [2x2 double]
 NumFeatures: 107
 Attributes: [5x1 struct]
 CoordinateReferenceSystem: []
```

The new shapefile has 107 features instead of 609 features.

## Write Data Stored in Planar Point Vector to Shapefile

Read a shapefile containing a vector of world cities. Store the data as a planar point vector using the mappoint function.

```
S = shaperead("worldcities.shp");
p = mappoint(S)
p =
 318x1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 X: [-3.9509 54.7589 -0.2121 35.3894 38.7575 138.8528 44.5408 72.2474 ...]
 Y: [5.2985 24.6525 5.6106 37.0613 9.0235 -34.6645 12.8767 22.7778 ...]
 Name: {1x318 cell}
```

Append Paderborn, Germany to the point vector.

```
x = 51.715254;
y = 8.75213;
p = append(p,x,y,"Name","Paderborn")
p =
 319x1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point'
 Metadata: [1x1 struct]
 Feature properties:
 X: [-3.9509 54.7589 -0.2121 35.3894 38.7575 138.8528 44.5408 72.2474 ...]
 Y: [5.2985 24.6525 5.6106 37.0613 9.0235 -34.6645 12.8767 22.7778 ...]
 Name: {1\times319 cell}
```

The size of $p$ has increased by 1 .

Write the updated point vector to a shapefile.

```
shapewrite(p,"worldcities updated.shp")
```


## Input Arguments

## S - Vector geographic features

geospatial table | mappoint vector | mapshape vector | mapstruct vector | geopoint vector | geoshape vector | geostruct vector

Vector geographic features, specified as one of the following:

- A geospatial table. The shapewrite function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A mappoint vector.
- A mapshape vector.
- A map structure array (mapstruct) with $X$ and $Y$ coordinate fields.
- A geopoint vector.
- A geoshape vector.
- A geographic structure array (geostruct) with Lat and Lon fields.
$S$ has the following restrictions on its attribute fields:
- Each attribute field value must be either a real, finite, scalar double or a character vector.
- The type of a given attribute must be consistent across all features.
- If S is a geospatial table containing geopointshape, geolineshape, or geopolyshape objects, a geopoint vector, a geoshape vector, or a geographic structure array, the shapewrite function writes the latitude and longitude values as $Y$ and $X$ coordinates, respectively.
- If a given attribute is integer-valued for all features, shapewrite writes it to the [basename '.dbf'] file as an integer. If an attribute is non-integer-valued for any feature, shapewrite writes it as a fixed point decimal value with six digits to the right of the decimal place.


## filename - File name

string scalar | character vector
File name and location of the shapefile to create, specified as a string scalar or character vector. If the file name includes a file extension, it must be '. shp ' or '. SHP'. shapewrite creates three output files: [basename '.shp'], [basename '.shx'], and [basename '.dbf'], where basename is filename without its extension.

## dbfspec - Feature attributes to include in shapefile

scalar structure
Feature attributes to include in the shapefile, specified as a scalar MATLAB structure containing one field for each feature attribute. Assign to that field a scalar structure with the following four fields:

- FieldName - The field name to be used in the file
- FieldType - The field type to be used in the file: ' N ' (numeric) or ' C ' (character)
- FieldLength - The field length in the file, in bytes
- FieldDecimalCount - For numeric fields, the number of digits to the right of the decimal place

To create a DBF spec, call makedbfspec and then modify the output to remove attributes or change the FieldName, FieldLength, or FieldDecimalCount for one or more attributes.

To include an attribute in the output file, specify a field in dbfspec with the same name as the attribute is specified in S .

## Tips

- The xBASE (.dbf) file specifications require that geostruct and mapstruct attribute names are truncated to 11 characters when copied as DBF field names. Consider shortening long field names before calling shapewrite. By doing this, you make field names in the DBF file more readable and avoid introducing duplicate names as a result of truncation.
- Remember to set your character encoding scheme to match that of the geographic data structure you are exporting. For instance, if you are exporting a map that displays Japanese text, configure your machine to support Shift-JIS character encoding.


## See Also

makedbfspec | shapeinfo| shaperead

## Topics

"Geographic Data Structures"

Introduced before R2006a

## showaxes

Toggle display of map coordinate axes

## Syntax

showaxes(action) showaxes

## Description

showaxes(action) modifies the Cartesian axes based on the value of action, as defined in the Inputs section below.
showaxes toggles between displaying the default axes ticks on the MATLAB Cartesian axes and removing the axes ticks.

## Input Arguments

```
action
```

A character vector or RGB triple that specifies how to modify the Cartesian axes
Default:

Value	Action
'on'	Displays the MATLAB Cartesian axes and default axes ticks
'off'	Removes the axes ticks from the MATLAB Cartesian axes
'hide'	Hides the Cartesian axes
'show'	Shows the Cartesian axes
'reset'	Sets the Cartesian axes to the default settings
'boxoff '	Removes axes ticks, color, and box from the Cartesian axes
colorstr	Sets the Cartesian axes to the color specified by colorstr
colorvec	Uses colorvec to set the Cartesian axes color

## See Also

axesm

## Introduced before R2006a

## showm

Specify graphic objects to display on map axes

## Syntax

showm
showm(handle)
showm(object)

## Description

showm brings up a dialog box for selecting the objects to show (set their Visible property to ' on ').
showm (handle) shows the objects specified by a vector of handles.
showm(object) shows those objects specified by the object character vector, which can be any character vector recognized by the handlem function.

## See Also

clma | clmo | handlem | hidem | namem | tagm
Introduced before R2006a

## size

Return size of geographic or planar vector

## Syntax

```
sz = size(v)
sz = size(v,dim)
[m, n] = size(v)
```


## Description

sz $=$ size(v) returns the vector [length(v), 1].
$s z=\operatorname{size}(v, d i m)$ returns the length of geographic or planar vector $v$ in the dimension specified by dim.
$[m, n]=\operatorname{size}(v)$ returns the length of $v$ for $m$ and 1 for $n$.

## Examples

## Find the Size of a Mapshape Vector

Create a mapshape vector from a structArray.

```
structArray = shaperead('worldrivers.shp');
ms = mapshape(structArray)
ms =
 128x1 mapshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (128 features concatenated with 127 delimiters)
 X: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN NaN 126.0362 ...]
 Y: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN NaN 72.2894 72.3784 ...]
 Feature properties:
 Name: {1x128 cell}
```

Get the size of the mapshape vector.

```
sz = size(ms)
sz = 1×2
```

    128 1
    
## Input Arguments

## v - Geographic or planar vector <br> geopoint, geoshape, mappoint, or mapshape object

Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## dim - Dimension to measure length

positive integer scalar
Dimension to measure length of vector $v$, specified as a positive integer scalar.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

## Output Arguments

sz - Size of geographic or planar vector
nonnegative integer scalar or two-element vector
Size of vector $v$, returned as a nonnegative integer scalar or a two-element vector.

- When dim is not specified, sz is the two-element vector [length( $v$ ), 1 ].
- When dim is $1, s z$ is a scalar equal to the length of $v$.
- When $\operatorname{dim} \geq 2, s z$ is 1 .

Data Types: double
m - Size of vector in first dimension
nonnegative integer scalar
Size of vector $v$ in the first dimension, returned as a nonnegative integer scalar. $m$ is length ( $v$ ).
Data Types: double

## n - Size of vector in second dimension

1
Size of vector $v$ in the second dimension, returned as the value 1 .
Data Types: double

## See Also

length|isprop

## Introduced in R2012a

## sizem

(To be removed) Row and column dimensions needed for regular data grid

Note sizem will be removed in a future release. Instead, create a geographic raster reference object, and then query its RasterSize property. For more information, see "Compatibility Considerations".

## Syntax

$[r, c]=$ sizem(latlim, lonlim,scale)
rc = sizem(latlim,lonlim,scale)
[r,c,refvec] = sizem(latlim,lonlim,scale)

## Description

$[r, c]=$ sizem(latlim,lonlim,scale) returns the required size for a regular data grid lying between the latitude and longitude limits specified by the two-element input vectors lat lim and lonlim, which are of the form [south-limit north-limit] and [west-limit and eastlimit], respectively. The scale is the desired cells-per-degree measure of the desired data grid.
rc = sizem(latlim,lonlim,scale) returns the size of the matrix in one two-element vector.
[r,c,refvec] = sizem(latlim,lonlim,scale) also returns the three-element referencing vector geolocating the desired regular data grid.

## Examples

How large a matrix would be required for a map of the world at a scale of 25 matrix cells per degree? (That's $25 \times 25=625$ cells per "square" degree.)
[r, c] $=\operatorname{sizem}([90,-90],[-180,180], 25)$
$r=$
4500
c =
9000
Bear in mind for memory purposes $-9000 \times 4500=4.05 \times 10^{7}$ entries!

## Compatibility Considerations

## sizem will be removed

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the sizem function. Instead, create a geographic raster reference object using the georefcells function, and then query its RasterSize property. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows how to update your code to use the georefcells function instead of the sizem function.

Will Be Removed	Recommended
[nrows, ncols] = sizem(latlim, lonlim, scale);R = georefcells(latlim,lonlim,1/scale,1/scole);   nrows = R.RasterSize(1);   ncols $=$ R.RasterSize(2);	

## See Also

findm | NaN | ones | sparse | zeros | georefcells
Introduced before R2006a

## sizesMatch

Package: map.rasterref
Determine if geographic or map raster object and image or raster are size-compatible

## Syntax

tf = sizesMatch (R,A)

## Description

$\mathrm{tf}=\operatorname{sizesMatch}(\mathrm{R}, \mathrm{A})$ determines whether geographic or map raster R is size-compatible with image or raster A .

## Examples

## Check If Image and Geographic Raster Are Size-Compatible

Create a GeographicPostingsReference raster reference object.

```
latlim = [0 90];
lonlim = [-180 180];
rasterSize = [91 361];
R = georefpostings(latlim,lonlim,rasterSize,'ColumnsStartFrom','north')
R =
 GeographicPostingsReference with properties:
 LatitudeLimits: [0 90]
 LongitudeLimits: [-180 180]
 RasterSize: [91 361]
 RasterInterpretation: 'postings
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 SampleSpacingInLatitude: 1
 SampleSpacingInLongitude: 1
 RasterExtentInLatitude: 90
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [1 361]
 YIntrinsicLimits: [1 91]
 CoordinateSystemType: 'geographic'
 GeographicCRS: []
 AngleUnit: 'degree'
```

Create an arbitrary image (raster) with dimensions 91-by-361. Confirm that the image size is compatible with the geographic raster reference object.

```
A = ones(91,361);
tf_A = sizesMatch(R,A)
```

```
tf_A = logical
```

Create an image of a different size. Confirm that this new image is not size-compatible with the geographic raster reference object.
$\mathrm{B}=$ ones (90,361);
tf_B = sizesMatch (R,B)
tf_B = logical
0

## Input Arguments

## R - Geographic or map raster <br> GeographicCellsReference object | GeographicPostingsReference object | <br> MapCellsReference object | MapPostingsReference object

Geographic or map raster, specified as a GeographicCellsReference, GeographicPostingsReference, MapCellsReference, or MapPostingsReference object.

## A - Image or raster

numeric array or raster object
Image or raster, specified as a numeric array or raster object.
Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64|
logical|geographic raster object|map raster object

## Output Arguments

tf - Flag indicating geographic or map raster is size-compatible with image or raster logical scalar

Flag indicating geographic or map raster is size-compatible with image or raster, returned as a logical scalar. tf is True when R. RasterSize is equal to [size(A,1) size(A,2)] or A.RasterSize.

Data Types: logical

## See Also

Introduced in R2013b

## sm2deg

Convert spherical distance from statute miles to degrees

## Syntax

```
deg = sm2deg(sm)
deg = sm2deg(sm,radius)
deg = sm2deg(sm,sphere)
```


## Description

deg = sm2deg(sm) converts distances from statute miles to degrees, as measured along a great circle on a sphere with a radius of 3958.748 sm , the mean radius of the Earth.
deg = sm2deg(sm, radius) converts distances from statute miles to degrees, as measured along a great circle on a sphere having the specified radius.
deg $=$ sm2deg (sm,sphere) converts distances from statute miles to degrees, as measured along a great circle on a sphere approximating an object in the Solar System.

## Examples

## Convert Statute Miles to Degrees on Earth

Convert 500 statute miles to degrees, as measured along a great circle on the Earth. By default, the sm2deg function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3958.748 statute miles.

```
deg = sm2deg(500)
deg = 7.2366
```


## Convert Statute Miles to Degrees on Mars

Convert 500 statute miles to degrees, as measured along a great circle on Mars.

```
deg = sm2deg(500,'mars')
deg = 13.6001
```


## Input Arguments

## sm - Distance in statute miles

numeric array
Distance in statute miles, specified as a numeric array.

Data Types: single | double

## radius - Radius

3958.748 (default) | numeric scalar

Radius of sphere in units of statute miles, specified as a numeric scalar.
sphere - Sphere
'sun'|'moon'|'mercury' |'venus'|'earth'|...
Sphere approximating an object in the Solar System, specified as one of the following values: 'sun ', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

## Output Arguments

## deg - Distance in degrees

numeric array
Distance in degrees, returned as a numeric array.
Data Types: single|double

## See Also

deg2rad | rad2deg | deg2sm | sm2rad | km2deg | nm2deg

Introduced in R2007a

## sm2km

Convert statute miles to kilometers

## Syntax

$\mathrm{km}=\mathrm{sm} 2 \mathrm{~km}(\mathrm{sm})$

## Description

$\mathrm{km}=\mathrm{sm} 2 \mathrm{~km}(\mathrm{sm})$ converts distances from statute miles to kilometers.

## Examples

## Convert Statute Miles to Kilometers

Convert 500 statute miles to kilometers.
$\mathrm{km}=\operatorname{sm} 2 \mathrm{~km}(500)$
$\mathrm{km}=804.6736$

## Input Arguments

sm - Distance in statute miles
numeric array
Distance in statute miles, specified as a numeric array.

## Output Arguments

## km - Distance in kilometers

numeric array
Distance in kilometers, returned as a numeric array of the same size as sm.

## See Also

Functions
km2sm | deg2km | km2deg | deg2sm | sm2deg

Introduced in R2007a

## sm2nm

Convert statute to nautical miles

## Syntax

$\mathrm{nm}=\mathrm{sm} 2 \mathrm{~nm}(\mathrm{sm})$

## Description

$\mathrm{nm}=\mathrm{sm} 2 \mathrm{~nm}(\mathrm{sm})$ converts distances from statute miles to nautical miles.

## Examples

## Convert Statute Miles to Nautical Miles

Convert 500 statute miles to nautical miles.
$\mathrm{nm}=\mathrm{sm} 2 \mathrm{~nm}(500)$
$n m=434.4890$

## Input Arguments

sm - Distance in statute miles
numeric array
Distance in statute miles, specified as a numeric array.

## Output Arguments

nm - Distance in nautical miles
numeric array
Distance in nautical miles, returned as a numeric array of the same size as sm.

## See Also

Functions
nm2sm | deg2nm | nm2deg | deg2sm | sm2deg

Introduced in R2007a

## sm2rad

Convert spherical distance from statute miles to radians

## Syntax

```
rad = sm2rad(sm)
rad = sm2rad(sm,radius)
rad = sm2rad(sm,sphere)
```


## Description

rad $=\mathrm{sm} 2 \mathrm{rad}(\mathrm{sm})$ converts distances from statute miles to radians, as measured along a great circle on a sphere with a radius of 3958.748 sm , the mean radius of the Earth.
rad $=\mathrm{sm} 2 \mathrm{rad}(\mathrm{sm}$, radius) converts distances from statute miles to radians, as measured along a great circle on a sphere having the specified radius.
rad $=\mathrm{sm} 2 \mathrm{rad}(\mathrm{sm}$, sphere) converts distances from statute miles to radians, as measured along a great circle on a sphere approximating an object in the Solar System.

## Examples

## Convert Statute Miles to Radians on Earth

Convert 500 statute miles to radians, as measured along a great circle on the Earth. By default, the sm 2 rad function assumes your input is a measurement of the Earth, which is represented as a sphere with a radius of 3958.748 statute miles.

```
rad = sm2rad(500)
rad = 0.1263
```


## Convert Statute Miles to Radians on Mars

Convert 500 statute miles to radians, as measured along a great circle on Mars.

```
rad = sm2rad(500,'mars')
rad = 0.2374
```


## Input Arguments

## sm - Distance in statute miles

numeric array
Distance in statute miles, specified as a numeric array.

Data Types: single | double

## radius - Radius

3958.748 (default) | numeric scalar

Radius of sphere in units of statute miles, specified as a numeric scalar.
sphere - Sphere
'sun' |'moon' | 'mercury' | 'venus' | 'earth' | ...
Sphere approximating an object in the Solar System, specified as one of the following values: 'sun ', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto'. The value of sphere is case-insensitive.

## Output Arguments

## rad - Distance in radians

numeric array
Distance in radians, returned as a numeric array.
Data Types: single|double

## See Also

deg2rad|rad2deg | sm2deg | nm2rad | km2rad|rad2sm
Introduced in R2007a

## spcread

(To be removed) Read columns of data from ASCII text file

Note The spcread function will be removed in a future release. Use the readmatrix function instead.

## Syntax

```
mat = spcread
mat = spcread(filename)
mat = spcread(cols)
```


## Description

mat $=$ spcread reads an ASCII file of space-delimited data in two columns and returns the data in a matrix, mat. The file is selected by dialog box.
mat $=$ spcread(filename) specifies the file from which to read by its name, given as the character vector filename.
mat $=$ spcread (cols) specifies the number of columns of space-delimited data in the file with the integer cols. The default value of cols is 2 .

## Tips

The spcread function is similar to the standard MATLAB function dlmread. spcread, however, is much faster at reading large data sets of the type common for geographic purposes.

## See Also <br> readmatrix|nanclip

## Introduced before R2006a

## spzerom

(To be removed) Construct sparse regular data grid of 0 s

Note spzerom will be removed in a future release. Use the georefcells and sparse functions instead. For more information, see "Compatibility Considerations".

## Syntax

[Z,refvec] = spzerom(latlim,lonlim,scale)

## Description

[Z,refvec] = spzerom(latlim,lonlim,scale) returns a sparse regular data grid consisting entirely of 0 s and a three-element referencing vector for the returned $Z$. The two-element vectors latlim and lonlim define the latitude and longitude limits of the geographic region. They should be of the form [south north] and [west east], respectively. The scalar scale specifies the number of rows and columns per degree of latitude and longitude.

## Examples

```
[Z,refvec] = spzerom([46,51],[-79,-75],1)
Z =
 All zero sparse: 5-by-4
refvec =
 1 51 -79
```


## Compatibility Considerations

## spzerom will be removed

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the spzerom function. Instead, create a geographic raster reference object using the georefcells function and a sparse matrix of all zeros using the sparse function. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows how to update your code to use the georefcells and sparse functions instead of the spzerom function.

Will Be Removed	Recommended
[Z,refvec] = spzerom(latlim,lonlim,scale);	$\begin{array}{\|l\|} \mathrm{R}=\text { georefcells(latlim,lonlim,1/scale,1/sco } \\ Z=\text { sparse(R.RasterSize(1),R.RasterSize(2) } \end{array}$

## See Also

NaN | ones | zeros | sparse | georefcells

Introduced before R2006a

## stdist

Standard distance for geographic points

## Syntax

```
dist = stdist(lat,lon)
dist = stdist(lat,lon,units)
dist = stdist(lat,lon,ellipsoid)
dist = stdist(lat,lon,ellipsoid,units,method)
```


## Description

dist $=$ stdist(lat, lon) computes the average standard distance for geographic data. This function assumes that the data is distributed on a sphere. In contrast, std assumes that the data is distributed on a Cartesian plane. The result is a single value based on the great-circle distance of the data points from their geographic mean point. When lat and lon are vectors, a single distance is returned. When lat and lon are matrices, a row vector of distances is given, providing the distances for each column of lat and lon. N-dimensional arrays are not allowed. Distances are returned in degrees of angle units.
dist $=$ stdist(lat,lon, units) indicates the angular units of the data. When the standard angle units is omitted, 'degrees ' is assumed. Output measurements are in terms of these units (as arc length distance).
dist $=$ stdist(lat,lon,ellipsoid) specifies the shape of the Earth to be used with ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The default is a unit sphere. Output measurements are in terms of the distance units of the semimajor axis of the ellipsoid.
dist $=$ stdist(lat,lon,ellipsoid, units,method) specifies the method of calculating the standard distance of the data. The default, ' linear', is simply the average great circle distance of the data points from the centroid. Using 'quadratic' results in the square root of the average of the squared distances, and ' cubic' results in the cube root of the average of the cubed distances.

## Background

The function stdm provides independent standard deviations in latitude and longitude of data points. stdist provides a means of examining data scatter that does not separate these components. The result is a standard distance, which can be interpreted as a measure of the scatter in the great circle distance of the data points from the centroid as returned by meanm.

The output distance can be thought of as the radius of a circle centered on the geographic mean position, which gives a measure of the spread of the data.

## Examples

Create latitude and longitude lists using the worldcities data set and obtain standard distance deviation for group (compare with the example for stdm):

```
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strcmp('Paris',{cities(:).Name});
London = strcmp('London',{cities(:).Name});
Rome = strcmp('Rome',{cities(:).Name});
Madrid = strcmp('Madrid',{cities(:).Name});
Berlin = strcmp('Berlin',{cities(:).Name});
Athens = strcmp('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
 cities(Rome).Lat cities(Madrid).Lat...
 cities(Berlin).Lat cities(Athens).Lat]
lon = [cities(Paris).Lon cities(London).Lon...
 cities(Rome).Lon cities(Madrid).Lon...
 cities(Berlin).Lon cities(Athens).Lon]
dist = stdist(lat,lon)
lat =
 48.8708 51.5188 41.9260 40.4312
lon =
 2.4131
dist =
 8.1827
```


## See Also

meanm | stdm
Introduced before R2006a

## stdm

Standard deviation for geographic points

## Syntax

[latdev,londev] = stdm(lat,lon)
[latdev,londev] = stdm(lat,lon,ellipsoid)
[latdev,londev] = stdm(lat,lon,units)

## Description

[latdev,londev] = stdm(lat,lon) returns row vectors of the latitude and longitude geographic standard deviations for the data points specified by the columns of lat and lon.
[latdev,londev] = stdm(lat,lon,ellipsoid) specifies the shape of the Earth to be used by the ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The default ellipsoid is a unit sphere. Output measurements are in terms of the distance units of the ellipsoid vector.
[latdev,londev] = stdm(lat,lon, units) indicates the angular units of the data. When you omit units, ' degrees' is assumed. Output measurements are in terms of these units (as arc length distance).

If a single output argument is used, then geodevs = [latdev longdev]. This is particularly useful if the original lat and lon inputs are column vectors.

## Background

Determining the deviations of geographic data in latitude and longitude is more complicated than simple sum-of-squares deviations from the data averages. For latitude deviation, a straightforward angular standard deviation calculation is performed from the geographic mean as calculated by meanm. For longitudes, a similar calculation is performed based on data departure rather than on angular deviation. See "Geographic Statistics for Point Locations on a Sphere" in the Mapping Toolbox User's Guide.

## Examples

Create latitude and longitude lists using the worldcities data set and obtain standard distance deviation for group (compare with the example for stdist):

```
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strcmp('Paris',{cities(:).Name});
London = strcmp('London',{cities(:).Name});
Rome = strcmp('Rome',{cities(:).Name});
Madrid = strcmp('Madrid',{cities(:).Name});
Berlin = strcmp('Berlin',{cities(:).Name});
Athens = strcmp('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...
 cities(Rome).Lat cities(Madrid).Lat...
 cities(Berlin).Lat cities(Athens).Lat]
```

```
lon = [cities(Paris).Lon cities(London).Lon...
 cities(Rome).Lon cities(Madrid).Lon...
 cities(Berlin).Lon cities(Athens).Lon]
[latstd,lonstd]=stdm(lat,lon)
lat =
 48.8708 51.5188 41.9260 40.4312
lon =
 2.4131 -0.1300 12.4951
latstd =
 2.7640
lonstd =
 68.7772
```


## See Also

departure|filterm|hista|histr|meanm|stdist
Introduced before R2006a

## stem3m

Project stem plot on map axes

## Syntax

h = stem3m(lat,lon, z)
h $=$ stem3m(lat,lon, z, LineSpec)
h = stem3m(lat,lon,z,PropertyName,PropertyValue,...)

## Description

$h=s t e m 3 m(l a t$, lon,$z)$ displays a stem plot on the current map axes. Stems are located at the points (lat,lon) and extend from an altitude of 0 to the values of $z$. The coordinate inputs should be in the same AngleUnits as the map axes. It is important to note that the selection of $z$-values will greatly affect the 3-D look of the plot. Regardless of AngleUnits, the $x$ and $y$ limits of the map axes are at most $-\Pi$ to $+\Pi$ and $-\Pi / 2$ to $+\Pi / 2$, respectively. This means that for most purposes, appropriate $z$ values would be on the order of 1 to 3 , not 10 to 30 . The axes DataAspectRatio property can be used to adjust the appearance of the graphic. The handles of the displayed stem lines can be returned in $h$.
h = stem3m(lat,lon, z,LineSpec) specifies the line style, marker, and color on page 1-1464.
h = stem3m(lat,lon,z,PropertyName, PropertyValue,...) allows any property/value pair recognized by the MATLAB line function to be specified for the stems.

A stem plot displays data as lines extending normal to the $x y$-plane, in this case, on a map.

## Examples

## Project Stem Plot on Map Axes

Project a stem plot on a map axes.

```
load coastlines
axesm sinusoid;
view(3)
h = framem;
set(h,'zdata',zeros(size(coastlat)))
plotm(coastlat,coastlon)
ptlat = [0 30 30 -50 -78]';
ptlon = [0 30 -70 65 -35]';
ptz = [1 1.5 2 .5 1]';
stem3m(ptlat,ptlon,ptz,'r-')
```



## More About

## Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' $-\quad r$ '.

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - - -
':'	Dotted line	.................
' - .	Dash-dotted line	-.-.-.-.-


Marker	Description	Resulting Marker
' 0 '	Circle	$\bigcirc$
'+'	Plus sign	+


Marker	Description	Resulting Marker
'*'	Asterisk	*
'.'	Point	-
' $\times$ '	Cross	$\times$
'-	Horizontal line	-
'1'	Vertical line	\|
's'	Square	$\square$
'd'	Diamond	$\diamond$
'^'	Upward-pointing triangle	$\triangle$
'v'	Downward-pointing triangle	$\nabla$
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	$\checkmark$
'p'	Pentagram	$\star$
'h'	Hexagram	\%


Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

## See Also

scatterm

## Introduced before R2006a

## str2angle

Convert strings to angles in degrees

## Syntax

angle $=$ str2angle(str)

## Description

angle $=$ str2angle(str) converts text representing latitude or longitude angles to numeric angles in degrees.

## Examples

## Convert String Arrays to Degrees

Create a string array containing these latitudes and longitudes. Specify each angle using a different format.

- 23 degrees, 30 minutes, 0 seconds north of the equator
- 23 degrees, 30 minutes, 0 seconds south of the equator
- 123 degrees, 30 minutes, 0 seconds east of the prime meridian
- 123 degrees, 30 minutes, 0 seconds west of the prime meridian

```
str = ["23`30'00""N" "23-30-00S" "123d30m00sE" "1233000W"];
```

Convert the string array to a numeric array in degrees.

```
angle = str2angle(str)
```

angle $=4 \times 1$

## Input Arguments

str - Text that represents latitude or longitude angles
character vector | string scalar | cell array of character vectors | string array
Text that represents latitude or longitude angles, specified as a character vector, a string scalar, a cell array of character vectors, or a string array.

Specify angles in degrees-minutes-seconds using one of the formats in this table. Specify positive latitudes using $N$, negative latitudes using $S$, positive longitudes using $E$, and negative longitudes using W.

Format	Example
Use ${ }^{\circ}$ for degrees, ' for minutes, and " for seconds.	"123³0'00" "W"
Use d for degrees, $m$ for minutes, and $s$ for seconds.	"123d30m00sW"
Use - to separate degrees, minutes, and seconds.	"123-30-00W"
Omit symbols that separate degrees, minutes, and seconds (packed DMS). This format does not support fractional seconds.	"1233000W"

When str contains more than one angle, you can use more than one angle format.
Specifying directions by using positive (+) or negative (-) signs is not supported.
Data Types: char|string|cell

## Output Arguments

## angle - Angles in degrees

numeric scalar | numeric column vector
Angles in degrees, returned as a numeric scalar or numeric column vector. If str is a character vector or string scalar, then angle is a numeric scalar. If str is a cell array of character arrays or a string array, then angle is a numeric column vector with the same number of elements as str.
Data Types: double

## See Also

## Functions

angl2str|dist2str|str2double

## Topics

"Angle Representations and Angular Units"

## Introduced before R2006a

## struct

Convert geographic or planar vector to scalar structure

## Syntax

$\mathrm{s}=\mathrm{struct}(\mathrm{v})$

## Description

$\mathrm{s}=\mathrm{struct}(\mathrm{v})$ converts the geographic or planar vector v to a scalar structure, s .

## Examples

## Convert a Mappoint Vector into a Structure

Create a mappoint vector.

```
mp = mappoint(shaperead('tsunamis.shp'))
mp =
 162x1 mappoint vector with properties:
 Collection properties:
 Geometry: 'point
 Metadata: [1x1 struct]
 Feature properties:
 X: [128.3000 -156 157.9500 143.8500 -155 -82.4000 159.5000 156.5000 ...]
 Y: [-3.8000 19.5000 -9.0200 42.1500 19.1000 43.1000 52.7500 50 ...]
 Year: [1950 1951 1951 1952 1952 1952 1952 1953 1953 1953 1953 1954]
 Month: [10 8 12 3 3 5 11 3 6 9 11 6 10 4 11 3 6 7 1 4 7 11 11 5 8 8 ...]
 Day: [8 21 22 4 17 6 4 18 27 14 25 26 NaN 19 2 9 22 28 19 22 10 6 12 ...]
 Hour: [3 10 NaN 1 3 NaN 16 NaN NaN 0 17 NaN NaN 20 NaN 14 23 8 14 ...]
 Minute: [23 57 NaN 22 58 NaN 58 NaN NaN 26 48 NaN NaN 24 NaN 22 50]
 Second: [NaN NaN NaN 41 NaN NaN NaN NaN NaN 36 NaN NaN NaN NaN NaN ...]
 Val_Code: [2 4 2 4 4 1 4 3 3 4 4 1 2 4 3 4 3 4 4 2 4 4 2 4 4 4 4 4 4]
 Validity: {1x162 cell}
 Cause Code: [1 1 6 1 1 9 1 1 6 3 1 9 0 1 1 1 1 1 1 1 1 3 1 1 1 0 3 1 1]
 Cause: {1x162 cell}
 Eq_Mag: [7.6000 6.9000 NaN 8.1000 4.5000 NaN 9 5.8000 NaN 6.8000 ...]
 Country: {1x162 cell}
 Location: {1x162 cell}
 Max_Height: [2.8000 3.6000 6 6.5000 1 1.5200 18 1.5000 1.4000 3 3 3 ...]
 Iida_Mag: [1.5000 1.8000 2.6000 2.7000 NaN NaN 4.2000 0.6000 0.5000 ...]
 Intensity: [1.5000 NaN NaN 2 NaN NaN 4 NaN 1 1.5000 1.5000 NaN NaN ...]
 Num_Deaths: [NaN NaN NaN 33 NaN NaN 2236 NaN NaN NaN NaN 7 NaN 3 NaN ...]
 Desc_Deaths: [NaN NaN NaN 1 NaN NaN 3 NaN NaN NaN NaN 1 NaN 1 NaN ...]
```

Convert the mappoint vector into a structure.

```
s = struct(mp)
```

```
s = struct with fields:
 Geometry: 'point'
 Metadata: [1x1 struct]
 X: [128.3000 -156 157.9500 143.8500 -155 -82.4000 159.5000 ...]
 Y: [-3.8000 19.5000 -9.0200 42.1500 19.1000 43.1000 ...]
 Year: [1950 1951 1951 1952 1952 1952 1952 1953 1953 1953 1953 ...]
 Month: [10 8 12 3 3 5 11 3 6 9 11 6 10 4 11 3 6 7 1 4 7 11 11 ...]
 Day: [8 21 22 4 17 6 4 18 27 14 25 26 NaN 19 2 9 22 28 19 22 ...]
 Hour: [3 10 NaN 1 3 NaN 16 NaN NaN 0 17 NaN NaN 20 NaN 14 23]
 Minute: [23 57 NaN 22 58 NaN 58 NaN NaN 26 48 NaN NaN 24 NaN 22 ...]
 Second: [NaN NaN NaN 41 NaN NaN NaN NaN NaN 36 NaN NaN NaN NaN ...]
 Val_Code: [2 4 2 4 4 1 4 3 3 4 4 1 2 4 3 4 3 4 4 2 4 4 2 4 4 4 4 ...]
 Validity: {1x162 cell}
 Cause Code: [1 1 6 1 1 9 1 1 6 3 1 9 0 1 1 1 1 1 1 1 3 1 1 1 0 3 1 ...]
 Cause: {1x162 cell}
 Eq_Mag: [7.6000 6.9000 NaN 8.1000 4.5000 NaN 9 5.8000 NaN ...]
 Country: {1x162 cell}
 Location: {1\times162 cell}
 Max Height: [2.8000 3.6000 6 6.5000 1 1.5200 18 1.5000 1.4000 3 3 3 ...]
 Iida Mag: [1.5000 1.8000 2.6000 2.7000 NaN NaN 4.2000 0.6000 ...]
 Intensity: [1.5000 NaN NaN 2 NaN NaN 4 NaN 1 1.5000 1.5000 NaN NaN]
 Num_Deaths: [NaN NaN NaN 33 NaN NaN 2236 NaN NaN NaN NaN 7 NaN 3 ...]
Desc_Deaths: [NaN NaN NaN 1 NaN NaN 3 NaN NaN NaN NaN 1 NaN 1 NaN ...]
```


## Input Arguments

v - Geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Geographic or planar vector, specified as a geopoint, geoshape, mappoint, or mapshape object.

## Output Arguments

s-Structure representing a geographic or planar vector
scalar structure
Structure representing a geographic or planar vector, returned as a scalar structure.

## See Also

length|properties
Introduced in R2012a

## struct2geotable

Convert structure array to geospatial table

## Syntax

```
GT = struct2geotable(S)
GT = struct2geotable(S,coordinateSystemType,fnames)
GT = struct2geotable(S,Name=Value)
```


## Description

GT = struct2geotable(S) converts the structure array S to a geospatial table GT. The function creates the Shape variable of GT by using the latitude-longitude or $x$ - $y$ coordinates in S. Each field of S is a variable of GT.

GT = struct2geotable(S, coordinateSystemType,fnames) creates the Shape variable of GT by using the coordinate system type coordinateSystemType and structure array fields fnames.

GT = struct2geotable(S,Name=Value) specifies options using name-value arguments. For example, specify that coordinates represent points, lines, or polygons by using the GeometryType name-value argument.

## Examples

## Convert Structure Array to Geospatial Table

Read a shapefile containing hydrographic data for Concord, MA, as a structure array. Import only the polygons with an area greater than 100 square kilometers. The $x$ - and $y$-coordinates are in the $X$ and $Y$ fields of the structure.

```
areafilterfcn = @(areafilter) (areafilter > 100000);
S = shaperead("concord_hydro_area.shp", ...
 Selector={areafilterfcn,'AREA'});
```

Get the coordinate reference system for the data.

```
info = shapeinfo("concord_hydro_area.shp");
crs = info.CoordinateReferenceSystem;
```

Convert the structure array to a geospatial table. The struct2geotable function detects the X and Y fields and uses them to create the Shape variable. Specify the coordinate reference system for the Shape variable.

```
GT = struct2geotable(S, ...
 CoordinateReferenceSystem=crs);
```

View the shape object in the second row of the table. Shape object properties contain information such as the number of holes.

GT.Shape(2)

```
ans =
 mappolyshape with properties:
 NumRegions: 1
 NumHoles: 3
 Geometry: "polygon"
 CoordinateSystemType: "planar"
 ProjectedCRS: [1x1 projcrs]
```

Display the polygons.

```
mapshow(GT,FaceColor="c")
```



## Specify Fields Containing Coordinate Data

Create a sample structure array containing the locations of cities. The Lats field contains latitudes, the Lons field contains longitudes, and the Names field contains names.

```
lats = {35.7082,-22.8842,51.5074,39.9042,37.9838};
lons = {139.6401,-43.3882,-0.1278,116.4074,23.7275};
n = {'Tokyo','Rio de Janeiro','London','Beijing','Athens'};
S = cell2struct([lats;lons;n],{'Lats','Lons','Names'},1)
S=5\times1 struct array with fields:
 Lats
```

Lons
Names

Convert the structure array to a geospatial table. The struct2geotable function does not automatically detect the field names Lats and Lons. Specify the coordinate system type as "geographic" and the field names containing the coordinates.

GT = struct2geotable(S,"geographic", ["Lats" "Lons"])
GT=5×4 table

Shape	Lats	Lons	Names
( $35.7082^{\circ} \mathrm{N}, 139.6401^{\circ} \mathrm{E}$ )	35.708	139.64	\{'Tokyo' \}
(22.8842 ${ }^{\circ} \mathrm{S}, 43.3882^{\circ} \mathrm{W}$ )	-22.884	-43.388	\{'Rio de Janeiro'\}
(51.5074 $\left.{ }^{\circ} \mathrm{N}, \quad 0.1278{ }^{\circ} \mathrm{W}\right)$	51.507	-0.1278	\{'London'
(39.9042 $\left.{ }^{\circ} \mathrm{N}, 116.4074{ }^{\circ} \mathrm{E}\right)$	39.904	116.41	\{'Beijing'
$\left(37.9838^{\circ} \mathrm{N}, \quad 23.7275^{\circ} \mathrm{E}\right)$	37.984	23.727	\{'Athens'

View the Shape variable of the geospatial table.
GT. Shape

```
ans =
 5x1 geopointshape array with properties:
 NumPoints: [5x1 double]
 Latitude: [5x1 double]
 Longitude: [5x1 double]
 Geometry: "point"
 CoordinateSystemType: "geographic"
 GeographicCRS: []
```


## Input Arguments

S - Input structure array
structure array
Input structure array.
The struct2geotable function detects the coordinates when the structure array fields have these names, ignoring case.

- Latitude coordinates - Latitude or Lat
- Longitude coordinates - Longitude, Lon, or Long
- $x$-coordinates $-X$
- $y$-coordinates $-Y$

If you specify an input structure array with a field called Shape, then the struct2geotable function overwrites it.
Data Types: struct

## coordinateSystemType - Coordinate system type

"planar"| "geographic"
Coordinate system type, specified as one of these options:

- "planar" - Coordinates are in a planar coordinate system.
- "geographic" - Coordinates are in a geographic coordinate system.

Data Types: string
fnames - Names of structure array fields
two-element string vector
Names of the structure array fields used to create the Shape variable of the geospatial table, specified as a two-element string vector, such as ["Lats" "Lons"]. The fields contain latitudelongitude or $x-y$ coordinates.

## Data Types: string

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: struct2geotable(S,CoordinateReferenceSystem=geocrs(4326)) specifies the geographic CRS as the World Geodetic System of 1984, which has EPSG code 4326.

## CoordinateReferenceSystem - Coordinate reference system projcrs object| geocrs object

Coordinate reference system (CRS) to use when creating the Shape variable of the geospatial table, specified as a projers or geocrs object.

Specify a projers object when coordinateSystemType is "planar" and specify a geocrs object when coordinateSystemType is "geographic".

## GeometryType - Geometry type

"point" (default)| "line" | "polygon"
Geometry type of the coordinate fields, specified as one of these options:

- "point" - The coordinate fields represent points.
- "line" - The coordinate fields represent lines.
- "polygon" - The coordinate fields represent polygons.

When you specify the geometry type as "polygon", the struct2geotable function assumes that the coordinates define polygons with a valid topology. A polygon has a valid topology when:

- Region interiors are to the right as you trace boundaries from vertex to vertex.
- The boundaries have no self-intersections.

In general, the outer boundaries of polygons with a valid topology have vertices in a clockwise order and the interior holes have vertices in a counterclockwise order.

The struct2geotable function detects the geometry type when the input structure array has a Geometry field with a value of 'Point', 'Multipoint', 'Line', or 'Polygon'.

## Output Arguments

## GT - Output geospatial table

geospatial table
Output geospatial table. A geospatial table is a table or timetable object with a Shape variable that contains geopointshape, geolineshape, geopolyshape, mappointshape, maplineshape, or mappolyshape objects.

For an input structure array with $M$ elements and $N$ fields, the size of GT is $M$-by- $(N+1)$.

## Tips

- When the input structure has latitude-longitude fields and $x-y$ fields, the struct2geotable function creates the geospatial table using the latitude-longitude fields. Create the geospatial table using the $x-y$ fields by specifying the coordinateSystemType and fnames arguments.
- When you know that a shapefile contains latitude and longitude coordinates and read the shapefile using the shaperead function, you must specify the UseGeoCoords argument as true. Otherwise, the structure array contains $X$ and $Y$ fields instead of Lat and Lon fields. As a result, the struct2geotable function creates the Shape variable of the geospatial table using planar shape objects such as mappointshape instead of geographic shape objects such as geopointshape.


## See Also

## Functions

readgeotable|table2geotable
Topics
"Create Geospatial Tables"

Introduced in R2021b

## surfacem

Project and add geolocated data grid to current map axes

## Syntax

```
surfacem(lat,lon,Z)
surfacem(latlim,lonlim,Z)
surfacem(lat,lon,Z,alt)
surfacem(...,prop1,val1,prop2,val2,...)
h = surfacem(...)
```


## Description

surfacem(lat, lon, $Z$ ) constructs a surface to represent the data grid $Z$ in the current map axes. The surface lies flat in the horizontal plane with its CData property set to $Z$. The vectors or 2-D arrays lat and lon define the latitude-longitude graticule mesh on which Z is displayed. For a complete description of the various forms that lat and lon can take, see surfm.
surfacem(latlim,lonlim, $Z$ ) defines the graticule using the latitude and longitude limits latlim and lonlim. These limits should match the geographic extent of the data grid $Z$. The two-element vector latlim has the form:
[southern_limit northern_limit]
Likewise, lonlim has the form:
[western_limit eastern_limit]
A latitude-longitude graticule of size 50-by-100 is constructed. The surface FaceColor property is 'texturemap', except when $Z$ is precisely 50 -by- 100 , in which case it is ' fl at'.
surfacem(lat,lon, Z, alt) sets the ZData property of the surface to 'alt', resulting in a 3-D surface. Lat and lon must result in a graticule mesh that matches alt in size. CData is set to Z . Facecolor is 'texturemap', unless $Z$ matches alt in size, in which case it is 'flat'.
surfacem (..., prop1, val1, prop2, val2, ...) applies additional MATLAB graphics properties to the surface via property/value pairs. You can specify any property accepted by the surface function, except XData, YData, and ZData.
$\mathrm{h}=\operatorname{surfacem}(. .$.$) returns a handle to the surface object.$

Note Unlike meshm and surfm, surfacem always adds a surface to the current axes, regardless of hold state.

## Examples

Load elevation raster data and a geographic cells reference object. Then, display the data as a surface.
load topo60c
[topo60c,topo60cR] = geocrop(topo60c,topo60cR,[-90 90],[-180,180]); [lat,lon] = geographicGrid(topo60cR);
worldmap world
surfacem(lat,lon,topo60c)
demcmap(topo60c)


## See Also

geoshow | meshm | pcolorm|surfm

Introduced before R2006a

## surflm

3-D shaded surface with lighting on map axes

## Syntax

```
surflm(lat,lon,Z)
surflm(latlim,lonlim,Z)
surflm(...,s)
surflm(...,s,k)
h = surflm(...)
```


## Description

surflm(lat,lon,Z) and surflm(latlim, lonlim, Z) are the same as surfm(...) except that they highlight the surface with a light source. The default light source ( 45 degrees counterclockwise from the current view) and reflectance constants are the same as in surfl.
surflm(...,s) and surflm(...,s,k) use a light source vector, s, and a vector of reflectance constants, $k$. For more information on $s$ and $k$, see the help for surfl.
$\mathrm{h}=\operatorname{surflm}(\ldots)$ returns a handle to the surface object.

## Examples

## Display 3-D Shaded Surface with Lighting

Display a 3-D shaded surface with lighting on a map. To do this, first load elevation raster data and a geographic cells reference object. Get the coordinates of coastlines.

```
load topo60c
[topo60c,topo60cR] = geocrop(topo60c,topo60cR,[-90 90],[-180 180]);
load coastlines
```

Create a map axes object using a Miller projection. Remove the axes background by calling axis off.

```
axesm miller
axis off
```

Create a latitude-longitude mesh from the raster using the geographicGrid function. Then, display the elevation data as a shaded surface with lighting. Apply a grayscale colormap.

```
[lat,lon] = geographicGrid(topo60cR);
surflm(lat,lon,topo60c)
colormap(gray)
```

Display the coastlines over the surface.

```
plotm(coastlat,coastlon,max(topo60c(:)),...
 'LineWidth',1.5,'Color','y')
```



## Tips

surflm is like surfm, except that it shades the monochrome map surface with a light source, and the only allowed graticule is the size of the data matrix.

## See Also

surfm

## Introduced before R2006a

## surflsrm

3-D lighted shaded relief of geolocated data grid

## Syntax

```
surflsrm(lat,long,Z)
surflsrm(lat,long,Z,[azim elev])
surflsrm(lat,long,Z,[azim elev],cmap)
surflsrm(lat,long,Z,[azim elev],cmap,clim)
h = surflsrm(...)
```


## Description

surflsrm(lat,long, Z) displays the geolocated data grid, colored according to elevation and surface slopes. The current axes must have a valid map projection definition.
surflsrm(lat,long, Z, [azim elev]) displays the geolocated data grid with the light coming from the specified azimuth and elevation. Lighting is applied before the data is projected. Angles are in degrees, with the azimuth measured clockwise from North, and elevation up from the zero plane of the surface. By default, the direction of the light source is east ( $90^{\circ}$ azimuth) at an elevation of $45^{\circ}$.
surflsrm(lat,long, Z , [azim elev], cmap) displays the geolocated data grid using the provided colormap. The number of grayscales is chosen to keep the size of the shaded colormap below 256. By default, the colormap is constructed from 16 colors and 16 grays. If the vector of azimuth and elevation is empty, the default locations are used.
surflsrm(lat,long, Z, [azim elev], cmap, clim) uses the provided color axis limits, which are, by default, automatically computed from the data.
$h=\operatorname{surflsrm}(. .$.$) returns the handle to the surface drawn.$

## Examples

Create a new colormap using demcmap with white colors for the sea and default colors for land. Use this colormap for the lighted shaded relief map of the Middle East region:

```
load mapmtx
[cmap,clim] = demcmap(map1,[],[1 1 1],[]);
axesm loximuth
surflsrm(lt1,lg1,map1,[],cmap,clim)
```



## Tips

This function effectively multiplies two colormaps, one with color based on elevation, the other with a grayscale based on the slope of the surface, to create a new colormap. This produces an effect similar to using a light on a surface, but with all of the visible colors actually in the colormap. Lighting calculations are performed on the unprojected data.

## See Also

meshlsrm | meshm | pcolorm| shaderel | surfacem | surflm | surfm
Introduced before R2006a

## surfm

Project geolocated data grid on map axes

## Syntax

```
surfm(lat,lon,Z)
surfm(latlim,lonlim,Z)
surfm(lat,lon,Z,alt)
surfm(...,prop1,val1,prop2,val2,...)
h = surfm(...)
```


## Description

surfm(lat,lon, $Z$ ) constructs a surface to represent the data grid $Z$ in the current map axes. The surface lies flat in the horizontal plane with its CData property set to Z. The 2-D arrays or vectors lat and lon define the latitude-longitude graticule mesh on which Z is displayed. The sizes and shapes of lat and lon affect their interpretation, and also determine whether the default FaceColor property of the surface is 'flat' or 'texturemap'. There are three options:

- 2-D arrays (matrices) having the same size as Z. Lat and lon are treated as geolocation arrays specifying the precise location of each vertex. FaceColor is 'flat'.
- 2-D arrays having a different size than Z. The arrays lat and lon define a graticule mesh that might be either larger or smaller than Z. Lat and lon must match each other in size. FaceColor is 'texturemap'.
- Vectors having more than two elements. The elements of lat and lon are repeated to form a graticule mesh with size equal to numel (lat)-by-numel (lon). FaceColor is 'flat' if the graticule mesh matches $Z$ in size. Otherwise, FaceColor is 'texturemap'.
surfm clears the current map if the hold state is 'off '.
surfm(latlim,lonlim,Z) defines the graticule using the latitude and longitude limits latlim and lonlim, which should match the geographic extent of the data grid Z . Latlim is a two-element vector of the form:

```
[southern_limit northern_limit]
```

Likewise lonlim has the form:
[western_limit eastern_limit]
A latitude-longitude graticule is constructed to match Z in size. The surface FaceColor property is 'flat' by default.
surfm(lat, lon, Z, alt) sets the ZData property of the surface to 'alt', resulting in a 3-D surface. lat and lon must result in a graticule mesh that matches alt in size. CData is set to Z . The FaceColor property is 'texturemap', unless $Z$ matches alt in size, in which case it is 'flat'.
$\operatorname{surfm}(\ldots, \operatorname{prop1}$, val1, prop2, val2,...) applies additional MATLAB graphics properties to the surface via property/value pairs. You can specify any property accepted by the surface function except XData, YData, and ZData.
$\mathrm{h}=\operatorname{surfm}(\ldots)$ returns a handle to the surface object.

## Examples

Load elevation raster data and a geographic cells reference object. Then, display the data as a surface.

```
load topo60c
axesm miller
axis off
framem on
gridm on
[topo60c,topo60cR] = geocrop(topo60c,topo60cR,[-90 90],[-180,180]);
[lat,lon] = geographicGrid(topo60cR);
surfm(lat,lon,topo60c)
demcmap(topo60c)
```



## Tips

This function warps a data grid to a graticule mesh, which is projected according to the map axes property MapProjection. The fineness, or resolution, of this grid determines the quality of the projection and the speed of plotting it. There is no hard and fast rule for sufficient graticule resolution, but in general, cylindrical projections need very few graticule points in the longitudinal direction, while complex curve-generating projections require more.

## See Also

geoshow | geographicGrid | meshm | pcolorm | surfacem
Introduced before R2006a

## symbolm

(Removed) Project point markers with variable size

Note The symbolm function has been removed. Use the scatterm function instead.

## Syntax

symbolm(lat,lon,z,'MarkerType')
symbolm(lat,lon,z,'MarkerType','PropertyName', PropertyValue,...)
h = symbolm(...)

## Description

symbolm(lat,lon, z, 'MarkerType') constructs a thematic map where the symbol size of each data point (lat, lon) is proportional to it weighting factor (z). The point corresponding to min (z) is drawn at the default marker size, and all other points are plotted with proportionally larger markers. MarkerType specifies the marker and optionally a color. For more information, see "Markers and Colors" on page 1-1483.
symbolm(lat,lon,z,'MarkerType','PropertyName', PropertyValue,....) applies the line properties to all the symbols drawn.
h = symbolm(...) returns a vector of handles to the projected symbols. Each symbol is projected as an individual line object.

## See also

scatterm,stem3m, plotm, plot

## More About

## Markers and Colors

Specify the marker and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify a color. For example, specify a red plus sign using ' $r$ +1 .

Marker	Description	Resulting Marker
'o'	Circle	$\bigcirc$
'+'	Plus sign	+
'*'	Asterisk	$*$
$' \cdot '$	Point	$\bullet$


Marker	Description	Resulting Marker
'x'	Cross	$\times$
'_'	Horizontal line	-
'1'	Vertical line	\|
's'	Square	$\square$
'd'	Diamond	$\diamond$
'^'	Upward-pointing triangle	$\triangle$
'v'	Downward-pointing triangle	$\nabla$
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	$\checkmark$
'p'	Pentagram	$\pm$
'h'	Hexagram	近


Color Name	Short Name	Appearance
'red'	'r'	
'green'	' $\mathrm{g}^{\prime}$	
'blue'	' $\mathrm{b}^{\prime}$	
'cyan'	'c'	
'magenta'	'm'	
'yellow'	' y '	
'black'	' $\mathrm{k}^{\prime}$	
'white'	' $\mathrm{w}^{\prime}$	

Introduced before R2006a

## table2geotable

Convert table to geospatial table

## Syntax

```
GT = table2geotable(T)
GT = table2geotable(T,coordinateSystemType,varnames)
GT = table2geotable(
```

$\qquad$

``` , Name=Value)
```


## Description

GT = table2geotable(T) converts the table or timetable T to a geospatial table GT. The function creates the Shape variable of GT by using the latitude-longitude or $x-y$ coordinates in T. Each variable of T is a variable of GT .

GT = table2geotable(T, coordinateSystemType, varnames) creates the Shape variable of GT by using the coordinate system type coordinateSystemType and table variables varnames. Use this syntax to create the Shape variable from well-known text (WKT) string representations of geometry or from coordinate data.

GT = table2geotable ( __ , Name=Value) specifies options using name-value arguments. For example, specify that coordinates represent points, lines, or polygons by using the GeometryType name-value argument. Use this syntax with any of the input arguments in the previous syntaxes.

## Examples

## Convert Table to Geospatial Table

Import data about tsunami events as a table. The latitude and longitude coordinates of the origin points are in the Latitude and Longitude table variables.

T = readtable("tsunamis.xlsx");
Convert the table to a geospatial table. The table2geotable function detects the Latitude and Longitude variables and uses them to create the Shape variable.

```
GT = table2geotable(T);
```

View the Shape variable.

```
GT.Shape
ans =
 162x1 geopointshape array with properties:
 NumPoints: [162x1 double]
 Latitude: [162x1 double]
 Longitude: [162x1 double]
 Geometry: "point"
 CoordinateSystemType: "geographic"
```


## Convert Table with WKT Strings to Geospatial Table

Create a sample table. The first table variable (WKTString) contains the WKT string representation of geometry for lines in planar coordinates. The second variable (Name) contains names.

```
wkt1 = "LINESTRING (210320.1875 913333.8125,210320.140625 913366.6875)";
wkt2 = "LINESTRING (210320.4375 913170.9375,210320.34375 913231.1875)";
name1 = "Line 1";
name2 = "Line 2";
T = table([wkt1;wkt2],[name1;name2],VariableNames={'WKTString','Name'})
T=2\times2 table
 WKTString
 "LINESTRING (210320.1875 913333.8125,210320.140625 913366.6875)" "Line 1"
 "LINESTRING (210320.4375 913170.9375,210320.34375 913231.1875)" "Line 2"
```

Convert the table to a geospatial table. Create the Shape variable of the table by using the WKT strings. For this example, specify the projected CRS as World Equidistant Cylindrical, which has the EPSG authority code 4087.

```
GT = table2geotable(T,"planar","WKTString", ...
 CoordinateReferenceSystem=projcrs(4087))
GT=2\times3 table
 Shape WKTString
 maplineshape
 maplineshape "LINESTRING (210320.4375 913170.9375,210320.34375 913231.1875)"
 "LINESTRING
```

    Name
    View the Shape variable of the geospatial table.
GT.Shape

```
ans=2\times1 object
 2x1 maplineshape array with properties:
```

        NumParts: [2x1 double]
            Geometry: "line"
        CoordinateSystemType: "planar"
            ProjectedCRS: [1x1 projcrs]
    
## Input Arguments

T - Input table<br>table object | timetable object

Input table, specified as a table or timetable object.
The table2geotable function detects the coordinates when the table variables have these names, ignoring case.

- Latitude coordinates - Latitude or Lat
- Longitude coordinates - Longitude, Lon, or Long
- $x$-coordinates - X
- $y$-coordinates $-Y$

If you specify an input table with a variable called Shape, then the table2geotable function overwrites it.
Data Types: table
coordinateSystemType - Coordinate system type
"planar" | "geographic"
Coordinate system type, specified as one of these options:

- "planar" - Coordinates are in a planar coordinate system.
- "geographic" - Coordinates are in a geographic coordinate system.

Data Types: string

## varnames - Names of table variables

string scalar | two-element string vector
Names of the table variables used to create the Shape variable of the geospatial table, specified as a string scalar or two-element string vector.

- Create the Shape variable from one table variable that contains WKT string representations of geometry by specifying varnames as a string scalar, such as "WKT"
- Create the Shape variable from two table variables that contain latitude-longitude or $x-y$ coordinates by specifying varnames as a two-element string vector, such as ["Lats" "Lons"].

Data Types: string

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: table2geotable(T,CoordinateReferenceSystem=geocrs(4326)) specifies the geographic CRS as the World Geodetic System of 1984, which has EPSG code 4326.

## CoordinateReferenceSystem - Coordinate reference system projcrs object | geocrs object

Coordinate reference system (CRS) to use when creating the Shape variable of the geospatial table, specified as a projers or geocrs object.

Specify a projcrs object when coordinateSystemType is "planar" and specify a geocrs object when coordinateSystemType is "geographic".

## GeometryType - Geometry type

"point" (default) | "line" | "polygon"
Geometry type of the coordinate variables, specified as one of these options:

- "point" - The coordinate fields represent points.
- "line" - The coordinate fields represent lines.
- "polygon" - The coordinate fields represent polygons.

When you specify the geometry type as "polygon", the table2geotable function assumes that the coordinates define polygons with a valid topology. A polygon has a valid topology when:

- Region interiors are to the right as you trace boundaries from vertex to vertex.
- The boundaries have no self-intersections.

In general, the outer boundaries of polygons with a valid topology have vertices in a clockwise order and the interior holes have vertices in a counterclockwise order.

If you specify varnames as a table variable containing WKT string representations of geometry, then the table2geotable function ignores this argument.

## Output Arguments

## GT - Output geospatial table

geospatial table
Output geospatial table. A geospatial table is a table or timetable object with a Shape variable that contains geopointshape, geolineshape, geopolyshape, mappointshape, maplineshape, or mappolyshape objects.

For an input table of size $M$-by- $N$, the size of GT is $M$-by- $(N+1)$.

## Tips

- When the input table has latitude-longitude fields and $x-y$ variables, the table2geotable function creates the geospatial table using the latitude-longitude variables. Create the geospatial table using the $x-y$ variables by specifying the coordinateSystemType and varnames arguments.


## See Also

## Functions

geotable2table|readgeotable| readtable|table2timetable

## Topics

"Create Geospatial Tables"

Introduced in R2021b

## tagm

Set Tag property of map graphics object

## Syntax

tagm(hndl, tagstr)

## Description

tagm(hndl, tagstr) sets the Tag property of each object designated in the vector of handles hndl to the associated row of the character matrix tagstr.

This property is recognized by the namem and handlem functions.

## Examples

Normally, a plotted line has a name of ' line':

```
axesm miller
lats = [3 2 1 1 2 3]; longs = [7 8 9 7 8 9];
h=plotm(lats,longs);
untagged = namem(h)
untagged =
line
```

The tagm function can rename it:

```
tagm(h,'testpath');
tagged = namem(h)
tagged =
testpath
```


## See Also

clma |clmo| handlem| hidem| namem| showm
Introduced before R2006a

## tbase

(To be removed) Read 5-minute global terrain elevations from TerrainBase

Note tbase will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z,refvec] = tbase(scalefactor)
[Z,refvec] = tbase(scalefactor,latlim,lonlim)

## Description

[Z, refvec] = tbase(scalefactor) reads the data for the entire world, reducing the resolution of the data by the specified scale factor. The result is returned as a regular data grid and an associated three-element referencing vector.
[Z,refvec] = tbase(scalefactor,latlim,lonlim) reads the data for the part of the world within the latitude and longitude limits. The limits must be two-element vectors in units of degrees.

## Background

TerrainBase is a global model of terrain and bathymetry on a regular 5-minute grid (approximately 10 km resolution). It is a compilation of the public domain data from almost 20 different sources, including the DCW-DEM and ETOPO5. The data set was created by the National Geophysical Data Center and World Data Center-A for Solid Earth Geophysics in Boulder, Colorado.

## Examples

## Read Data for a Region at Full Resolution

Set the scale factor to 1 and set the longitude and latitude limits. This example reads the data for Korea and Japan.

```
scalefactor = 1;
latlim = [30 45];
lonlim = [115 145];
```

Read the data and view the size of the returned variables.

```
[Z,refvec] = tbase(scalefactor,latlim,lonlim);
whos
Name Size Bytes Class
```

```
Z 180x360 518400 double array
refvec 1x3 24 double array
```


## Compatibility Considerations

## tbase will be removed

Warns starting in R2021b
Support for reading the TerrainBase Global Terrain Model will be removed. In addition, raster reading functions that return referencing vectors will be removed, including tbase. Use a supported data set and return a raster reference object using readgeoraster instead.

Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop functions.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize functions.
- Most functions that accept referencing vectors as input also accept reference objects.

For information about finding data sets, see "Find Geospatial Raster Data".

## See Also <br> readgeoraster|georasterinfo

Introduced before R2006a

## textm

Project text annotation on map axes

## Syntax

```
textm(lat,lon,string)
textm(lat,lon,z,string)
textm(lat,lon,z,string,PropertyName,PropertyValue,...)
h = textm(...)
```


## Description

textm(lat,lon,string) projects the text in string onto the current map axes at the locations specified by the lat and lon. The units of lat and lon must match the 'angleunits' property of the map axes. If lat and lon contain multiple elements, textm places a text object at each location. In this case string may be a cell array of character vectors with the same number of elements as lat and lon. (For backward compatibility, string may also be a 2-D character array such that size(string,1) matches numel(lat)).
textm(lat,lon, z,string) draws the text at the altitude(s) specified in $z$, which must be the same size as lat and lon. The default altitude is 0 .
textm(lat,lon, z,string, PropertyName, PropertyValue, ...) sets the text object properties. All properties supported by the MATLAB text function are supported by textm.
$\mathrm{h}=\operatorname{textm}(\ldots)$ returns the handles to the text objects drawn.

## Examples

The feature of textm that distinguishes it from the standard MATLAB text function is that the text object is projected appropriately. Type the following:

```
axesm sinusoid
framem('FEdgeColor','red')
textm(60,90,'hello')
```


figure; axesm miller
framem('FEdgeColor','red')
textm(60,90,'hello')


The text 'hello' is placed at the same geographic point, but it appears to have moved relative to the axes because of the different projections. If you change the projection using the setm function, the text moves as necessary. Use text to fix text objects in the axes independent of projection.

## Tips

You may be working with scalar lat and lon data or vector lat and lon data. If you are in scalar mode and you enter a cell array of character vectors, you will get a text object containing multiple lines. Also note that vertical slash characters, rather than producing multiple lines of text, yield a single line of text containing vertical slashes. On the other hand, if lat and lon are nonscalar, then the size of the cell array input must match their size exactly.

## See Also

axesm|text
Introduced before R2006a

## tgrline

(Removed) Read TIGER/Line data

Note The tgrline function has been removed. Use a more recent TIGER/Line data set and the readgeotable function instead.

## Syntax

[CL, PR, SR, RR, $\mathrm{H}, \mathrm{AL}, \mathrm{PL}]=$ tgrline(filename)
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename, year)
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename, year, countyname)

## Description

[CL, PR, SR , RR, H, AL, PL] = tgrline(filename) reads a set of 1994 TIGER/Line files which share the same file name, but different extensions. The results are returned in a set of Mapping Toolbox display structures tagged with feature names and containing:

- county boundaries (CL)
- primary roads (PR)
- secondary roads (SR)
- railroads (RR)
- hydrography (H)
- area landmarks (AL)
- point landmarks (PL)
[CL, PR, SR, RR, H, AL, PL] = tgrline(filename, year) reads the TIGER line files in the format from that year. The layout of TIGER/Line files is updated periodically and file name extensions may change from year to year. Valid years are 1990, 1992, 1994, 1995, 1999, 2000, 2002, 2003, and 2004.
[CL,PR,SR,RR,H,AL,PL] = tgrline(filename, year, countyname) uses the character vector countyname to tag the county data.


## Background

The United States Census Bureau distributes TIGER/Line data over the Internet and via CD-ROM or DVD.

TIGER/Line files contain vector map data used to support mapping for the U.S. Census Bureau. TIGER is an acronym for Topographically Integrated Geographic Encoding and Referencing. These files contain data for political boundaries, including states, counties, Indian reservations, and census tracts, as well as roads, railroads, hydrography, and landmarks. In addition to the geographically referenced information, the files also contain data to determine the address of an object. The data covers the United States of America and its territories or administrative units: Puerto Rico, the Virgin Islands of the United States, American Samoa, Guam, the Commonwealth of the Northern Marianna Islands, the Republic of Palau, the other Pacific entities that were part of the Trust Territory of the

Pacific Islands (the Republic of the Marshall Islands and the Federated States of Micronesia), and the Midway Islands. The most common application of this data is to commercial CD-ROM road atlases.

TIGER/Line is a registered trademark of the United States Census Bureau.

## Examples

Read from the data for Washington, D.C.:
[CL, PR, SR, RR, H, AL, PL] = tgrline('TGR11001', 1994,'Wash, DC');

## Tips

This function reads only a subset of the data in the TIGER/Line files. For example, the function does not return local roads, zip codes, or census tract numbers.

Data are returned as Mapping Toolbox display structures, which you can then update to geographic data structures. For information about display structure format, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym. The updategeostruct function performs such conversions.

## See Also

readgeotable|shaperead|updategeostruct
Introduced before R2006a

## tightmap

Remove white space around map

## Syntax

tightmap

## Description

tightmap sets the axis limits to be tight around the map in the current axes. This eliminates or reduces the white border between the map frame and the axes box. Use axis auto to undo tightmap.

## Examples

## Display Map of Africa With and Without Surrounding White Space

Display a map of Africa. Notice the white space between the map frame and the edge of the axes box.

```
axesm('miller','maplatlim',[-40 40],'maplonlim',[-20 60])
```

framem;
gridm;
mlabel;
plabel
load coastlines
plotm(coastlat, coastlon)


Now remove white space around map axes.
tightmap


## Tips

The axis limits are fixed. If a change in the projection parameters changes the size or position of the map display within the projected coordinate system, execute tightmap again. Also note that tightmap needs to be re-applied following any call to setm that causes projected map objects to be re-projected.

The tightmap function performs no action on a 'globe' map axes.

## See Also

zoom | paperscale|axesscale|previewmap
Introduced before R2006a

## timezone

Time zone based on longitude

## Syntax

[zd,zltr,zone] = timezone(long)
[zd,zltr,zone] = timezone(long,units)

## Description

[zd,zltr,zone] = timezone(long) returns an integer zone description, zd, an alphabetical zone indicator, zltr, and a character vector, zone, with the complete zone description and alphabetical zone indicator corresponding to the input longitude long.
[zd,zltr,zone] = timezone(long, units) specifies the angular units with a standard angle units. The default value is 'degrees '. Valid units are:

- 'degrees ' - decimal degrees
- 'radians'


## Examples

Given that is it locally 1330 (1:30 p.m.) at a longitude of 75 ㅇW, determine Coordinated Universal Time (UTC):

```
[zd,zltr,zone] = timezone(-75,'degrees')
zd =
 5
zltr =
 'R'
zone =
 '+5 R'
```

UTC is 1330 plus five hours, or 1830 (6:30 p.m.).

## Background

Time is determined by the position of the sun relative to the prime meridian, the zero longitude line running through Greenwich, England. When this meridian lies directly below the sun, it is noon Coordinated Universal Time (UTC). For local times elsewhere, the Earth is divided into 150 longitude bands, each centered on a central meridian. When a central meridian lies directly below the sun, Local Mean Time (LMT) in that zone is noon. The zone description is an integer that when added to

LMT gives UTC. For notational convenience, each zone is also given an alphabetical indicator. The indicator at Greenwich is $Z$, so UTC is sometimes called ZULU time.


Note that there are actually 25 time zones, because the zone centered on the International Date Line (180으N E ) is split into two: "+12 Y" and "-12 M."

## Limitations

National and local governments set their own time zone boundaries for political or geographic convenience. The timezone function does not account for statutory deviations from the meridianbased system.

## See Also <br> timezones | tzoffset

Introduced before R2006a

## tissot

Project Tissot indicatrices on map axes

## Syntax

h = tissot
h = tissot $(\mathrm{spec})$
h = tissot(spec, linetype)
h = tissot(linestyle)
h = tissot(spec,PropertyName, PropertyValue,...)
h = tissot(linetype,PropertyName,PropertyValue,...)

## Description

$\mathrm{h}=$ tissot plots the default Tissot diagram, as described above, on the current map axes and returns handles for the displayed indicatrices.
$\mathrm{h}=$ tissot (spec) allows you to specify plotting parameters of the displayed Tissot diagram as described above.
$\mathrm{h}=\mathrm{tissot}(\mathrm{spec}$, linetype $)$ and $\mathrm{h}=$ tissot(linestyle) specifies the line style and color on page 1-1502.
h = tissot(spec,PropertyName, PropertyValue,...) and h = tissot(linetype, PropertyName, PropertyValue, ...) allow the specification of any property and value recognized by the line function.

## Background

Tissot indicatrices are plotting symbols that are useful for understanding the various distortions of a given map projection. The indicatrices are circles of identical true radius on the Earth's surface. When plotted on a map projection, they indicate whether the projection has certain features. If the plotted indicatrices all enclose the same area, the projection is equal area (for example, a Sinusoidal projection would have this feature). If they all remain circular, then conformality is indicated (a Mercator projection has this property). Distortions in meridional or parallel distance are exhibited by flattened or stretched indicatrices. Many projections will show very even, circular indicatrices in some regions, often near the center, and wildly distorted indicatrices in others, such as near the edges. The Tissot diagram is therefore very useful in analyzing the appropriateness of a projection to a given purpose or region.

The general layout of the Tissot diagram is defined by the specification vector spec.

```
spec = [Radius]
spec = [Latint,Longint]
spec = [Latint,Longint,Radius]
spec = [Latint,Longint,Radius,Points]
```

Radius is the small circle radius of each indicatrix circle. If entered, it should be in the same units as the map axes Geoid. The default radius is $1 / 10$ th the radius of the sphere.

Latint is the latitude interval between indicatrix circle centers. If entered it should be in the map axes AngleUnits. The default value is one circle every 300 of latitude (that is, $00,+/-300$, etc.).

Longint is the longitude interval between indicatrix circle centers. If entered it should be in the map axes AngleUnits. The default value is one circle every $30^{\circ}$ of latitude (that is, $0^{\circ}$, $+/-30^{\circ}$, etc.).

Points is the number of plotting points per circle. The default is 100 points.

## Examples

```
axesm sinusoid; framem
tissot
```



The Sinusoidal projection is equal area.
setm(gca,'MapProjection','Mercator')


The Mercator projection is conformal.

## More About

## Line Style and Color

Specify the line style and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify a color. For example, specify a red dashed line using 'r--'.

Line Style	Description	Resulting Line
'-'	Solid line	
'--'	Dashed line	- - - - -
':'	Dotted line	............
'-.'	Dash-dotted line	--------


Color Name	Short Name	Appearance
'red'	'r'	
'green'	' g '	
'blue'	' $\mathrm{b}^{\prime}$	
'cyan'	'c'	
'magenta'	'm'	
'yellow'	' $\mathrm{y}^{\prime}$	
'black'	'k'	
'white'	'w'	

## See Also

mdistort|distortcalc

## Introduced before R2006a

## toDegrees

Convert angles to degrees

## Syntax

[D1,...,Dn] = toDegrees(fromUnits,A1,...,An)

## Description

[D1, ..., Dn] = toDegrees(fromUnits, A1, ..., An) converts the angles specified by
A1, ... An from the units specified by fromUnits to degrees. This function is useful for getting angles in degrees when you do not know the input units until run-time.

## Examples

## Convert to Degrees from Radians

Convert several values to degrees from radians.
[D1,D2,D3,D4] = toDegrees("radians", pi/2, pi,3*pi/2,2*pi)
D1 $=90$
D2 $=180$
D3 $=270$
D4 $=360$
Convert the same values to degrees by specifying an array.

```
A = [pi/2 pi 3*pi/2 2*pi];
D = toDegrees("radians",A)
D = 1\times4
 90}180\quad270\quad36
```


## Input Arguments

## fromUnits - Input unit

"degrees"| "radians"
Input unit, specified as "degrees" or "radians". You can also specify abbreviations such as "deg" and "rad".

Data Types: char|string

## A1, ... An - Angles in degrees or radians

numeric array

Angles in degrees or radians, specified as one or more numeric arrays.

## Output Arguments

## D1, ..., Dn - Angles in degrees

numeric array
Angles in degrees, returned as the same number of numeric arrays as in A1, ... , An. The size of each output array matches the size of the corresponding input array.

## See Also

## Functions

fromDegrees | fromRadians | rad2deg | toRadians
Introduced in R2007b

## toRadians

Convert angles to radians

## Syntax

[R1,...,Rn] = toRadians(fromUnits,A1,....,An)

## Description

$[R 1, \ldots, R n]=$ toRadians(fromUnits,A1,...,An) converts the angles specified by
A1, . . . An from the units specified by fromUnits to radians. This function is useful for getting angles in radians when you do not know the input units until run-time.

## Examples

## Convert to Radians from Degrees

Convert several values to radians from degrees.
[R1,R2,R3,R4] = toRadians("degrees", 45,90,135,180)
$R 1=0.7854$
$R 2=1.5708$
$R 3=2.3562$
$R 4=3.1416$
Convert the same values to radians by specifying an array.
$A=[4590135$ 180];
R = toRadians("degrees", A)
$\mathrm{R}=1 \times 4$
0.7854
1.5708
2.3562
3.1416

## Input Arguments

## fromUnits - Input unit

"degrees" | "radians"
Input unit, specified as "degrees" or "radians". You can also specify abbreviations such as "deg" and "rad".

Data Types: char|string

## A1, ... An - Angles in degrees or radians

numeric array

Angles in degrees or radians, specified as one or more numeric arrays.

## Output Arguments

## R1, . . . Rn - Angles in radians <br> numeric array

Angles in radians, returned as the same number of numeric arrays as in A1, ... , An. The size of each output array matches the size of the corresponding input array.

## See Also

## Functions

fromDegrees | fromRadians | rad2deg | toDegrees
Introduced in R2007b

## track

Track segments to connect navigational waypoints

## Syntax

```
[lattrk,lontrk] = track(waypts)
[lattrk,lontrk] = track(waypts,units)
[lattrk,lontrk] = track(lat,lon)
[lattrk,lontrk] = track(lat,lon,ellipsoid)
[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts)
[lattrk,lontrk] = track(method,lat,...)
trkpts = track(lat,lon...)
```


## Description

[lattrk,lontrk] = track(waypts) returns points in lattrk and lontrk along a track between the waypoints provided in navigational track format in the two-column matrix waypts. The outputs are column vectors in which successive segments are delineated with NaNs.
[lattrk,lontrk] = track(waypts,units) specifies the units of the inputs and outputs, where units is any valid angle unit string. The default is 'degrees'.
[lattrk,lontrk] = track(lat,lon) allows the user to input the waypoints in two vectors, lat and lon.
[lattrk,lontrk] = track(lat,lon,ellipsoid) specifies the shape of the Earth using ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. The default ellipsoid is a unit sphere
[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts) establishes how many intermediate points are to be calculated for every track segment. By default, npts is 30 .
[lattrk,lontrk] = track(method,lat,...) establishes the logic to be used to determine the intermediate points along the track between waypoints. Because this is a navigationally motivated function, the default method is ' $r$ ' ', which results in rhumb line logic. Great circle logic can be specified with ' gc '.
trkpts = track(lat,lon...) compresses the output into one two-column matrix, trkpts, in which the first column represents latitudes and the second column, longitudes.

## Examples

## Calculate Track and Display It on Map

The track function is useful for generating data in order to display tracks. Lieutenant Sextant is the navigator of the USS Neversail. He is charged with plotting a track to take Neversail from the Straits of Gibraltar to Port Said, Egypt, the northern end of the Suez Canal. He has picked appropriate waypoints and now would like to display the track for his captain's approval.

First, display a chart of the Mediterranean Sea.

```
load coastlines
axesm('mercator','MapLatLimit',[28 47],'MapLonLimit',[-10 37],...
 'Grid','on','Frame','on','MeridianLabel','on','ParallelLabel','on')
geoshow(coastlat,coastlon,'DisplayType','line','color','b')
```



These are the waypoints Lt. Sextant has selected.

```
waypoints = [36,-5; 36,-2; 38,5; 38,11; 35,13; 33,30; 31.5,32];
```

Now display the track. With a display this clear, the captain gladly approves the plan.
[lttrk,lntrk] = track('rh', waypoints,'degrees');
geoshow(lttrk,lntrk,'DisplayType','line', $\operatorname{color','r')~}$


## See Also

dreckon | gcwaypts | legs | navfix
Introduced before R2006a

## track1

Geographic tracks from starting point, azimuth, and range

## Syntax

[lat,lon] = track1(lat0,lon0,az)
[lat,lon] = track1(lat0,lon0,az,arclen)
[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid)
[lat,lon] = track1(lat0,lon0,az,angleunits)
[lat,lon] = track1(lat0,lon0,az,arclen,angleunits)
[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid,angleunits)
[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid,angleunits,npts)
[lat,lon] = track1(trackstr,...)
mat $=$ trackl(...)

## Description

[lat,lon] = track1(lat0,lon0,az) computes complete great circle tracks on a sphere starting at the point lat0, lon0 and proceeding along the input azimuth, az. The inputs can be scalar or column vectors.
[lat,lon] = track1(lat0,lon0, az, arclen) uses the input arclen to specify the arc length of the great circle track. arclen is specified in units of degrees of arc. If arclen is a column vector, then the track is computed from the starting point, with positive distance measured easterly. If arclen is a two column matrix, then the track is computed starting at the range in the first column and ending at the range in the second column. If arclen = [], then the complete track is computed.
[lat,lon] = track1(lat0,lon0,az, arclen,ellipsoid) computes the track along a geodesic arc on the ellipsoid defined by the input ellipsoid, which can be a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. arclen must be expressed in length units that match the units of the semimajor axis - unless ellipsoid is [] or the semimajor axis length is zero. In these special cases, arclen is assumed to be in degrees of arc and the tracks are computed on a sphere, as in the preceding syntax.
[lat,lon] = track1(lat0,lon0,az,angleunits), [lat,lon] = track1(lat0,lon0,az, arclen,angleunits), and [lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid,angleunits) where angleunits defines the units of the input and output angles as 'degrees ' or 'radians'.
[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid,angleunits,npts) uses the scalar input npts to specify the number of points per track. The default value of npts is 100 .
[lat,lon] = trackl(trackstr,...) where trackstr is a string scalar or a character vector that defines either a great circle (' gc ') or rhumb line track ('rh'). If trackstr is ' gc ', then either great circle (given a sphere) or geodesic (given an ellipsoid) tracks are computed. If trackstr is 'rh', then the rhumb line tracks are computed.
mat $=$ track1 (...) returns a single output argument mat such that mat $=$ [lat lon]. This is useful if only a single track is computed.

Multiple tracks can be defined from a single starting point by providing scalar lat0 and lon0 and column vectors for az and arclen.

## Examples

```
% Set up the axes.
axesm('mercator','MapLatLimit',[-60 60],'MapLonLimit',[-60 60])
gridm on; plabel on; mlabel on;
% Plot the great circle track in green.
[lattrkgc,lontrkgc] = trackl(0,0,45,[-55 55]);
plotm(lattrkgc,lontrkgc,'g')
% Plot the rhumb line track in red.
[lattrkrh,lontrkrh] = track1('rh',0,0,45,[-55 55]);
plotm(lattrkrh,lontrkrh,'r')
```



## More About

## Track Lines

A path along the surface of the Earth connecting two points is a track. Two types of track lines are of interest geographically, great circles and rhumb lines. Great circles represent the shortest possible path between two points. Rhumb lines are paths with constant angular headings. They are not, in general, the shortest path between two points.

Full great circles bisect the Earth; the ends of the track meet to form a complete circle. Rhumb lines with true east or west azimuths are parallels; the ends also meet to form a complete circle. All other rhumb lines terminate at the poles; their ends do not meet.

## See Also

azimuth|distance|reckon|scircle1|scircle2|track|track2|trackg
Introduced before R2006a

## track2

Geographic tracks from starting and ending points

## Syntax

[lat,lon] = track2(lat1,lon1,lat2,lon2)
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid)
[lat,lon] = track2(lat1,lon1,lat2,lon2,units)
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid,units)
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
[lat,lon] = track2(track,...)
mat = track2(...)

## Description

[lat,lon] = track2(lat1,lon1,lat2,lon2) computes great circle tracks on a sphere starting at the point lat1, lon1 and ending at lat2,lon2. The inputs can be scalar or column vectors.
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid) computes the great circle track on the ellipsoid defined by the input ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid, or oblateSpheroid object, or a vector of the form [semimajor_axis eccentricity]. If ellipsoid = [], a sphere is assumed.
[lat,lon] = track2(lat1,lon1,lat2,lon2,units) and
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid, units) are both valid calling forms, which use the input units to define the angle units of the inputs and outputs. If you omit units, 'degrees ' is assumed.
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid, units,npts) uses the scalar input npts to determine the number of points per track computed. The default value of npts is 100 .
[lat,lon] = track2(track,...) uses the track to define either a great circle or a rhumb line track. If track = 'gc', then great circle tracks are computed. If track = 'rh', then rhumb line tracks are computed. If you omit track, ' gc ' is assumed.
mat $=$ track2 (...) returns a single output argument where mat $=$ [lat lon]. This is useful if a single track is computed. Multiple tracks can be defined from a single starting point by providing scalar inputs for lat1, lon1 and column vectors for lat2, lon2.

## Examples

```
% Set up the axes.
axesm('mercator','MapLatLimit',[30 50],'MapLonLimit',[-40 40])
% Calculate the great circle track.
[lattrkgc,lontrkgc] = track2(40,-35,40,35);
% Calculate the rhumb line track.
[lattrkrh,lontrkrh] = track2('rh',40,-35,40,35);
```

\% Plot both tracks.
plotm(lattrkgc,lontrkgc,'g')
plotm(lattrkrh,lontrkrh,'r')
Rhumb line track

## More About

## Track Lines

A path along the surface of the Earth connecting two points is a track. Two types of track lines are of interest geographically, great circles and rhumb lines. Great circles represent the shortest possible path between two points. Rhumb lines are paths with constant angular headings. They are not, in general, the shortest path between two points.

## See Also

azimuth | distance | reckon|scircle1| scircle2|track|track1|trackg
Introduced before R2006a

## trackg

Great circle or rhumb line defined via mouse input

## Syntax

h = trackg (ntrax)
h = trackg(ntrax, npts)
h = trackg(ntrax, LineSpec)
h = trackg(ntrax, PropertyName, PropertyValue,....)
[lat,lon] = trackg(ntrax,npts,...)
h = trackg(track,ntrax,...)

## Description

$\mathrm{h}=\mathrm{trackg}(\mathrm{ntrax})$ brings forward the current map axes and waits for the user to make ( 2 x ntrax) mouse clicks. The output h is a vector of handles for the ntrax track segments, which are then displayed.
h = trackg(ntrax, npts) specifies the number of plotting points to be used for each track segment. npts is 100 by default.
$\mathrm{h}=\mathrm{trackg}(\mathrm{ntrax}, \mathrm{LineSpec})$ specifies the line style, marker, and color on page 1-1516.
h = trackg(ntrax,PropertyName,PropertyValue,...) allows property name/property value pairs to be set, where PropertyName and PropertyValue are recognized by the line function.
[lat,lon] = trackg(ntrax,npts,...) returns the coordinates of the plotted points rather than the handles of the track segments. Successive segments are stored in separate columns of lat and lon.
h = trackg(track,ntrax,...) specifies the logic with which tracks are calculated. If track is ' gc ' (the default), a great circle path is used. If track is 'rh' , rhumb line logic is used.

This function is used to define great circles or rhumb lines for display using mouse clicks. For each track, two clicks are required, one for each endpoint of the desired track segment. You can modify the track after creation by Shift+clicking it. The track is then in edit mode, during which you can change the length and position by dragging control points, or by entering values into a control panel. Shift +clicking again exits edit mode.

## More About

## Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' $-r^{r}$ '.

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - - -
': '	Dotted line	................
' - .'	Dash-dotted line	--------


Marker	Description	Resulting Marker
'0'	Circle	$\bigcirc$
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
'x'	Cross	$\times$
' _'	Horizontal line	-
'I'	Vertical line	\|
's'	Square	$\square$
'd'	Diamond	$\diamond$
'^'	Upward-pointing triangle	$\triangle$
'v'	Downward-pointing triangle	$\nabla$
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	$\triangleleft$
'p'	Pentagram	*
'h'	Hexagram	\%


Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	' g '	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	$\square$
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	$\square$
'magenta'	'm'	[1 $\left.\begin{array}{lll}1 & 1\end{array}\right]$	$\square$


Color Name	Short Name	RGB Triplet	Appearance
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

## See Also

track1|track2|scircleg
Introduced before R2006a

## trimcart

Trim graphic objects to map frame

## Syntax

trimcart(h)

## Description

trimcart (h) clips the graphic objects to the map frame. h can be a handle or a vector of handles to graphics objects. h can also be any object name recognized by handlem. trimcart clips lines, surfaces, and text objects.

## Examples

## Trim Graphic Objects to Map Frame

Trim graphic objects to map frame.

```
figure;
axesm('miller')
framem
[x, y] = humps(0:.05:1);
h = plot(x, y/25, 'r+-');
load coastlines
geoshow(coastlat,coastlon)
trimcart(h)
```



## Limitations

trimcart does not trim patch objects.

## See Also

handlem
Introduced before R2006a

## trimdata

Trim map data exceeding projection limits

## Syntax

[ymat, xmat,trimpts] = trimdata(ymat,ylim,xmat,xlim,object)

## Description

[ymat,xmat,trimpts] = trimdata(ymat,ylim,xmat,xlim,object) identifies points in map data that exceed projection limits. The projection limits are defined by the lower and upper inputs. The particular object to be trimmed is identified by the object input.

Allowable objects are

- 'surface' for trimming graticules
- 'light ' for trimming lights,
- 'line' for trimming lines
- 'patch' for trimming patches
- 'text ' for trimming text object location points
- ' none ' to skip all trimming operations


## See Also

clipdata | undotrim | undoclip
Introduced before R2006a

## undoclip

Remove object clips introduced by clipdata

## Syntax

[lat,long] = undoclip(lat,long,clippts,'object')

## Description

[lat,long] = undoclip(lat,long,clippts,'object') removes the object clips introduced by clipdata. This function is necessary to properly invert projected data from the Cartesian space to the original latitude and longitude data points.

The input variable, clippts, must be constructed by the function clipdata.
Allowable objects are

- 'surface' for trimming graticules
- ' light' for trimming lights
- 'line' for trimming lines
- 'patch' for trimming patches
- 'text ' for trimming text object location points
- 'none ' to skip all trimming operations

See Also<br>clipdata|trimdata|undotrim<br>Introduced before R2006a

## undotrim

Remove object trims introduced by trimdata

## Syntax

[ymat,xmat] = undotrim(ymat,xmat,trimpts,object)

## Description

[ymat,xmat] = undotrim(ymat,xmat,trimpts,object) removes the object trims introduced by trimdata. This function is necessary to properly invert projected data from the Cartesian space to the original latitude and longitude data points.

The input variable, trimpts, must be constructed by the function trimdata.
Allowable objects are

- 'surface' for trimming graticules
- ' light' for trimming lights
- 'line' for trimming lines
- 'patch' for trimming patches
- 'text' for trimming text object location points
- 'none ' to skip all trimming operations

```
See Also
clipdata|trimdata|undoclip
```

Introduced before R2006a

## unitsratio

Conversion factor between units

## Syntax

C = unitsratio(targetUnit,originalUnit)

## Description

C = unitsratio(targetUnit,originalUnit) returns the conversion factor C between units so that a value in the original unit originalUnit multiplied by C provides the equivalent value in the target unit targetUnit.

## Examples

## Conversion Factor Between Units

Find the conversion factor for international feet to meters.

```
mPerFoot = unitsratio("meter","feet")
mPerFoot = 0.3048
```

Convert 100 international feet to meters.
$\mathrm{m}=\mathrm{mPerFoot} * 100$
$\mathrm{m}=30.4800$
Find the inverse conversion factor and multiply it by the mPerFoot conversion factor.

```
unitsratio("feet","meter")*mPerFoot
```

ans $=1.0000$

## Input Arguments

## originalUnit - Original unit of measure

"kilometer" | "kilometers" | "km" | "degree" | "degrees" | "deg" | ...
Original unit of measure, specified as one of these options:

- These angular units.

Value	Unit Name
"degree", "degrees", "deg"	Degrees
"radian", "radians", "rad"	Radians

- Any length unit supported by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre",	Meters
"metres"	
"cm", "centimeter", "centimeters",	Centimeters
"centimetre", "centimetres"	
"mm", "millimeter", "millimeters",	
"millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers",	Kilometers
"kilometre", "kilometers"	Nautical miles
"nm", "naut mi", "nautical mile",	
"nautical miles"	Feet
"ft", "international ft", "foot",	
"international foot", "feet",	
"international feet"	Inches
"in", "inch", "inches"	Yards
"yd", "yds", "yard", "yards"	Miles
"mi", "mile", "miles", "international	
mile", "international miles"	

This argument is case insensitive.

## Data Types: char \| string

## targetUnit - Target unit of measure

"kilometer" | "kilometers" | "km" | "degree" | "degrees" | "deg" | ...
Target unit of measure, specified as one of these options:

- These angular units.

Value	Unit Name
"degree", "degrees", "deg"	Degrees
"radian", "radians", "rad"	Radians

- Any length unit supported by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre",	Meters
"metres"	
"cm", "centimeter", "centimeters",	Centimeters
"centimetre", "centimetres"	
"mm", "millimeter", "millimeters",	Millimeters
"millimetre", "millimetres"	
"micron", "microns"	Microns
"km", "kilometer", "kilometers",	Kilometers
"kilometre", "kilometers"	
"nm", "naut mi", "nautical mile",	Nautical miles
"nautical miles"	
"ft", "international ft", "foot",	Feet
"international foot", "feet",	
"international feet"	
"in", "inch", "inches"	Inches
"yd", "yds", "yard", "yards"	Yards
"mi", "mile", "miles", "international	
mile", "international miles"	Miles
"sf", "survey ft", "US survey ft",'	U.S. survey feet
"U.S. survey ft", "survey foot","US	
survey foot", "U.S. survey foot",	
"survey feet", "US survey feet",	
"U.S. survey feet"	
"sm", "survey mile", "survey miles",	U.S. survey miles (statute miles)
"statute mile", "statute miles", "US	
survey mile", "US survey miles",	
"U.S. survey mile(s)", "U.S. survey	
miles"	
"Clarke's foot", "Clarkes foot"	Clarke's feet
"German legal metre", "German legal	
meter"	German legal metres
"Indian foot"	Indian feet

This argument is case insensitive.
Data Types: char | string

## See Also

## Functions

validateLengthUnit
Introduced before R2006a

## unwrapMultipart

Unwrap angles with parts separated by NaN values

## Syntax

Q = unwrapMultipart(P)
$Q=$ unwrapMultipart(P,angleUnit)

## Description

$\mathrm{Q}=$ unwrapMultipart( P ) unwraps the azimuths, longitudes, or phase angles in vector P . This syntax assumes the angle units are in radians. Whenever the jump between consecutive angles is greater than or equal to $\Pi$ radians, the function shifts the angles by adding multiples of $\pm 2 \pi$ until the jump is less than $п$. When P includes multiple parts separated by NaN values, the function unwraps each part independently. When $P$ has only one part, the result is equivalent to unwrap( $P$ ).
$Q=$ unwrapMultipart( $P$, angleUnit) specifies the angle units angleUnit of the angles in $P$. When P contains angles in degrees, specify angleUnit as "degrees". Whenever the jump between consecutive angles is greater than or equal to 180 degrees, this syntax shifts the angles by adding multiples of $\pm 360$ until the jump is less than 180. The default for angleUnit is "radians", which specifies the units as radians.

## Examples

## Unwrap Phase Angles Separated by NaN Values

Create a vector of phase angles from 0 to $4 \pi$ that is separated into two parts by a NaN value. Use the phase angles to define the $x y$-coordinates of a spiral.

```
t1 = linspace(0,1.75*pi);
t2 = linspace(2.25*pi,4*pi);
t = [t1 NaN t2];
x = t/pi.*cos(t);
y = t/pi.*sin(t);
plot(x,y)
```



Find the phase angle of the spiral from the $x y$-coordinates by using the atan2 function. The atan2 function returns the angle values within the closed interval from $-\Pi$ to $\Pi$.
$P=\operatorname{atan} 2(y, x)$;
plot(t, P)


Note that the plot has discontinuities. Eliminate the discontinuities by using the unwrapMultipart function. The unwrapMultipart function independently unwraps the NaN-separated parts of the vector.

Q1 = unwrapMultipart(P); plot(t,Q1)


Compare the result with the unwrap function, which does not independently unwrap NaN-separated parts.

Q2 = unwrap(P);
plot(t,Q2)


## Unwrap Longitudes in Degrees

Create a vector of longitudes from 0 to 720 degrees that is separated into two parts by a NaN value.
lon $=$ [0:20:340 NaN 380:20:720];
Wrap the longitudes to the closed interval from -180 to 180 degrees by using the wrapTo180 function.

P = wrapTo180(lon);
plot(P)


Unwrap the longitude angles by using the unwrapMultipart function. The function independently unwraps the NaN -separated parts of the vector.

Q = unwrapMultipart(P,"degrees");
plot(Q)


Compare the result to the unwrap function, which works only in radians and does not independently unwrap NaN-separated parts.
rad = deg2rad(P);
Q2 = unwrap(rad); plot(Q2)


## Input Arguments

P - Input angles
vector
Input angles, specified as a row or column vector.
angleUnit - Angle unit
"radians" (default) | "degrees"
Angle unit, specified as one of these options:

- "degrees" - Degrees
- "radians" - Radians

Data Types: char|string

## Output Arguments

## Q - Unwrapped angles

vector
Unwrapped angles, returned as a vector of the same size as P . The NaN values in Q correspond to the NaN values in P .

## See Also

## Functions

unwrap|wrapTo180|wrapTo360|wrapToPi |wrapTo2Pi Introduced in R2007b

## updategeostruct

Convert line or patch display structure to geostruct

## Syntax

```
geostruct = updategeostruct(displaystruct)
geostruct = updategeostruct(displaystruct, str)
[geostruct,symbolspec] = updategeostruct(displaystruct, ...)
[geostruct,symbolspec] = updategeostruct(displaystruct, ..., cmap)
```


## Description

geostruct $=$ updategeostruct(displaystruct) accepts a Mapping Toolbox display structure displaystruct. If displaystruct is a vector display structure for which the 'type' field has value 'line' or 'patch', updategeostruct restructures its elements to create a geostruct, geostruct. If displaystruct is a already geographic data structure, it is copied unaltered to geostruct. updategeostruct does not update display structure arrays of type 'text', 'light', 'regular', or 'surface'.
geostruct = updategeostruct(displaystruct, str) selects only elements whose tag field begins with the string scalar or character vector str (and whose type field is either ' line' or 'patch'). The selection is case insensitive.
[geostruct,symbolspec] = updategeostruct(displaystruct, ...) restructures a display structure and determines a symbolspec based on the graphic properties specified in the otherproperty field for each element of displaystruct and, if necessary, the jet colormap.
[geostruct,symbolspec] = updategeostruct(displaystruct, ..., cmap) specifies a colormap, cmap, to define the colors used in symbolspec.

## Examples

Update and display a display structure of coastlines.

```
load coastlines
cmap = [0,0,0];
S = struct('lat',coastlat,'long',coastlon,'tag','coastlines', ...
 'type','line','altitude',[]);
[coastlines,spec] = updategeostruct(S,cmap);
figure
worldmap('world')
geoshow(coastlines,'SymbolSpec',spec)
```



## Tips

There are two Mapping Toolbox encodings for vector features that use MATLAB structure arrays. In both cases there is one feature per array element, and in both cases a given array's elements all held the same type of feature. Version 1.3.1 and earlier of the Mapping Toolbox software only supported Mapping Toolbox display structures. Version 2.0 introduced a data structure for vector geodata which was less rigidly defined and more open-ended. The new structures are called geostructs (if they contain geographic coordinate data) and mapstructs (if they contain projected coordinate data). Over time, display structures are being phased out of the toolbox; the updategeostruct function is provided to help users migrate from the old display structure format to the current geostruct/ mapstruct format.

A Version 1 Mapping Toolbox display structure is a MATLAB structure that can contain line, patch, text, regular data grid, geolocated data grid, and light objects. The displaym function does not accept geostructs produced by Version 2 of the Mapping Toolbox software.

Display structures for lines and patches and Line and Polygon geostructs have the following things in common:

- A field that specifies the type of feature geometry:
- A type field a display structure (value: 'line' or 'patch')
- A Geometry field for a geostruct (value: 'Line' or 'Polygon')
- A latitude field:
- lat for a display structure
- Lat for a geostruct
- A longitude field:
- long for a display structure
- Lon for a geostruct

In terms of their differences,

- A geostruct has a BoundingBox field; there is no display structure counterpart for this
- A geostruct typically has one or more "attribute" fields, whose values must be either scalar doubles or character vectors, with arbitrary field names. The presence or absence of a given attribute field-and its value-is dependent on the specific data set that the geostruct represents.
- A (line or patch) display structure has the following fields:
- A tag field that names an individual feature or object
- An altitude coordinate array that extends coordinates to 3-D
- An otherproperty field in which MATLAB graphics can be specified explicitly, on a perfeature basis

Object properties used in the display are taken from the otherproperty field of the structure. If a line or patch object's otherproperty field is empty, displaym uses default colors. A patch is assigned an index into the current colormap based on the structure's tag field. Lines are assigned colors from the current color order according to their tags.

The newer geostruct representation has significant advantages:

- It can represent a much wider range of attributes (display structures essentially can represent only a feature name).
- The geostruct representation (in combination with geoshow and makesymbolspec) keeps graphics display properties separate from the intrinsic properties of the geographic features themselves.

For example, a road-class attribute can be used to display major highways with a distinctive color and greater line width than secondary roads. The same geographic data structure can be displayed in many different ways, without altering any of its contents, and shapefile data imported from external sources need not be altered to control its graphic display.

For information about the display structure format, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym. For a discussion of the characteristics of geographic data structures, see "Geographic Data Structures".

## See Also

displaym|geoshow|makesymbolspec|mapshow| shaperead

Introduced before R2006a

## updateLayers

Update layer properties

## Syntax

[updatedLayer,index] = updateLayers(server,layer)

## Description

[updatedLayer,index] = updateLayers(server, layer) returns an array of WMSLayer objects and updates the layer properties with values from the web map server, server. The WMSLayer array layer must contain only one unique ServerURL. The updateLayers function removes layers no longer available on the server. The logical array index contains true for each available layer.

## Examples

## Update Properties of Layer

Update the properties of a MODIS global mosaic layer obtained from the NASA Earth Observations WMS server.

Search the WMS Database for the layer.

```
nasa = wmsfind('NASA Earth Observations','SearchField','any');
modis = refine(nasa,'land*day*month');
modis = modis(1);
```

Create a web map server object by specifying the server URL of the layer.

```
server = WebMapServer(modis.ServerURL);
```

Update the properties of the layer by specifying the server and the layer.

```
updatedLayer = updateLayers(server,modis);
```

Read and display the map.

```
mapRequest = WMSMapRequest(updatedLayer,server);
A = getMap(server,mapRequest.RequestURL);
R = mapRequest.RasterReference;
figure
ax = worldmap('world');
geoshow(A,R)
setm(ax,'MLabelParallel', -90,'MLabelLocation',90)
title({'MODIS Global Mosaic',modis.LayerTitle})
```



The layer used in this example is courtesy of the NASA Earth Observing System.

## Update Properties of Layers from Multiple Servers

Search the WMS Database for layers from USGS servers that contain the word "imagery" in the server URL.

```
usgsLayers = wmsfind('usgs*imagery','SearchField','serverurl');
```

Create an array called updatedLayers. Use a loop to find the layers for individual servers, update the properties of the layers, and append the updated layers to the array. Display a message to the command line if a server does not respond.

```
updatedLayers = [];
serverURLs = usgsLayers.servers;
for k=1:numel(serverURLs)
 serverLayers = refine(usgsLayers, serverURLs{k}, ...
 'SearchField','serverurl','MatchType','exact');
 serverURL = serverLayers(1).ServerURL;
 server = WebMapServer(serverURL);
 try
 layers = updateLayers(server,serverLayers);
 % Grow using concatenation because layers can have any
 % length ranging from 0 to numel(serverLayers).
```

```
 updatedLayers = [updatedLayers; layers];
 catch e
 fprintf('Server %s is not responding.\n', ...
 serverURL);
 fprintf('Error message is %s\n', e.message)
 end
end
```


## Input Arguments

## server - Web map server

array of WebMapServer objects
Web map server, specified as an array of WebMapServer objects.

## layer - Web map service layers <br> WMSLayer object

Web map service layer, specified as a WMSLayer object.

## Output Arguments

updatedLayer - Updated web map service layers
array of WMSLayer objects.
Updated web map service layers, returned as an array of WMSLayer objects. updatedLayers has the same size as layer(index).

## index - Availability of layers <br> logical array

Availability of layers, returned as a logical array. index contains true for each available layer.

## Tips

updateLayers accesses the Internet to update the properties. Occasionally, a WMS server is unavailable, or several minutes elapse before the properties are updated.

## See Also

Introduced before R2006a

## usamap

Construct map axes for United States of America

## Syntax

```
usamap state
usamap(state)
usamap 'conus'
usamap('conus')
usamap
usamap(latlim,lonlim)
usamap(Z,R)
h = usamap(___)
h = usamap('all')
```


## Description

usamap state and
usamap(state) create an empty map axes with a Lambert Conformal Conic projection and map limits covering a U.S. state or group of states specified by state. The map axes is created in the current axes and the axis limits are set tight around the map frame.
usamap 'conus' and
usamap( ' conus') create an empty map axes for the conterminous 48 states (that is, all states excluding Alaska and Hawaii).
usamap with no arguments presents a menu from which you can select a single state, the District of Columbia, the conterminous 48 states, or all states.
usamap (latlim, lonlim) creates an empty Lambert Conformal map axes for a region of the U.S. defined by its latitude and longitude limits in degrees.
usamap ( $Z, R$ ) derives the map limits from the extent of a regular data grid, $Z$, georeferenced by $R$.
h = usamap ( ___ ) returns the handle of the map axes.
h = usamap('all') constructs three empty map axes, inset within a single figure, for the conterminous states, Alaska, and Hawaii, with a spherical Earth model and other projection parameters suggested by the U.S. Geological Survey. The maps in the three axes are shown at approximately the same scale. The handles for the three map axes are returned in h .
usamap('allequal') is the same as usamap('all'), but usage of 'allequal' will be removed in a future release.

## Examples

## Make a Map of Alabama

Make a map of the state of Alabama only.

```
figure
usamap("Alabama")
states = readgeotable("usastatehi.shp");
row = states.Name == "Alabama";
alabama = states(row,:);
geoshow(alabama,"FaceColor",[0.3 1.0, 0.675])
```

Label the state by adding text.

```
textm(alabama.LabelLat,alabama.LabelLon,alabama.Name, ...
 "HorizontalAlignment","center")
```



## Map a Region Extending From California to Montana

Create a map of a contiguous landmass that contains California and Montana.
figure
ax = usamap(\{'CA','MT'\});
set(ax,'Visible','off')

```
states = readgeotable('usastatehi.shp');
geoshow(states, 'FaceColor', [0.5 0.5 1])
```

Add labels to the states that are within the map limits.

```
latlim = getm(ax,'MapLatLimit');
lonlim = getm(ax,'MapLonLimit');
lat = states.LabelLat;
lon = states.LabelLon;
tf = ingeoquad(lat,lon,latlim,lonlim);
textm(lat(tf),lon(tf),states.Name(tf), ...
 'HorizontalAlignment','center')
```



## Map the Conterminous United States

Map the conterminous United States. Color each state using a random, muted color.

```
figure
usamap("conus");
states = readgeotable("usastatelo.shp");
rows = states.Name ~= "Alaska" & states.Name ~= "Hawaii";
states = states(rows,:);
```

```
h = height(states);
faceColors = makesymbolspec("Polygon",...
 {'INDEX',[1 h],'FaceColor',polcmap(h)});
geoshow(states,"DisplayType","polygon","SymbolSpec",faceColors)
```

Set optional display settings.
framem off gridm off mlabel off plabel off


## Map the USA Including Alaska and Hawaii

Read a shapefile, containing polygon shapes for each of the US states and the District of Columbia, into a geospatial table. Find the table rows for the conterminous USA, Alaska, and Hawaii.

```
states = readgeotable("usastatelo.shp");
rowConus = states.Name ~= "Hawaii" & states.Name ~= "Alaska";
rowAlaska = states.Name == "Alaska";
rowHawaii = states.Name == "Hawaii";
```

Display each of the three regions on separate axes.

```
figure
ax = usamap("all");
set(ax,"Visible","off")
stateColor = [0.5 1 0.5];
geoshow(ax(1),states(rowConus,:), "FaceColor",stateColor)
geoshow(ax(2),states(rowAlaska,:),"FaceColor",stateColor)
geoshow(ax(3),states(rowHawaii,:),"FaceColor",stateColor)
```

Hide the frame.

```
for k = 1:3
 setm(ax(k),"Frame","off","Grid","off",...
 "ParallelLabel","off","MeridianLabel","off")
end
```



## Input Arguments

## state - State to display

character vector | string scalar | string array | cell array of character vectors | 'District of Columbia'| 'Alabama'| 'AL'|'Alaska'| 'AK' | ...

State to display, specified as a string scalar, string array, character vector or cell array of character vectors. Permissible values include names of states, standard two-letter U.S. Postal Service abbreviations for states, and 'District of Columbia'.

Example: usamap ( \{'Maine', 'Florida' \}) sets the map limits to cover the region spanning from Maine to Florida.

## latlim - Latitude limits

two-element vector
Latitude limits, specified as a two-element vector of the form [southern_limit northern_limit].

## Lonlim - Longitude limits

two-element vector
Longitude limits, specified as a two-element vector of the form [western_limit eastern_limit].

## Z - Data grid

$M$-by- $N$ array
Data grid, specified as an $M$-by- $N$ array. $Z$ is a regular data grid associated with a geographic reference R .

## R - Geographic reference

geographic raster reference object | vector | matrix
Geographic reference, specified as one of the following.

Type	Description
Geographic raster reference   object	GeographicCellsReference or   GeographicPostingsReference geographic raster reference   object. The RasterSize property must be consistent with the   size of the data grid, size (Z).
Vector	1-by-3 numeric vector with elements:   [cells/degree northern_latitude_limit western_longitude_limit]
Matrix	3-by-2 numeric matrix that transforms raster row and column   indices to or from geographic coordinates according to:   [lon lat] = [row col 1] * R   R defines a (non-rotational, non-skewed) relationship in which   each column of the data grid falls along a meridian and each row   falls along a parallel.

For more information about referencing vectors and matrices, see "Georeferenced Raster Data".

## Output Arguments

## $h$ - Handle of the map axes

handle object | array of handle objects
Handle of the map axes, returned as a handle object.
If you use the syntax $\mathrm{h}=$ usamap('all'), then h is array of handle objects. $\mathrm{h}(1)$ is for the conterminous states, $h(2)$ is for Alaska, and $h(3)$ is for Hawaii.

## Tips

- All axes created with usamap are initialized with a spherical Earth model having a radius of 6,371,000 meters.
- In some cases, usamap uses tightmap to adjust the axis limits tight around the map. If you change the projection, or just want more white space around the map frame, use tightmap again or axis auto.
- $\operatorname{axes}(h(n))$, where $n=1,2$, or 3 , makes the desired axes current.
- set(h,'Visible', 'on') makes the axes visible.
- axesscale (h(1)) resizes the axes containing Alaska and Hawaii to the same scale as the conterminous states.


## See Also

axesm | axesscale | geoshow | paperscale | plotedit | tightmap|worldmap
Introduced before R2006a

## usgs24kdem

(To be removed) Read USGS 7.5 minute ( 30 meter or 10 meter) Digital Elevation Models

Note usgs24kdem will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[lat,lon,Z] = usgs24kdem
[lat,lon,Z] = usgs24kdem(filename)
[lat,lon,Z] = usgs24kdem(filename,samplefactor)
[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim)
[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim,gsize)
[lat,lon, Z,header,profile] = usgs24kdem( $\qquad$ )

## Description

[lat,lon,Z] = usgs24kdem reads a USGS 1:24,000 digital elevation map (DEM) file in standard format. You select the file interactively. usgs24kdem reads the entire file, subsampled by a factor of 5, returning a geolocated data grid with a latitude array, lat, longitude array, lon, and an elevation array, Z. Horizontal units are in degrees, vertical units might vary. The 1:24,000 series of DEMs store data as a grid of elevations spaced either at 10 or 30 meters apart. The number of points in a file varies with the geographic location.
[lat,lon, Z] = usgs24kdem(filename) reads the USGS DEM specified by filename and returns the result as a geolocated data grid.
[lat,lon,Z] = usgs24kdem(filename,samplefactor) reads a subset of the DEM data from filename, where samplefactor is a scalar integer that specifies the sample frequency.
[lat,lon,Z] = usgs24kdem(filename,samplefactor,latlim,lonlim) reads the subset of the elevation data from filename specified by the two-element vectors latlim and lonlim. You specify the latitude and longitude limits in degrees. Elements in the vectors must be in ascending order. The data might extend outside the requested area.
[lat,lon, Z] = usgs24kdem(filename, samplefactor,latlim,lonlim,gsize) specifies the graticule size in gsize. gsize is a two-element vector specifying the number of rows and columns in the latitude and longitude coordinated grid.
[lat,lon,Z,header, profile] = usgs24kdem( $\qquad$ ) also returns the contents of the header and raw profiles of the DEM file. The header structure contains descriptions of the data from the file header. The profile structure is the raw profile data from which the geolocated data grid is constructed.

## Examples

## Read USGS 24K DEM File

This example shows how to read a USGS 24 K Digital Elevation Model file.
Unzip a USGS 24K DEM file. The toolbox includes a DEM file sanfranciscos.dem.gz .

```
filenames = gunzip('sanfranciscos.dem.gz',tempdir);
demFilename = filenames{1};
```

Read every other point of the 1:24,000 DEM file.
[lat,lon,Z,header,profile] = usgs24kdem(demFilename,2);
Delete the temporary gunzipped file.
delete(demFilename)
As no negative elevations exist, move all points at sea level to -1 to color them blue.
$Z(Z==0)=-1$;
Compute the latitude and longitude limits for the DEM.

```
latlim = [min(lat(:)) max(lat(:))]
lonlim = [min(lon(:)) max(lon(:))]
latlim =
 37.6249 37.7504
lonlim =
 -122.5008 -122.3740
```

Display the DEM values.
figure
usamap(latlim,lonlim)
geoshow(lat,lon, Z, 'DisplayType','surface')
demcmap(Z)
daspectm('m',1)


## Input Arguments

filename - Name of file containing the digital elevation map
string scalar | character array
Name of file containing the digital elevation map, specified as a string scalar or character array.
Data Types: char|string

## samplefactor - Data sampling factor

5 (default) | scalar integer
Data sampling factor, specified as a scalar integer. For example, if samplefactor is equal to 1 , usgs24kdem reads the data at its full resolution, that is, every pixel. If you specify a samplefactor value $n$ that is greater than 1, usgs24kdem reads every $n$th point.
Data Types: double
latlim - Limits of the desired data
two-element vector
Limits of the desired data, specified as a two-element vector, in degrees. The limits must be in ascending order. The data might extend outside the requested area.

Data Types: double

## lonlim - Limits of desired data

two-element vector
Limits of desired data, specified as a two-element vector, in degrees.
Data Types: double

## gsize - Graticule size

same size as geolocated data grid (default) | two-element vector
Graticule size, specified as a two-element vector. gsize specifies the number of rows and columns in the latitude and longitude coordinated grid. If omitted, usgs24kdem returns a graticule the same size as the geolocated data grid. To specify the coordinated grid size without specifying the geographic limits, use empty matrices for latlim and lonlim.

Data Types: double

## Output Arguments

## lat - Latitude array

matrix of class double
Latitude array, returned as a matrix of class double.

## Lon - Longitude array

matrix of class double
Longitude array, returned as a matrix of class double.

## Z - Elevation array

matrix of class double
Elevation array, returned as a matrix of class double.

## header - Descriptions of the data from the file header struct

Descriptions of the data from the file header, returned as a struct.

## profile - Raw profile data from which the geolocated data grid is constructed struct

Raw profile data from which the geolocated data grid is constructed, returned as a struct.

## Tips

- The U.S. Geological Survey has created a series of digital elevation models based on their paper $1: 24,000$ scale maps. The grid spacing for these elevations models is either 10 meters or 30 meters on a Universal Transverse Mercator grid. Each file covers a 7.5 -minute quadrangle. The map and data series are available for much of the conterminous United States, Hawaii, and Puerto Rico. The data has been released in several formats. This function reads the data in the "standard" file format.
- This function reads USGS DEM files stored in the UTM projection. The function unprojects the grid back to latitude and longitude. Use usgsdem for data stored in geographic grids.
- The number of points in a file varies with the geographic location. Unlike the USGS DEM products, which use an equal-angle grid, the UTM projection grid DEMs cannot simply be concatenated to cover larger areas. There can be data gaps between DEMs.
- You can obtain the data files from the U.S. Geological Survey and from commercial vendors . Other agencies have made some local area data available online. See "Find Geospatial Data Online". The DEM files are ASCII files, and can be transferred as text. Line-ending conversion is not necessarily required.


## Compatibility Considerations

## usgs24kdem will be removed

Warns starting in R2021b
Some raster reading functions that return latitude-longitude grids will be removed, including usgs24kdem. Instead, use readgeoraster, which returns a map raster reference object. Reference objects have several advantages over latitude-longitude grids.

- Unlike latitude-longitude grids, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see MapCellsReference and MapPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the mapresize function.

Get metadata about files using the georasterinfo function.
This table shows some typical usages of usgs24kdem and how to update your code to use readgeoraster.

Will Be Removed	Recommended
[latgrat,longrat,z] = usgs24kdem(filename);	[Z,R] = readgeoraster(filename);
[latgrat,longrat,z] = usgs24kdem(filename, s	```&[\sharppR@facteadgeoraster(filename); [Z,R] = georesize(Z,R,1/samplefactor);```
$[\text { latgrat,longrat,z] = usgs24kdem(filename,s }$	
[latgrat,longrat,z,header,profile] = usgs24	  info = georasterinfo(filename);

The readgeoraster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use $[Z, R]=$ readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## See Also

demdataui |usgsdems | readgeoraster | georasterinfo

Introduced before R2006a

## usgsdem

(To be removed) Read USGS 1-degree (3-arc-second) Digital Elevation Model

Note usgsdem will be removed in a future release. Use readgeoraster instead. For more information, see "Compatibility Considerations".

## Syntax

[Z,refvec] = usgsdem(filename,scalefactor)
[Z,refvec] = usgsdem(filename,scalefactor,latlim,lonlim)

## Description

[Z,refvec] = usgsdem(filename,scalefactor) reads the specified file and returns the data in a regular data grid along with referencing vector refvec, a 1 -by- 3 vector having elements [cells/ degree north-latitude west-longitude] with latitude and longitude limits specified in degrees. The data can be read at full resolution (scalefactor $=1$ ), or can be downsampled by the scalefactor. A scalefactor of 3 returns every third point, giving $1 / 3$ of the full resolution.
[Z,refvec] = usgsdem(filename,scalefactor,latlim,lonlim) reads data within the latitude and longitude limits. These limits are two-element vectors with the minimum and maximum values specified in units of degrees.

## Background

The U.S. Geological Survey has made available a set of digital elevation maps of 1-degree quadrangles covering the contiguous United States, Hawaii, and limited portions of Alaska. The data is on a regular grid with a spacing of 30 arc-seconds (or about 100-meter resolution). 1-degree DEMs are also referred to as 3-arc-second or 1:250,000 scale DEM data.

The data is derived from the U.S. Defense Mapping Agency's DTED-1 digital elevation model, which itself was derived from cartographic and photographic sources. The cartographic sources were maps from the 7.5 -minute through 1-degree series (1:24,000 scale through 1:250,000 scale).

## Examples

Read every fifth point in the file containing part of Rhode Island and Cape Cod.

```
[Z,refvec] = usgsdem('providence-e',5);
```


## Tips

The grid for the digital elevation maps is based on the 1984 World Geodetic System (WGS84). Older DEMs were based on WGS72. Elevations are in meters relative to National Geodetic Vertical Datum of 1929 (NGVD 29) in the continental U.S. and local mean sea level in Hawaii.

The absolute horizontal accuracy of the DEMs is 130 meters, while the absolute vertical accuracy is $\pm 30$ meters. The relative horizontal and vertical accuracy is not specified, but is probably much better than the absolute accuracy.

These DEMs have a grid spacing of 3 arc-seconds in both the latitude and longitude directions. The exception is DEM data in Alaska, where latitudes between 50 and 70 degrees North have grid spacings of 6 arc-seconds, and latitudes greater than 70 degrees North have grid spacings of 9 arcseconds.

Statistical data in the files is not returned.
You can obtain the data files from the U.S. Geological Survey and from commercial vendors. Other agencies have made some local area data available online.

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

## Compatibility Considerations

## usgsdem will be removed

Warns starting in R2021b
Raster reading functions that return referencing vectors will be removed, including usgsdem. Instead, use readgeoraster, which returns a geographic raster reference object. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see GeographicCellsReference and GeographicPostingsReference.
- You can manipulate the limits of rasters associated with reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize function.
- Most functions that accept referencing vectors as input also accept reference objects.

This table shows some typical usages of usgsdem and how to update your code to use readgeoraster instead. The readgeoraster function requires you to specify a file extension.

Will Be Removed	Recommended
[Z,refvec] = usgsdem(filename,scalefactor);	$\begin{aligned} & {[Z, R]=\text { readgeoraster(filename); }} \\ & [Z, R]=\text { georesize(Z,R,1/scalefactor }) \end{aligned}$
[Z,refvec] = usgsdem(filename,scalefactor,	$\begin{aligned} & \text { [Zl, Rn] , もomeandgeoraster(filename); } \\ & {[Z, R]=\text { geocrop(Z,R,latlim, lonlim); }} \\ & {[Z, R]=\text { georesize(Z,R,1/scalefactor) ; }} \end{aligned}$

The readgeo raster function returns data using the native data type embedded in the file. Return a different data type by specifying the 'OutputType' name-value pair. For example, use $[Z, R]=$ readgeoraster(filename,'OutputType','double').

The readgeoraster function does not automatically replace missing data with NaN values. If your data set uses large negative numbers to indicate missing data, you can replace them with NaN values using the standardizeMissing function.

```
[Z,R] = readgeoraster('MtWashington-ft.grd');
info = georasterinfo('MtWashington-ft.grd');
m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);
```


## See Also

usgsdems | readgeoraster| georasterinfo
Introduced before R2006a

## usgsdems

USGS 1-degree (3-arc-sec) DEM file names for latitude-longitude quadrangle

## Syntax

[fname, qname] = usgsdems(latlim,lonlim)

## Description

[fname, qname] = usgsdems(latlim,lonlim) returns cell arrays of the DEM file names and quadrangle names covering the geographic region. The region is specified by scalar latitude and longitude points or two-element vectors of latitude and longitude limits in units of degrees.

## Background

The U.S. Geological Survey has made available a set of digital elevation maps of 1-degree quadrangles covering the contiguous United States, Hawaii, and limited portions of Alaska. These are referred to as 1-degree, 3-arc second or 1:250,000 scale DEMs. Because the file names of these 1 degree data sets are taken from the names of cities or features in the quadrangle, determining the files needed to cover a particular region generally requires consulting an index map or other reference. This function takes the place of such a reference by returning the file names for a given geographic region.

## Examples

Which files are needed to map part of New England?

```
usgsdems([41 44], [-72 -69])
ans =
 'providence-w'
 'providence-e'
 'chatham-w'
 'boston-w'
 'boston-e'
 'portland-w'
 'portland-e'
 'bath-w'
```


## Tips

This function only returns file names for the contiguous United States.

## See Also

readgeoraster
Introduced before R2006a

## utmgeoid

Select ellipsoids for given UTM zone

## Syntax

```
ellipsoid = utmgeoid
ellipsoid = utmgeoid(zone)
[ellipsoid,ellipsoidstr] = utmgeoid(...)
```


## Description

The purpose of this function is to recommend a local ellipsoid for use with a given UTM zone, depending on the geographic location of that zone. Use it only if you are not using a global reference ellipsoid, such as the World Geodetic System (WGS) 1984 ellipsoid. In many cases, depending on your application, you should just use the output of wgs84Ellipsoid, or one of the other options available through referenceEllipsoid.
ellipsoid = utmgeoid, without any arguments, opens the utmzoneui interface for selecting a UTM zone. This zone is then used to return the recommended ellipsoid definitions for that particular zone.
ellipsoid = utmgeoid(zone) uses the input zone to return the recommended ellipsoid definitions.
[ellipsoid,ellipsoidstr] = utmgeoid(...) returns the short name(s) for the reference ellipsoid(s), as used by referenceEllipsoid, in a char array with one name in each row.

## Background

The Universal Transverse Mercator (UTM) system of projections tiles the world into quadrangles called zones. Each zone has different projection parameters and commonly used ellipsoidal models of the Earth. This function returns a list of ellipsoid models commonly used in a zone.

## Examples

```
zone = utmzone(0,100) % degrees
zone =
47N
[ellipsoid,names] = utmgeoid(zone)
ellipsoid =
 6377.3 0.081473
 6377.4 0.081697
names =
everest
bessel
```


## See Also

referenceEllipsoid|wgs84Ellipsoid

Introduced before R2006a

## utmzone

Select UTM zone given latitude and longitude

## Syntax

```
zone = utmzone
zone = utmzone(lat,long)
zone = utmzone(mat),
[latlim,lonlim] = utmzone(zone)
lim = utmzone(zone)
```


## Description

zone = utmzone selects a Universal Transverse Mercator (UTM) zone with a graphical user interface. Returns the UTM zone designation as a character vector.
zone $=$ utmzone(lat,long) returns the UTM zone containing the geographic coordinates. If lat and long are vectors, the zone containing the geographic mean of the data set is returned. The geographic coordinates must be in units of degrees.
zone = utmzone(mat), where mat is of the form [lat long].
[latlim,lonlim] = utmzone(zone) returns the geographic limits of the zone, where zone is a valid UTM zone designation. Valid UTM zones designations are numbers, or numbers followed by a single letter. For example, '31' or '31N'. The returned limits are in units of degrees.
lim $=$ utmzone(zone) returns the limits in a single vector output.

## Background

The Universal Transverse Mercator (UTM) system of projections tiles the world into quadrangles called zones. This function can be used to identify which zone is used for a geographic area and, conversely, what geographic limits apply to a UTM zone.

## Examples

```
[latlim,lonlim] = utmzone('12F')
latlim =
 -56 -48
lonlim =
 -114 -108
utmzone(latlim,lonlim)
ans =
12F
```


## Limitations

The UTM zone system is based on a regular division of the globe, with the exception of a few zones in northern Europe. utmzone does not account for these deviations.

## See Also

utmgeoid
Introduced before R2006a

## validateLengthUnit

Validate and standardize length unit

## Syntax

standardName = validateLengthUnit(unit)
standardName = validateLengthUnit(unit,funcName,varName,argIndex)

## Description

standardName = validateLengthUnit(unit) checks that unit is a valid length unit and converts it to a standard unit name. The function is case-insensitive with respect to its input. Spaces, periods, and apostrophes are ignored. Plural forms are accepted in most cases, but the result, standardName is always singular.
standardName = validateLengthUnit(unit,funcName,varName, argIndex) checks that unit is a valid length unit and, if it isn't, creates an error message using the optional inputs funcName, varName, and argIndex in error message formatting, with behavior identical to that provided by the validateattributes inputs of the same names.

## Examples

## Find Valid Length Unit Name

Find the valid length unit name for ' foot' when other valid strings for 'foot' are input.

```
validateLengthUnit('foot')
ans =
 'foot'
validateLengthUnit('feet')
ans =
'foot'
validateLengthUnit('international feet')
ans =
'foot'
```

Find the valid length unit name for 'kilometer' when other valid strings for 'kilometer' are input.

```
validateLengthUnit('kilometer')
ans =
'kilometer'
validateLengthUnit('km')
```

```
ans =
'kilometer'
validateLengthUnit('kilometre')
ans =
'kilometer'
validateLengthUnit('kilometers')
ans =
'kilometer'
validateLengthUnit('kilometres')
ans =
'kilometer'
```

Find the valid length unit name when the name contains an apostrophe.

```
validateLengthUnit('Clarke''s foot')
ans =
'Clarke's foot'
```


## Create Custom Error Message

Create custom error messages using the validateLengthUnit function. An invalid input to validateLengthUnit results in an error message referencing a function name, ' $F 00$ ' , a variable name, 'UNIT ' and an argument number, 5.

```
validateLengthUnit(17,'F00','UNIT',5)
```

Error using F00
Expected input number 5, UNIT, to be one of these types:
char, string
Instead its type was double.
Error in validateLengthUnit (line 87)
validateattributes(unit,\{'char','string'\},\{'nonempty','scalartext'\},varargin\{:\})

## Input Arguments

## unit - Length unit

character vector | string scalar
Length unit, specified as any of the following:

Value	Unit Name
"m", "meter", "meters", "metre", "metres"	Meters


Value	Unit Name
"cm", "centimeter", "centimeters",   "centimetre", "centimetres"	Centimeters
"mm", "millimeter", "millimeters",   "millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers",   "kilometre", "kilometers"	Kilometers
"nm", "naut mi", "nautical mile",   "nautical miles"	Nautical miles
"ft", "international ft", "foot",	
"international foot", "feet",	
"international feet"	Feet
"in", "inch", "inches"	
"yd", "yds", "yard", "yards"	Inches
"mi", "mile", "miles", "international   mile", "international miles"	Miles
"sf", "survey ft", "US survey ft", "U.S.   survey ft", "survey foot", "US survey   foot", "U.S. survey foot", "survey   feet", "US survey feet", "U.S. survey   feet"	
"sm", "survey mile", "survey miles",   "statute mile", "statute miles", "US   survey mile", "US survey miles", "U.S.   survey mile(s)", "U.S. survey miles"	U.S. survey miles (statute miles)
"Clarke's foot", "Clarkes foot"	Clarke's feet
"German legal metre", "German legal   meter"	German legal metres
"Indian foot"	

## Example: validateLengthUnit("feet")

Data Types: char|string

## funcName - Name of the function whose input you are validating

character vector | string scalar
Name of the function whose input you are validating, specified as a string scalar or character vector. If you specify an empty string or character vector (' ' ), the validateLengthUnit function ignores the funcName value.
Example: validateLengthUnit(17,'F00', 'UNIT' , 5)
Data Types: char | string

## varName - Name of input variable

character vector | string scalar

Name of input variable, specified as a string scalar or character vector. If you specify an empty string or character vector (' '), the validateLengthUnit function ignores the varName value.

Example: validateLengthUnit(17,' FOO','UNIT', 5)
Data Types: char|string
argIndex - Position of the input argument
positive integer
Position of the input argument, specified as a positive integer.
Example: validateLengthUnit (17, 'F00', 'UNIT', 5)
Data Types: single|double|int8| int16|int32|int64|uint8|uint16|uint32|uint64

## Output Arguments

## standardName - Standard length unit name

character vector
Standard length unit name, returned as a character vector.

## See Also

unitsratio

Introduced before R2006a

## vec2mtx

Convert latitude-longitude vectors to regular data grid

## Syntax

```
[Z,R] = vec2mtx(lat,lon,density)
[Z,R] = vec2mtx(lat,lon,density,latlim,lonlim)
[Z,R] = vec2mtx(lat,lon,Z1,R1)
[Z,R] = vec2mtx(...,'filled')
```


## Description

$[Z, R]=$ vec $2 m t x($ lat, lon, density) creates a regular data grid $Z$ from vector data, placing ones in grid cells intersected by a vector and zeroes elsewhere. R is the raster reference object for the computed grid. lat and lon are vectors of equal length containing geographic locations in units of degrees. density indicates the number of grid cells per unit of latitude and longitude (a value of 10 indicates 10 cells per degree, for example), and must be scalar-valued. Whenever there is space, a buffer of two grid cells is included on each of the four sides of the grid. The buffer is reduced as needed to keep the latitudinal limits within [-90 90] and to keep the difference in longitude limits from exceeding 360 degrees.
 and lonlim to define the latitude and longitude limits of the grid.
$[Z, R]=$ vec $2 m t x(l a t, l o n, Z 1, R 1)$ uses a pre-existing data grid Z 1 , georeferenced by R1, to define the limits and density of the output grid. R1 can be a referencing vector, a referencing matrix, or a geographic raster reference object.

If R1 is a geographic raster reference object, its RasterSize property must be consistent with size(Z1) and its RasterInterpretation must be 'cells'.

If R1 is a referencing vector, it must be a 1-by-3 vector containing these elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If R1 is a referencing matrix, it must be 3-by-2 and transform raster row and column indices to or from geographic coordinates according to this equation:
[lon lat] = [row col 1] * R1
The matrix must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.

With this syntax, the output $R$ is equal to $R 1$, and may be a referencing object, vector, or matrix.
$[Z, R]=\operatorname{vec} 2 m t x(. . ., ' f i l l e d ')$, where lat and lon form one or more closed polygons (with NaN-separators), fills the area outside the polygons with the value two instead of the value zero.

## Notes

Empty lat, lon vertex arrays will result in an error unless the grid limits are explicitly provided (via latlim, lonlim or Z1,R1). In the case of explicit limits, Z will be filled entirely with 0 s if the 'filled ' parameter is omitted, and 2 s if it is included.

It's possible to apply vec 2 mtx to sets of polygons that tile without overlap to cover an area, as in Example 1 below, but using 'filled ' with polygons that actually overlap may lead to confusion as to which areas are inside and which are outside.

## Examples

## Example 1

Convert latitude-longitude polygons to a regular data grid and display as a map.

```
states = shaperead('usastatelo', 'UseGeoCoords', true);
lat = [states.Lat];
lon = [states.Lon];
[Z,R] = vec2mtx(lat,lon,5,'filled');
figure
worldmap(Z,R)
geoshow(Z,R,'DisplayType','texturemap')
colormap(flag(3))
```



## Example 2

Combine two separate calls to vec2mtx to create a 4 -color raster map showing interior land areas, coastlines, oceans, and world rivers.

```
load coastlines
[Z,R] = vec2mtx(coastlat,coastlon,1, ...
 [-90 90],[-90 270],'filled');
rivers = shaperead('worldrivers.shp','UseGeoCoords',true);
A = vec2mtx([rivers.Lat],[rivers.Lon],Z,R);
Z(A == 1) = 3;
figure
worldmap(Z,R)
```

```
geoshow(Z,R,'DisplayType','texturemap')
colormap([.45 .60 .30; 0 0 0; 0 0.5 1; 0 0 1])
```



## Define Limits and Density of Output Grid Using Spatial Referencing Object

Import US state polygons as a geospatial table. Extract the coordinates of the polygons by converting the geospatial table to a table.

```
states = readgeotable("usastatelo.shp");
T = geotable2table(states,["Latitude" "Longitude"]);
[lat,lon] = polyjoin(T.Latitude',T.Longitude');
```

Choose geographic limits.

```
latlim = [15 75];
lonlim = [-190 -65];
```

Specify a grid with 5 cells per degree.
density = 5;
Compute raster size. (M and N both work out to be integers.)

```
M = density * diff(latlim);
N = density * diff(lonlim);
```

Create a geographic raster reference object.

```
R = georasterref("RasterSize", [M N], ...
 "ColumnsStartFrom","north","Latlim",latlim, ...
 "Lonlim",lonlim);
```

Create a blank grid that is consistent with $R$ in size. vec $2 m t x$ requires a data grid as input.

```
Z = zeros(R.RasterSize);
```

Overwrite Z with a new grid including state outlines and interiors.

```
Z = vec2mtx(lat,lon,Z,R,"filled");
```

Plot the georeferenced grid.

```
figure; worldmap(Z,R);
geoshow(Z,R,"DisplayType", "texturemap")
colormap(flag(3))
```



## Compatibility Considerations

## vec2mtx returns reference objects instead of referencing vectors

Behavior changed in R2021a
Starting in R2021a, most syntaxes of the vec2mtx function return a raster reference object instead of a referencing vector. This change is unlikely to affect your existing code because most Mapping Toolbox functions that accept referencing vectors as input also accept raster reference objects.

If you specify a referencing vector or matrix as input, then the vec2mtx function still returns a referencing vector or matrix.

## See Also

## Functions

imbedm

## Objects

GeographicCellsReference |GeographicPostingsReference

Introduced before R2006a

## vertcat

Vertically concatenate geographic or planar vectors

## Syntax

```
v = vertcat(v1,v2,...)
```


## Description

$\mathrm{v}=$ vertcat( $\mathrm{v} 1, \mathrm{v} 2, \ldots$ ) vertically concatenates the geographic or planar vectors $\mathrm{v} 1, \mathrm{v} 2$, and so on. If the class type of any property is a cell array, then the resultant field in the output $v$ is also a cell array.

## Examples

## Vertically Concatenate Mapshape Vectors

Create three mapshape vectors. The second vector has two features and is size 2 x 1 .

```
ms1 = mapshape(42, -110, 'Temperature', 65, 'Name', 'point1');
ms2 = mapshape({50, 50.1}, {-101 -101.4}, 'Temperature', {73.2 77}, ...
 'Name', {'point2','point3'});
ms3 = mapshape(42.1, -110.4, 'Temperature', 65.5, 'Name', 'point4');
```

Vertically concatenate the vectors into a single mapshape vector.

```
ms = vertcat(ms1, ms2, ms3)
ms =
 4x1 mapshape vector with properties:
 Collection properties:
 Geometry: 'line'
 Metadata: [1x1 struct]
 Vertex properties:
 (4 features concatenated with 3 delimiters)
 X: [42 NaN 50 NaN 50.1000 NaN 42.1000]
 Y: [-110 NaN -101 NaN -101.4000 NaN -110.4000]
 Temperature: [65 NaN 73.2000 NaN 77 NaN 65.5000]
 Feature properties:
 Name: {'point1' 'point2' 'point3' 'point4'}
```

The concatenated mapshape vector ms is size 4 x 1 and has four features. Note that the property 'Temperature' is a Vertex property in ms because it is a Vertex property in ms2, even though it is a Feature property in ms1 and ms3.

## Input Arguments

## v1, v2,... - Geographic or planar vectors to be concatenated <br> geopoint, geoshape, mappoint, or mapshape objects

Geographic or planar vectors to be concatenated, specified as one or many geopoint, geoshape, mappoint, or mapshape objects. All of $v 1, \mathrm{v} 2, \ldots$ are the same type of object.

## Output Arguments

v-Concatenated geographic or planar vector
geopoint, geoshape, mappoint, or mapshape object
Concatenated geographic or planar vector, returned as a geopoint, geoshape, mappoint, or mapshape object. The object type of $v$ matches the object type of $v 1, v 2, \ldots$

## See Also

cat

Introduced in R2012a

## vfwdtran

Transform azimuth on ellipsoid to direction on map

## Syntax

```
th = vfwdtran(lat,lon,az)
th = vfwdtran(mstruct,lat,lon,az)
[th,len] = vfwdtran(...)
```


## Description

th = vfwdtran(lat,lon,az) transforms the azimuth angle at specified latitude and longitude points on the sphere into the projection space. The map projection currently displayed is used to define the projection space. The input angles must be in the same units as specified by the current map projection. The inputs can be scalars or matrices of the equal size. The angle in the projection space is defined as positive counterclockwise from the $x$-axis.
th = vfwdtran(mstruct,lat,lon,az) uses the map projection defined by the input mstruct to compute the map projection.
[th,len] = vfwdtran(...) also returns the vector length in the projected coordinate system. A value of 1 indicates no scale distortion.

## Background

The direction of north is easy to define on the three-dimensional sphere, but more difficult on a twodimensional map. For cylindrical projections in the normal aspect, north is always in the positive $y$ direction. For conic projections, north can be to the left or right of the $y$-axis. This function transforms any azimuth angle on the sphere to the corresponding angle in the projected paper coordinates.

## Examples

Sample calculations:

```
axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
quiverm([0 0 0],[-45 0 45],[0 0 0],[10 10 10],0)
quiverm([0 0 0],[-45 0 45],[10 10 10],[0 0 0],0)
```



```
vfwdtran([0 0 0],[-45 0 45],[0 0 0])
ans =
 59.614 120.39
vfwdtran([0 0 0],[-45 0 45],[90 90 90])
ans =
 -30.385 0.0001931 30.386
```


## Limitations

This transformation is limited to the region specified by the frame limits in the current map definition.

## Tips

The geographic azimuth angle is measured clockwise from north. The projection space angle is measured counterclockwise from the $x$-axis.

This function uses a finite difference technique. The geographic coordinates are perturbed slightly in different directions and projected. A small amount of error is introduced by numerical computation of derivatives and the variation of map distortion parameters.

## See Also

vinvtran|projinv|projfwd|defaultm
Introduced before R2006a

## viewshed

Areas visible from point on terrain elevation grid

## Syntax

[vis,R] = viewshed (Z,R,lat1,lon1)
viewshed (Z,R, lat1, lon1, observerAltitude)
viewshed(Z,R,lat1,lon1,observerAltitude, targetAltitude)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ... observerAltitudeOption)
viewshed(Z,R,lat1,lon1, observerAltitude,targetAltitude, ... observerAltidueOption,targetAltitudeOption)
viewshed(Z,R,lat1, lon1,observerAltitude,targetAltitude, ... observerAltitudeOption,targetAltitudeOption,actualRadius)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ... observerAltitudeOption,targetAltitudeOption, ... actualRadius,effectiveRadius)

## Description

[vis,R] = viewshed(Z,R,lat1,lon1) computes areas visible from a point on a digital elevation grid. Z is a regular data grid containing elevations in units of meters. The observer location is provided as scalar latitude and longitude in units of degrees. The visibility grid vis contains 1 s at the surface locations visible from the observer location, and 0 s where the line of sight is obscured by terrain. R can be a geographic raster reference object, a referencing vector, or a referencing matrix.

If $R$ is a geographic raster reference object, its RasterSize property must be consistent with size(Z).

If $R$ is a referencing vector, it must be a 1 -by- 3 with elements:
[cells/degree northern_latitude_limit western_longitude_limit]
If $R$ is a referencing matrix, it must be 3-by- 2 and transform raster row and column indices to or from geographic coordinates according to:
[lon lat] $=[$ row col 1] $* R$
If $R$ is a referencing matrix, it must define a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel. Nearest-neighbor interpolation is used by default. NaN is returned for points outside the grid limits or for which lat or lon contain NaN . All angles are in units of degrees.
viewshed (Z,R,lat1,lon1,observerAltitude) places the observer at the specified altitude in meters above the surface. This is equivalent to putting the observer on a tower. If omitted, the observer is assumed to be on the surface.
viewshed (Z,R, lat1, lon1, observerAltitude, targetAltitude) checks for visibility of target points a specified distance above the terrain. This is equivalent to putting the target points on towers that do not obstruct the view. If omitted, the target points are assumed to be on the surface.
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltitudeOption) controls whether the observer is at a relative or absolute altitude. If the observerAltitudeOption is 'AGL', then observerAltitude is in meters above ground level. If observerAltitudeOption is 'MSL' , observerAltitude is interpreted as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltidueOption, targetAltitudeOption) controls whether the target points are at a relative or absolute altitude. If the target altitude option is 'AGL', the targetAltitude is in meters above ground level. If targetAltitudeOption is 'MSL', targetAltitude is interpreted as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltitudeOption, targetAltitudeOption, actualRadius) does the visibility calculation on a sphere with the specified radius. If omitted, the radius of the earth in meters is assumed. The altitudes, the elevations, and the radius should be in the same units. This calling form is most useful for computations on bodies other than the Earth.

```
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
 observerAltitudeOption,targetAltitudeOption, ...
 actualRadius, effectiveRadius) assumes a larger radius for propagation of the line of sight.
This can account for the curvature of the signal path due to refraction in the atmosphere. For
example, radio propagation in the atmosphere is commonly treated as straight line propagation on a
sphere with 4/3 the radius of the Earth. In that case the last two arguments would be R_e and
4/3*R_e, where R_e is the radius of the earth. Use Inf for flat Earth viewshed calculations. The
altitudes, the elevations, and the radii should be in the same units.
```


## Examples

## Compute Visibility for Point on Peaks Map

Compute visibility for a point on the peaks map. Add the detailed information for the line of sight calculation between two points from los2.

Create the peak map and plot the visibility.

```
Z = 500*peaks(100);
refvec = [1000 0 0];
[lat1,lon1,lat2,lon2] = deal(-0.027,0.05,-0.093,0.042);
[visgrid,visleg] = viewshed(Z,refvec,lat1,lon1,100);
[vis,visprofile,dist,zi,lattrk,lontrk] ...
 = los2(Z,refvec,lat1,lon1,lat2,lon2,100);
axesm('globe','geoid',earthRadius('meters'))
meshm(visgrid,visleg,size(Z),Z);
axis tight
camposm(-10,-10,1e6)
camupm(0,0)
colormap(flipud(summer(2)))
brighten(0.75)
shading interp
camlight
h = lcolorbar({'obscured','visible'});
```

```
h.Position = [.875 .45 .02 .1];
```

plot3m(lattrk([1;end]),lontrk([1; end]), ...
zi([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile), lontrk(~visprofile), ...
zi(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile), lontrk(visprofile), ...
zi(visprofile),'g.','markersize',10)


## Compute Surface Area Visible By Radar

Compute the surface area visible by radar from an aircraft flying 3000 meters above the Yellow Sea. Assume that radio wave propagation in the atmosphere can be modeled as straight lines on a $4 / 3$ radius Earth. This example also calculates the area visible to the plane above it at 5000 meters.

Load elevation data and a geographic cells reference object for the Korean peninsula, calculate the viewshed, and display it.

```
load korea5c
korea5c(korea5c<0) = -1;
figure
worldmap(korea5c, korea5cR)
setm(gca,'geoid',[1 0])
da = daspect;
pba = pbaspect;
```

```
da(3) = 7.5*pba(3)/da(3);
daspect(da);
demcmap(korea5c)
camlight(90,5);
camlight(0,5);
lighting gouraud
material([0.25 0.8 0])
lat = 34.0931; lon = 125.6578;
altobs = 3000; alttarg = 0;
plotm(lat,lon,'wo')
Re = earthRadius('meters');
[vmap,vmapl] = viewshed(...
 korea5c,korea5cR,lat,lon,altobs,alttarg, ...
 'MSL','AGL',Re,4/3*Re);
meshm(vmap,vmapl,size(korea5c),korea5c)
```



Display the visible areas as blue and the obscured areas as red and drape the visibility colors on an elevation map, using lighting to bring out the surface topography. The aircraft's radar can see out a certain radius on the surface of the ocean, but note how some ocean areas are shadowed by the island of Jeju-Do. Also some mountain valleys closer than the ocean horizon are obscured, while some mountain tops further away are visible.

```
caxis auto; colormap([1 0 0; 0 0 1])
lighting gouraud;
axis off
```



Now calculate the area that the radar plane flying at an altitude of 3000 meters can have line-of-sight to other aircraft flying above it at 5000 meters. Note how the area is much larger but that some edges of the area are reduced by shadowing from Jeju-Do and the mountains on the Korean peninsula.
[vmap, vmapl] = viewshed(korea5c,korea5cR,lat,lon, 3000,5000, ... 'MSL','MSL',Re,4/3*Re);
clmo surface
meshm(vmap, vmapl, size(korea5c), korea5c)
lighting gouraud


## Tips

The observer should be located within the latitude-longitude limits of the elevation grid. If the observer is located outside the grid, there is insufficient information to calculate a viewshed. In this case viewshed issues a warning and sets all elements of vis to zero.

## See Also

los2
Introduced before R2006a

## vinvtran

Transform direction on map to azimuth on ellipsoid

## Syntax

```
az = vinvtran(x,y,th)
az = vinvtran(mstruct,x,y,th)
[az,len] = vinvtran(...)
```


## Description

$a z=v i n v t r a n(x, y, t h)$ transforms an angle in the projection space at the point specified by $x$ and $y$ into an azimuth angle in geographic coordinates. The map projection currently displayed is used to define the projection space. The input angles must be in the same units as specified by the current map projection. The inputs can be scalars or matrices of equal size. The angle in the projection space angle th is defined as positive counterclockwise from the $x$-axis.
$a z=v i n v t r a n(m s t r u c t, x, y, t h)$ uses the map projection defined by the input struct to compute the map projection.
[az,len] = vinvtran(...) also returns the vector length in the geographic coordinate system. A value of 1 indicates no scale distortion for that angle.

## Background

While vectors along the $y$-axis always point to north in a cylindrical projection in the normal aspect, they can point east or west of north on conic, azimuthal, and other projections. This function computes the geographic azimuth for angles in the projected space.

## Examples

Sample calculations:

```
axesm('eqdconicstd','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel; axis off
mstruct = gcm;
[x,y] = projfwd(mstruct,[0 0 0],[-45 0 45]);
quiver(x,y,[0.2 0.2 0.2],[0 0 0],0)
quiver(x,y,[0 0 0],[0.2 0.2 0.2],0)
```



```
vinvtran(x,y,[0 0 0])
ans =
 56.1765 90.0000 123.8235
vinvtran(x,y,[90 90 90])
ans =
 332.8360 0.0000 27.1640
```


## Limitations

This transformation is limited to the region specified by the frame limits in the current map definition.

## Tips

The geographic azimuth angle is measured clockwise from north. The projection space angle is measured counterclockwise from the $x$-axis.

This function uses a finite difference technique. The geographic coordinates are perturbed slightly in different directions and projected. A small amount of error is introduced by numerical computation of derivatives and the variation of map distortion parameters.

## See Also

vfwdtran|projinv|projfwd|defaultm
Introduced before R2006a

## vmap0data

Read selected data from Vector Map Level 0

## Syntax

struct = vmap0data(library,latlim,lonlim,theme,topolevel)
struct = vmap0data(devicename,library, ...)
[struct1,struct2,...] = vmap0data(...,\{topolevel1,topolevel2,...\})

## Description

struct = vmap0data(library, latlim,lonlim, theme, topolevel) reads the data for the specified theme and topology level directly from the VMAPO CD-ROM. There are four CDs, one for each of the libraries: 'NOAMER' (North America), 'SASAUS' (Southern Asia and Australia), 'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR' (South America and Africa). The desired theme is specified by a two-letter code. A list of valid codes is displayed when an invalid code, such as '?', is entered. topolevel defines the type of data returned: 'patch', 'line', 'point', or 'text '. The region of interest can be given as a point latitude and longitude or as a region with twoelement vectors of latitude and longitude limits. The units of latitude and longitude are degrees. The data covering the requested region is returned, but will include data extending to the edges of the tiles. The result is returned as a Mapping Toolbox Version 1 display structure.
struct = vmap0data(devicename, library, ...) specifies the logical device name of the CDROM for computers that do not automatically name the mounted disk.
[struct1,struct2,...] = vmap0data(...,\{topolevel1,topolevel2,...\}) reads several topology levels. The levels must be specified as a cell array with the entries 'patch', 'line', 'point', or 'text'. Entering \{'all'\} for the topology level argument is equivalent to \{ 'patch', 'line', 'point', 'text'\}. Upon output, the data structures are returned in the output arguments by topology level in the same order as they were requested.

## Background

The Vector Map (VMAP) Level 0 database represents the third edition of the Digital Chart of the World. The second edition was a limited release item published in 1995. The product is dual named to show its lineage to the original DCW, published in 1992, while positioning the revised product within a broader emerging family of VMAP products. VMAP Level 0 is a comprehensive 1:1,000,000 scale vector base map of the world. It consists of cartographic, attribute, and textual data stored on compact disc read-only memory (CD-ROM). The primary source for the database is the Operational Navigation Chart (ONC) series of the U. S. National Geospatial Intelligence Agency (NGA), formerly the National Imagery and Mapping Agency (NIMA), and before that, the Defense Mapping Agency (DMA). This is the largest scale unclassified map series in existence that provides consistent, continuous global coverage of essential base map features. The database contains more than 1,900 MB of vector data and is organized into 10 thematic layers. The data includes major road and rail networks, major hydrologic drainage systems, major utility networks (cross-country pipelines and communication lines), all major airports, elevation contours ( $1000 \mathrm{foot}(\mathrm{ft}$ ), with 500 ft and 250 ft supplemental contours), coastlines, international boundaries, and populated places. The database can be accessed directly from the four optical CD-ROMs that store the database or can be transferred to magnetic media.

## Examples

The devicename is platform dependent. On an MS-DOS based operating system it would be something like 'd: ' , depending on the logical device code assigned to the CD-ROM drive. On a UNIX operating system, the CD-ROM might be mounted as '\cdrom', '\CDROM', '\cdrom1', or something similar. Check your computer's documentation for the right devicename.

To view a list of valid themes, call vmap0data and specify an invalid theme, for example '?'. MATLAB errors and displays a list of valid themes.

```
s = vmap0data(devicename,'NOAMER',41,-69,'?','patch');
??? Error using ==> vmap0data
Theme not present in library NOAMER
Valid theme identifiers are:
libref : Library Reference
tileref: Tile Reference
bnd : Boundaries
dq : Data Quality
elev : Elevation
hydro : Hydrography
ind : Industry
phys : Physiography
pop : Population
trans : Transportation
util : Utilities
veg : Vegetation
BNDpatch = vmap0data(devicename,'NOAMER',...
 [41 44],[-72 -69],'bnd','patch')
BNDpatch =
1x169 struct array with fields:
 type
 otherproperty
 altitude
 lat
 long
 tag
```

Here are some examples that specify valid themes:

```
[TRtext,TRline] = vmap0data(devicename,'SASAUS',...
 [-48 -34],[164 180],'trans',{'text','line'});
[BNDpatch,BNDline,BNDpoint,BNDtext] = vmap0data(devicename,...
 'EURNASIA',-48 ,164,'bnd',{'all'});
```


## Tips

Data are returned as Mapping Toolbox display structures, which you can then update to geographic data structures. For information about display structure format, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym. The updategeostruct function performs such conversions.

Latitudes and longitudes use WGS84 as a horizontal datum. Elevations and depths are in meters above mean sea level.

Some VMAP0 themes do not contain all topology levels. In those cases, empty matrices are returned.
Patches are broken at the tile boundaries. Setting the EdgeColor to ' none ' and plotting the lines gives the map a normal appearance.

The major differences between VMAP0 and the DCW are the elimination of the gazette layer, addition of bathymetric data, and updated political boundaries.

Vector Map Level 0, created in the 1990s, is still probably the most detailed global database of vector map data available to the public. VMAP0 CD-ROMs are available from through the U.S. Geological Survey (USGS):

USGS Information Services (Map and Book Sales)
Box 25286
Denver Federal Center
Denver, CO 80225
Telephone: (303) 202-4700
Fax: (303) 202-4693

Note For details on locating map data for download over the Internet, see the following documentation at the MathWorks Web site: "Find Geospatial Data Online".

## See Also

vmap0read | vmap0rhead | geoshow | updategeostruct
Introduced before R2006a

## vmap0read

Read Vector Map Level 0 file

## Syntax

```
vmap0read
vmap0read(filepath,filename)
vmap0read(filepath,filename,recordIDs)
vmap0read(filepath,filename,recordIDs,field,varlen)
struc = vmap0read(...)
[struc,field] = vmap0read(...)
[struc,field,varlen] = vmap0read(...)
[struc,field,varlen,description] = vmap0read(...)
[struc,field,varlen,description,narrativefield] = vmap0read(...)
```


## Description

vmap0read reads a VMAP0 file. The user selects the file interactively.
vmap0read(filepath, filename) reads the specified file. The combination [filepath filename] must form a valid complete file name.
vmap0read(filepath, filename, recordIDs) reads selected records or fields from the file. If recordIDs is a scalar or a vector of integers, the function returns the selected records. If recordIDs is a cell array of integers, all records of the associated fields are returned.
vmap0read(filepath,filename, recordIDs,field,varlen) uses previously read field and variable-length record information to skip parsing the file header (see below).
struc $=$ vmap0read (...) returns the file contents in a structure.
[struc,field] = vmap0read(...) returns the file contents and a structure describing the format of the file.
[struc,field, varlen] = vmap0read(...) also returns a vector describing which fields have variable-length records.
[struc,field, varlen,description] = vmap0read(...) also returns description, a character vector that describes the contents of the file.
[struc,field,varlen, description, narrativefield] = vmap0read(...) also returns the name of the narrative file for the current file.

## Background

The Vector Map Level 0 (VMAP0) uses binary files in a variety of formats. This function determines the format of the file and returns the contents in a structure. The field names of this structure are the same as the field names in the VMAP0 file.

## Examples

The following examples use the UNIX directory system and file separators for the path name:

```
s = vmap0read('VMAP/VMAPLV0/NOAMER/','GRT')
S =
 id: 1
 data_type: 'GEO'
 units: 'M'
 ellipsoid_name: 'WGS 84'
 ellipsoid_dētail: 'A=6378137 B=6356752 Meters'
 vert_datum_name: 'MEAN SEA LEVEL'
 vert_datum_code: '015'
 sound_datum_name: 'N/A'
 sound_datum_code: 'N/A'
 geo_datum_name: 'WGS 84'
 geo_datum_code: 'WGE'
 projēction_name: 'Dec. Deg. (unproj.)'
s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','INT.VDT')
S =
34x1 struct array with fields:
 id
 table
 attribute
 value
 description
s(1)
ans =
 id: 1
 table: 'aerofacp.pft'
 attribute: 'use'
 value: 8
 description: 'Military'
s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',1)
s =
 id: 1
 f_code: 'GB005'
 iko: 'BGTL'
 nam: 'THULE AIR BASE'
 na3: 'GL52085'
 use: 8
 zv3: 77
 tile_id: 10
 end_id: 1
s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AER0FACP.PFT',{1,2})
S =
1x4424 struct array with fields:
 id
 f_code
```


## Tips

This function reads all VMAP0 files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI'), and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

## See Also

vmap0data | vmap0rhead

Introduced before R2006a

## vmapOrhead

Read Vector Map Level 0 file headers

## Syntax

```
vmap0rhead
vmap0rhead(filepath,filename)
vmap0rhead(filepath,filename,fid)
vmap0rhead(...),
str = vmap0rhead(...)
```


## Description

vmap0 rhead allows the user to select the header file interactively.
vmap0rhead(filepath, filename) reads from the specified file. The combination [filepath filename] must form a valid complete file name.
vmap0rhead(filepath, filename,fid) reads from the already open file associated with fid.
vmap0rhead (...), with no output arguments, displays the formatted header information on the screen.
str $=$ vmap0rhead(...) returns a character vector containing the VMAP0 header.

## Background

The Vector Map Level 0 (VMAP0) uses the header in most files to document the contents and format of that file. This function reads the header and displays a formatted version in the Command Window, or returns it as a character vector.

## Examples

The following example uses UNIX file separators and path name:

```
s = vmap0rhead('VMAP/VMAPLV0/NOAMER/','GRT')
S =
L;Geographic Reference Table;-;id=I,1,P,Row
Identifier,-,-,-,:data_type=T,3,N,Data
Type,-,-,-,:units=T,3,N,Units of Measure Code for
Library,-,-,-,:ellipsoid_name=T,15,N,Ellipsoid,-,-,-,:ellipsoid
 detail=T,50,N,Ellipsoid
D
Reference,-,-,-,:ver}t_datūm_code=T,3,N,Vertical Datum
Code,-,-,-,: sound_datum_name=T,15,N,Sounding
Datum,- ,-,-,: soun\overline{d_datum_code=T, 3,N,_Sounding Datum}
Code,-,-,-,:geo_datum_name=T,15,N,Datum Geodetic
Name,-,-,-,:geo_datum_code=T,3,N,Datum Geodetic
Code,-,-,-,:projection_name=T,20,N,Projection Name,-,-,-,:;
```

```
vmap0rhead('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT')
L
Airport Point Feature Table
aerofacp.doc
id=I,1,P,Row Identifier,-,-,-,
f_code=T,5,N,FACC Feature Code,char.vdt,-,-,
i\overline{k}o=T,4,N,ICAO Designator,char.vdt,-,-,
nam=T,*,N,Name,char.vdt,-,-,
na3=T,*,N,Name,char.vdt,-,-,
use=S,1,N,Usage,int.vdt,-,-,
zv3=S,1,N,Airfield/Aerodrome Elevation (meters),int.vdt,-,-,
tile_id=S,1,N,Tile Reference ID,-,tilel_id.pti,-,
end_id=I,1,N,Entity Node Primitive ID,-,end1_id.pti,-,
```


## Tips

This function reads all VMAP0 files except index files (files with names ending in ' X '), thematic index files (files with names ending in 'TI') and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must use appropriate file separators, which you can determine using the MATLAB filesep function.

## See Also

vmap0data | vmap0read
Introduced before R2006a

## webmap

Open web map

## Syntax

```
webmap
webmap(baseLayer)
webmap(wmsLayer)
webmap(customBasemap)
webmap(___,'WrapAround',tf)
wm = webmap(___)
webmap(wm)
```


## Description

webmap opens a new web map, with its center at the latitude, longitude point [00]. By default, webmap sets the base layer to World Street Map at the maximum spatial extent available. After the web map opens, you can select a different base layer using the Layer Manager available on the right side of the web map. Named base layers are tiled at discrete zoom resolutions.

Note The webmap function requires an Internet connection. MathWorks cannot guarantee the stability and accuracy of web maps, as the servers are on the Internet and are independent from MathWorks. Occasionally, maps may be slow to display, display partially, or fail to display, because web map servers can become unavailable for short periods of time.
webmap (baseLayer) opens a new web map with baseLayer as the default base layer. See baseLayer for a list of the available maps.
webmap (wmsLayer) Opens a new web map with wmsLayer as the default base layer. wmsLayer is a WMSLayer array. The LayerTitle property of each wmsLayer is set as an item in the Layer Manager.
webmap displays WMS layers in the "Web Mercator" map coordinate reference system, if that projection is available for all layers in the array. Otherwise, webmap displays the layers in the EPSG:4326 geographic coordinate reference system. When using EPSG:4326, webmap does not include the default base layers in the Layer Manager since they are in a different coordinate reference system. These projections include a geographic quadrangle bounded north/south by parallels and east/west by meridians. Parallels map to horizontal lines. Meridians map to vertical lines.
webmap (customBasemap) opens a new web map using the custom basemap specified by the addCustomBasemap function. customBasemap is a string scalar or character vector specifying the display name of the custom basemap, if provided, or the basemap name.
webmap ( $\qquad$ , 'WrapAround ' ,tf), where $t f$ is specified as the logical value false or 0 , opens a new web map with the display clipped to the west at -180 degrees and to the east at +180 degrees. The default for tf is true or 1 , which opens a map that supports continuous pan and zoom across the

180-degree meridian. The webmap function constrains zoom to show less than 180 degrees of longitude at a time.
wm = webmap ( $\qquad$ ) returns a handle to a web map, wm.
webmap (wm) makes the web map specified by wm the current web map.

## Examples

## Display Web Map

Open a web map centered at [00].
webmap


View the list of available base layers (basemaps) by clicking the expander arrow $\mathbf{4}$ on the right side of the map.


## Display Web Map Specifying Base Layer

Open a web map specifying the base layer and show the full extent of the world. webmap('Light Gray Canvas Map','WrapAround',false)


## Display Web Map with WMS Layer as Base Layer

Read the Blue Marble WMS layer from the Atmospheric Composition Portal (ACP) Data from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).

```
baselayer = wmsfind('blue*marble');
baselayer = refine(baselayer,"eosdis.nasa.gov","SearchFields","serverurl");
baselayer = wmsupdate(baselayer(1));
```

Display a web map with the Blue Marble WMS layer as the base layer.
webmap(baselayer)


## Display Web Map Using Custom Base Layer

Add a custom base layer. To do this, specify its name, URL, attribution, and display name.

```
name = 'opentopomap';
url = 'a.tile.opentopomap.org';
attribution = '@OpenStreetMap contributors';
displayName = 'Open Topo Map';
addCustomBasemap(name,url,'Attribution',attribution, ...
 'DisplayName',displayName)
```

Display a web map. To do this, call webmap and specify the base layer using the name you gave it when you created it.
webmap opentopomap


## Input Arguments

## baseLayer - Map displayed in web map

character vector | string scalar
Map displayed in the web map, specified as a string scalar or character vector, listed in the following table. If specified as string scalar or character vector, the value is case insensitive and spaces are optional.

Name	Description
'World Street Map'	Worldwide street map provided by Esri. For information about   the Esri ArcGIS Online layers, visit https://www.arcgis.com/   home/gallery.html\#c=esri\&f=basemaps\&t=maps.
'Open Street Map'	Street map from openstreetmap.org. For more information,   visit https://www.openstreetmap.org.
'World Imagery'	Worldwide imagery provided by Esri.
'World Topographic Map '	Topographic map for the world from Esri.
'World Shaded Relief '	Surface elevation as shaded relief provided by Esri
'World Physical Map'	Natural Earth map of the world provided by Esri
'World Terrain Base'	Shaded relief and bathymetry provided by Esri
'USGS Imagery'	Composite of Blue Marble, NAIP, and Landsat provided by the   USGS.
'USGS Topographic Imagery'	Topographic map with imagery provided by the USGS.


Name	Description
'USGS Shaded Topographic	Composite of contours, shaded relief, and vector layers   provided by the USGS.
'Nap'	Gational Geographic Map'
'Deneral reference map provided by Esri	
'Ocean Basemap'	Topographic map provided by Esri
'World Navigation Charts '	Bathymetry, marine features, depth in meter provided by Esri
'Light Gray Canvas Map'	Neutral background map with minimal colors provided by Esri

Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.
Data Types: char \| string

## wmsLayer - Web map service layer

WMSLayer array
Web map service layer, specified as a WMSLayer array.

## customBasemap - Name of custom basemap

character vector | string
Name of custom basemap, specified as a string scalar or character vector. The value is caseinsensitive and spaces are optional. Create a custom basemap by using the addCustomBasemap function.

Web maps do not support custom basemaps created from MBTiles files.

## Data Types: char|string

wm - Web map
web map handle
Web map, specified as a web map handle, returned by the webmap function.

## Output Arguments

## wm - Web map

web map handle
Web map, returned as a web map handle.

## Limitations

In MATLAB Online, if you refresh the URL, then the window containing the web map closes. In addition, if you returned a handle to the web map, then it is deleted.

## More About

## Web Map

An interactive map accessed through a web page. In a web map, you can select different map layers to view and navigate around the map using interactive tools, such as zooming. The web map is a window that displays map base layers obtained from web servers on the Internet. You can also display overlay layers that contain custom point and line vector data.

## Tips

Particular maps may not support every available zoom level. If your map displays as white, try another zoom level. The map you are displaying might not support the zoom level you have currently selected. You can also select another base layer, which might support the specified zoom level.

## Compatibility Considerations

## USGS Shaded Relief base layer has been removed

Errors starting in R2022a
Starting in R2022a, the webmap function issues an error when you specify the base layer as "USGS Shaded Relief". In previous releases, the web map window shows red tiles. Update your code by specifying a different base layer, such as "World Shaded Relief".

Has Been Removed	Recommended
webmap("USGS Shaded Relief")	webmap("World Shaded Relief")

Web maps appear in multiple windows and have a default size
Behavior changed in R2021a
Starting in R2021a, web maps created using the webmap function have these differences from previous releases:

- Each web map appears in a separate window. In previous releases, each web map appeared as a tab in a single window.
- Web maps have a default size of 750-by-550 pixels. In previous releases, each new web map matched the size of the previous web map.
- You cannot dock a web map.


## Compiling web maps using Linux requires files in directory of application

Behavior changed in R2020a
Starting in R2020a, to compile web maps using MATLAB Compiler on Linux, you must copy these files to the application directory and distribute them with the application.

- icudtl.dat
- natives_blob.bin
- snapshot_blob.bin

You can find the path to these files using the command fullfile(matlabroot,'bin','glnxa64').

## See Also

wmclose | wmcenter | wmline | wmlimits | wmprint | wmmarker | wmremove |wmzoom | addCustomBasemap

Introduced in R2013b

## WebMapServer

Web map server

## Description

A WebMapServer object represents a Web Map Service (WMS) and acts as a proxy to a WMS server.
The WebMapServer object resides physically on the client side. The object can access the capabilities document on the WMS server and perform requests to obtain maps. It supports multiple WMS versions and negotiates with the server automatically to use the highest known version that the server can support.

## Creation

## Syntax

server = WebMapServer(serverURL)

## Description

server = WebMapServer(serverURL) creates a WebMapServer object, setting the ServerURL property.

## Properties

## Timeout - Number of milliseconds before a server times out

0 (default) | nonnegative integer
Number of milliseconds before a server times out, specified as a nonnegative integer. When Timeout has a value of 0 , the WebMapServer object ignores the timeout mechanism.

> Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 | uint64

## EnableCache - Flag enabling cache

1 (default) | logical scalar
Flag enabling cache, specified as a logical scalar. When EnableCache is True, the WebMapServer object caches the WMSCapabilities object, which is returned when you use the getCapabilities method. The cache expires if the AccessDate property of the cached WMSCapabilities object is not the current day.
Data Types: logical

## ServerURL - URL of the server

character vector
URL of the server, specified as a character vector. The URL must include the protocol 'http://' or 'https://'. The URL can contain additional WMS keywords.

## Data Types: char

## RequestURL - URL of the last request to the server

character vector
URL of the last request to the server, specified as a character vector. RequestURL specifies a request for either the XML capabilities document or a map. You can insert the requested URL into a browser.

## Data Types: char

## Object Functions

getCapabilities Get capabilities document from server
getMap $\quad$ Get raster map from server
updateLayers Update layer properties

## Examples

## Get Capabilities Document from Web Map Server

Construct a WebMapServer object that communicates with one of the Environmental Research Division's Data Access Program (ERDDAP) WMS servers hosted by NOAA. Obtain the capabilities document from the server.

```
layers = wmsfind('jplg1sst','SearchField','serverurl');
serverURL = layers(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = getCapabilities(server);
layers = capabilities.Layer;
```

Search for a server that shows nation boundaries (nations). Search for a server that provides daily, global sea surface temperature (sst) data produced by the Jet Propulsion Laboratory's Regional Ocean Modeling System (JPL ROMS) group.

```
nations = refine(layers,'nations');
nations = nations(1);
sst = refine(layers,'sst');
sst = sst(1);
layer = [sst nations];
```

Obtain data from the servers.

```
request = WMSMapRequest(layer,server);
A = getMap(server,request.RequestURL);
R = request.RasterReference;
```

Display data from the servers.

```
figure
worldmap(A,R)
geoshow(A,R)
title({sst.LayerTitle(1:51),sst.LayerTitle(52:end), ...
 sst.Details.Dimension.Default})
```

GHRSST Global 1-km Sea Surface Temperature (G1SST), Global, 0.01 Degree, 2010-2017, Daily -SST


## See Also

## Functions

wmsfind | wmsinfo|wms read | wmsupdate
Objects
WMSLayer | WMSCapabilities | WMSMapRequest
Introduced before R2006a

## westof

(Removed) Wrap longitudes to values west of specified meridian

Note The westof function has been removed. Use the mod function instead. For more information, see "Compatibility Considerations".

## Syntax

lonWrapped $=$ westof(lon,meridian)
lonWrapped $=$ westof(lon,meridian,angleunits)

## Description

lonWrapped = westof(lon,meridian) wraps angles in lon to values in the interval (meridian-360 meridian]. lon is a scalar longitude or vector of longitude values. All inputs and outputs are in degrees.
lonWrapped = westof(lon,meridian, angleunits) where angleunits specifies the input and output units as either 'degrees ' or 'radians '. It may be abbreviated and is case-insensitive. If angleunits is 'radians', the input is wrapped to the interval (meridian-2*pi meridian].

## Compatibility Considerations

westof has been removed
Errors starting in R2022a
The westof function has been removed. Use the mod function instead. You can update your code using these replacement patterns.

Has Been Removed	Recommended
westof(lon,meridian, 'degrees')	meridian-mod(meridian-lon,360)
westof(lon,meridian, 'radians')	meridian-mod(meridian-lon,2*pi)

## Introduced before R2006a

## wgs84Ellipsoid

Reference ellipsoid for World Geodetic System of 1984

## Syntax

E = wgs84Ellipsoid
E = wgs84Ellipsoid(lengthUnit)

## Description

E = wgs84Ellipsoid creates a referenceEllipsoid object for the World Geodetic System of 1984 (WGS84) reference ellipsoid. By default, the lengths of the semimajor axis and semiminor axis are in meters.

E = wgs84Ellipsoid(lengthUnit) creates a WGS84 reference ellipsoid with the length unit specified by lengthUnit.

## Examples

## Create WGS84 Reference Ellipsoid

Create a WGS84 reference ellipsoid. By default, the semimajor and semiminor axes are in meters.

```
wgs84 = wgs84Ellipsoid
wgs84 =
referenceEllipsoid with defining properties:
 Code: 7030
 Name: 'WGS 84'
 LengthUnit: 'meter'
 SemimajorAxis: 6378137
 SemiminorAxis: 6356752.31424518
 InverseFlattening: 298.257223563
 Eccentricity: 0.0818191908426215
 and additional properties:
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```

Display the surface area in square meters.
wgs84.SurfaceArea
ans $=5.1007 \mathrm{e}+14$

## Create WGS84 Reference Ellipsoid with Specified Units

Create a WGS84 reference ellipsoid with a length unit of kilometers.

```
wgs84km = wgs84Ellipsoid("kilometer")
wgs84km =
referenceEllipsoid with defining properties:
 Code: 7030
 Name: 'WGS 84'
 LengthUnit: 'kilometer'
 SemimajorAxis: 6378.137
 SemiminorAxis: 6356.75231424518
 InverseFlattening: 298.257223563
 Eccentricity: 0.0818191908426215
 and additional properties:
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume
```

Display the surface area in square kilometers.

```
wgs84km.SurfaceArea
ans = 5.1007e+08
```


## Input Arguments

## lengthUnit - Length unit of measure

'meter' (default)| string scalar | character vector
Length unit of measure, specified as a string scalar or character vector. You can specify any length unit accepted by the validateLengthUnit function.

Value	Unit Name
"m", "meter", "meters", "metre", "metres"	Meters
"cm", "centimeter", "centimeters",   "centimetre", "centimetres"	Centimeters
"mm", "millimeter", "millimeters",   "millimetre", "millimetres"	Millimeters
"micron", "microns"	Microns
"km", "kilometer", "kilometers",   "kilometre", "kilometers"	Kilometers


Value	Unit Name
"nm", "naut mi", "nautical mile",   "nautical miles"	Nautical miles
"ft", "international ft", "foot",   "international foot", "feet",   "international feet"	Feet
"in", "inch", "inches"	
"yd", "yds", "yard", "yards"	Yards
"mi", "mile", "miles", "international   mile", "international miles"	Miles
"sf", "survey ft", "US survey ft", "U.S.   survey ft", "survey foot", "US survey   foot", "U.S. survey foot", "survey   feet", "US survey feet", "U.S. survey   feet"	U.S. survey feet
"sm", "survey mile", "survey miles",   "statute mile", "statute miles", "US   survey mile", "S survey miles", "U.S.   survey mile(s)", "U.S. survey miles"	
"Clarke's foot", "Clarkes foot"	Clarke's feet survey miles (statute miles)
"German legal metre", "German legal   meter"	German legal metres
"Indian foot"	

## Data Types: char \| string

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.
Usage notes and limitations:

- Setting the length unit of measure is not supported.


## See Also

## Functions

validateLengthUnit

## Objects

referenceEllipsoid
Introduced in R2012a

## wktstring

Well-known text string

## Syntax

str $=$ wktstring(crs)
str $=$ wktstring(crs,Name,Value)

## Description

str $=$ wktstring(crs) returns the well-known text (WKT) string representation of the specified projected or geographic coordinate reference system. By default, wktstring uses the WKT 2 standard and does not apply formatting.
str = wktstring(crs,Name, Value) specifies version and formatting options using one or more Name, Value pair arguments. For example, 'Format' , 'formatted' includes line breaks and indentations in the WKT string.

## Examples

## Get WKT of Projected CRS

Return information about projected data as a RasterInfo object. Find the projected CRS for the data by accessing its CoordinateReferenceSystem property.

```
info = georasterinfo('MtWashington-ft.grd');
p = info.CoordinateReferenceSystem;
```

Return the WKT as a string.

```
str = wktstring(p)
str =
"PROJCRS["UTM Zone 19, Northern Hemisphere",BASEGEOGCRS["NAD27",DATUM["North American Datum 1927
```


## Get WKT of Geographic CRS

Return information about geographic data as a RasterInfo object. Find the geographic CRS for the data by accessing its CoordinateReferenceSystem property.

```
[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
g = R.GeographicCRS;
```

Return the WKT as a string.

```
wkt = wktstring(g)
wkt =
"GEOGCRS["WGS 84",DATUM["World Geodetic System 1984",ELLIPSOID["WGS 84",6378137,298.257223563,LEI
```


## Change Default Formatting

Return information about a data set as a RasterInfo object. Find the projected CRS for the data by accessing the CoordinateReferenceSystem property.

```
info = georasterinfo('MtWashington-ft.grd');
p = info.CoordinateReferenceSystem;
```

Return the WKT as a formatted string by using the 'Format ' name-value pair.

```
str = wktstring(p,'Format','formatted')
str =
 "PROJCRS["UTM Zone 19, Northern Hemisphere",
 BASEGEOGCRS["NAD27",
 DATUM["North American Datum 1927",
 ELLIPSOID["Clarke_1866",6378206.4,294.978698213898,
 LENGTHUNIT["metre",1]],
 ID["EPSG",6267]],
 PRIMEM["Greenwich",0,
 ANGLEUNIT["Degree",0.0174532925199433]]],
 CONVERSION["UTM zone 19N",
 METHOD["Transverse Mercator",
 ID["EPSG",9807]],
 PARAMETER["Latitude of natural origin",0,
 ANGLEUNIT["Degree",0.0174532925199433],
 ID["EPSG",8801]],
 PARAMETER["Longitude of natural origin",-69,
 ANGLEUNIT["Degree",0.0174532925199433],
 ID["EPSG",8802]],
 PARAMETER["Scale factor at natural origin",0.9996,
 SCALEUNIT["unity",1],
 ID["EPSG",8805]],
 PARAMETER["False easting",500000,
 LENGTHUNIT["Meter",1],
 ID["EPSG",8806]],
 PARAMETER["False northing",0,
 LENGTHUNIT["Meter",1],
 ID["EPSG",8807]],
 ID["EPSG",16019]],
 CS[Cartesian,2],
 AXIS["easting",east,
 ORDER[1],
 LENGTHUNIT["Meter",1]],
 AXIS["northing",north,
 ORDER[2]
 LENGTHUNIT["Meter",1]]]"
```


## Export WKT as Projection File

Return information about a data set as a RasterInfo object. Find the projected CRS for the data by accessing the CoordinateReferenceSystem property. Return the WKT as a string using the WKT 1 standard.
info = georasterinfo('MtWashington-ft.grd');
p = info.CoordinateReferenceSystem;
str = wktstring(p,'Version','wkt1');
Export the WKT as a projection file called mtwash.prj.
writematrix(str,'mtwash.prj','FileType','text','QuoteStrings',false)

## Input Arguments

## crs - Coordinate reference system

projcrs object | geodcrs object
Coordinate reference system, specified as a projcrs object or geocrs object.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Version', 'wkt1' specifies the WKT 1 standard for the output well-known text string.

## Format - Format of WKT

'compact' (default)|'formatted'
Format of the WKT string, specified as the comma-separated pair consisting of 'Format ' and one of these values:

- 'compact' - Do not include formatting.
- 'formatted ' - Include line breaks and indentations.

Example: 'Format','formatted'
Data Types: char | string

## Version - WKT version

'wkt2' (default)|'wkt1'
WKT version, specified as the comma-separated pair consisting of 'Version' and one of these values:

- 'wkt2' - Use the WKT 2 standard. For more information about this standard, see Geographic Information - Well-known text representation of coordinate reference systems.
- 'wkt1' - Use the WKT 1 standard. For more information about this standard, see Well-Known Text format.

Example: 'Version','wkt1'
Data Types: char|string

## Tips

The WKT strings for two equivalent projers or geocrs objects may not be equivalent. Compare projcrs or geocrs objects by using the isequal function instead of by comparing WKT strings.

## See Also

## Objects

projcrs|geocrs
Introduced in R2020b

## wmclose

Close web map

## Syntax

wmclose
wmclose(wm) wmclose all

## Description

wmclose closes the current web map.
wmclose(wm) closes the web map specified by wm.
wmclose all closes all web maps.

## Examples

## Close Current Web Map

Open a web map, pause one second, and then close the web map.

```
webmap
pause(1)
wmclose
```


## Close Specified Web Map

Open two web maps, pause for one second, and then close one of the web maps.

```
h1 = webmap;
h2 = webmap('ocean basemap');
pause(1)
wmclose(h1)
```


## Close All Web Maps

Open two web maps, pause for one second, and then close all the web maps.
h1 = webmap;
h2 = webmap('ocean basemap');

```
pause(1)
wmclose all
```


## Input Arguments

## wm - Web map

web map handle
Web map, specified as a web map handle. ${ }^{8}$ You use the webmap function to get a web map handle when you create a web map.

## See Also

webmap|wmcenter|wmline |wmlimits | wmprint | wmmarker|wmremove |wmzoom
Introduced in R2013b

[^6]
## wmprint

Print web map

## Syntax

wmprint()
wmprint(wm)

## Description

wmprint() prints the contents of the current web map to a printer.
wmprint (wm) prints the contents of the web map specified by wm.

## Examples

## Print Web Map

Create a web map, specifying a base layer.
webmap('OpenStreetMap')
Position the web map.
wmcenter(51.487, 0, 15)
Print the contents of the web map.
wmprint()

## Input Arguments

## wm - Web map

scalar web map handle
Web map, specified as a scalar web map handle. ${ }^{9}$

## Limitations

MATLAB Online does not support the wmprint function.

## See Also

wmclose |wmcenter|wmline |wmlimits | webmap | wmmarker \| wmremove |wmzoom

[^7]Introduced in R2013b

## wmmarker

Display geographic marker on web map

## Syntax

```
wmmarker(lat,lon)
wmmarker(P)
wmmarker(wm,
wmmarker(_,Name,Value)
h = wmmarker(
```

$\qquad$

``` )
```


## Description

wmmarker(lat,lon) displays a marker overlay at the points specified by lat and lon on the current web map. If there is no current web map, wmmarker creates one. wmmarker centers the map so that all vector overlays on the web map are visible. A marker is also called a map pin.
wmmarker ( P ) displays a marker overlay based on the vector geographic features stored in P. Each element of $P$ defines one marker overlay.
wmmarker(wm, $\qquad$ ) displays the overlay in the web map specified by the web map handle, wm.
$\qquad$
$\qquad$ ,Name, Value) specifies name-value pairs that set additional display properties. Parameter names can be abbreviated and are case-insensitive.
h = wmmarker( $\qquad$ ) returns a handle to the overlay.

## Examples

## Display Marker on Web Map

Display a marker at the location of London, England. There is no current web map, so the wmmarker function creates one.

```
lat = 51.5187666404504;
lon = -0.130003487285315;
wmmarker(lat,lon)
```


wmmarker adds the marker name to the list of overlays in the Layer Manager. The default name is Marker Overlay 1.


## Display Information About Markers

Read the coordinates and names of locations in Boston, MA, as a geospatial table.
P = readgeotable("boston_placenames.gpx");
Display the data as markers on a web map. Specify the feature names and overlay names using namevalue arguments. The wmmarker function creates a new web map when there is no current web map.

```
wmmarker(P,"FeatureName",P.Name,"OverlayName","Boston Placenames")
```

Click on a marker to see information about the feature, including its name.


## Display Marker Using Custom Icon and Description Data

Define a location. For this example, specify the coordinates of MathWorks ${ }^{\circledR}$.

```
lat = 42.299827;
lon = -71.350273;
```

Specify a name and text to display in the description balloon. This code makes the MathWorks URL a link.

```
name = 'MathWorks';
description = sprintf(..
 '%s
%s</br>
%s</br>',...
 '3 Apple Hill Drive', 'Natick, MA. 01760', ...
 'https://www.mathworks.com');
```

Specify a custom icon for the marker.

```
iconDir = fullfile(matlabroot,'toolbox','matlab','icons');
iconFilename = fullfile(iconDir,'matlabicon.gif');
```

Display the marker on the web map by using wmmarker. Specify the Description, FeatureName, Icon, and OverlayName name-value pairs. Note the custom icon. Display the text you included by clicking on the marker. Note the HTML formatting in the description.

```
wmmarker(lat,lon,'Description',description, ...
 'FeatureName',name, ...
 'Icon',iconFilename, ...
 'OverlayName',name)
```



## Display Marker Overlay Using Attribute Specification

Import a shapefile representing tsunami (tidal wave) events reported over several decades, tagged geographically by source location.

```
GT = readgeotable("tsunamis.shp","CoordinateSystemType","geographic");
```

Create an attribute specification for use in the feature balloons. Modify the specification so that it defines a table of values, including year, cause, country, location, and maximum height. The attribute specification defines the format of the expected value for each field.

```
attribspec = makeattribspec(GT);
desiredAttributes = ...
 {'Max_Height','Cause','Year','Location','Country'};
allAttributes = fieldnames(attribspec);
attributes = setdiff(allAttributes,desiredAttributes);
attribspec = rmfield(attribspec,attributes);
attribspec.Max_Height.AttributeLabel = "Maximum Height";
attribspec.Max Height.Format = "%.1f Meters";
attribspec.Cause.AttributeLabel = "Cause";
attribspec.Year.AttributeLabel = "Year";
attribspec.Year.Format = "%.0f";
attribspec.Location.AttributeLabel = "Location";
attribspec.Country.AttributeLabel = "Country";
```

Create a web map with a base layer containing ocean details. Add the marker overlay. Display the table data you specified in the attribute specification by selecting a marker.

```
webmap("ocean basemap");
wmmarker(GT,"Description",attribspec,...
 "OverlayName","Tsunami Events")
wmzoom(2)
```



## Input Arguments

## lat - Latitudes of points

matrix
Latitudes of points, specified as a matrix.
Data Types: single|double

## lon - Longitudes of points

matrix
Longitudes of points, specified as a matrix.
Data Types: single | double

## P - Geographic features

geospatial table | geopoint vector
Geographic features, specified as one of the following:

- A geospatial table containing geopointshape objects. For more information about geospatial tables, see "Create Geospatial Tables".
- A geopoint vector.


## wm - Web map

web map handle
Web map, specified as a web map handle. ${ }^{10}$

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: wmmarker(lat, lon, 'Autofit', true)

## Autofit - Overlay visibility

true (default) | false
Overlay visibility, specified as the comma-separated pair consisting of 'Autofit' and the logical flag true or false, or the numeric value 1 or 0 . If true or 1, wmmarker adjusts the spatial extent of the map to ensure that all the vector overlays on the map are visible. If false, wmmarker does not adjust the spatial extent when the overlay is added to the map.

Overlay visibility, specified as a scalar logical or numeric value true (1) or false (0).

- If true, wmmarker adjusts the spatial extent of the map to ensure that all the vector overlays on the map are visible.
- If false, wmmarker does not adjust the spatial extent when the overlay is added to the map.


## Data Types: double| logical

## Description - Description of feature

empty character vector ( ' ' ) (default) | character vector \| cell array of character vectors | scalar structure

Description of feature, specified as the comma-separated pair consisting of 'Description' and a character vector, cell array of character vectors, or scalar structure. The description defines the content that wmmarker displays in the feature's description balloon which appears when a user clicks on the feature in the web map. Description elements can be either plain text or HTML markup. When you specify an attribute spec, the display in the balloon for the attribute fields of P are modified according to the specification. The default value is an empty character vector (' ' ). If the value is a structure, the attribute spec is applied to the attributes of each feature of P and ignored with lat and lon input.

- If the value is a cell array it is either scalar or the same length as P, or lat and lon, and specifies the description for each marker.
- If the value is a structure, the attribute spec is applied to the attributes of each feature of P and ignored with lat and lon input.

Data Types: char | struct | cell

## OverlayName - Name of overlay layer

'Marker Overlay $N^{\prime}$ ', (default)| character vector

[^8]Name of overlay layer, specified as the comma-separated pair consisting of 'OverlayName' and a character vector. wmmarker inserts the name in the Layer Manager under the Overlays item. The Layer Manager is the tool that appears on the right side of the web map frame. The default name is 'Marker Overlay $N$ ' where $N$ is the number assigned to this overlay.

## Data Types: char

## FeatureName - Name of feature

' OverlayName: Point K' (default) | character vector | cell array of character vectors
Name of feature, specified as the comma-separated pair consisting of 'FeatureName' and a character vector or cell array of character vectors. The name appears in the feature's balloon when a user clicks on the feature in the web map. The default value is 'OverlayName : Point K', where OverlayName is the name of the overlay and $K$ is the number assigned to a particular point. If the value is a character vector, wmmarker applies it to all features. If the value is a cell array, it must be a scalar or an array with the same length as $P$ or lat and lon.
Data Types: char | cell

## Icon - File name of custom icon for a marker

character vector | cell array of character vectors
File name of custom icon for a marker, specified as the comma-separated pair consisting of 'Icon ' and a character vector or cell array of character vectors. If the icon file name is not in the current folder, or in a folder on the MATLAB path, specify a full or relative path name. If you specify an Internet URL it must include the protocol type. If the icon file name is not specified, the default icon is displayed. For best results when you want to view a non-default icon, specify a PNG file containing image data with an alpha mask.

- If the value is a character vector, wmmarker applies the value to all markers.
- If you specify a cell array, it must be the same length as $P$, or lat and lon, and specifies the icon for each marker.


## Data Types: char | cell

## IconScale - Scaling factor for icon

1 (default) | positive numeric scalar or vector.
Scaling factor for icon, specified as the comma-separated pair consisting of 'IconScale' and a positive numeric scalar or vector.

- If the value is a scalar, the value is applied to all icons.
- If the value is a vector, it must specify a value for each icon, and it must be the same length as lat and lon or $P$.

Data Types: double

## Color - Icon color

' red ' (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets

Icon color, specified as the comma-separated pair consisting of 'Color' and one of these options.

- A color name such as 'red ' or a short name such as ' $r$ '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7].
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r', 'g', 'b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.

- To apply the same color to all icons, specify a single color name or RGB triplet.
- To apply a different color to each icon, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of lat and lon or P.

If you specify a custom icon file, then the wmmarker function ignores this argument.
This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Data Types: char|string|cell|double

## Alpha - Transparency of marker

1 (default) | numeric scalar or vector
Transparency of marker, specified as the comma-separated pair consisting of 'Alpha' and a numeric scalar or vector. If you specify a vector, it must include a value for each marker, that is, the vector must be the same length as P . The default value, 1 , means that the marker is fully opaque.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32 |uint64

## Output Arguments

## h - Marker overlay

handle to a marker overlay object
Marker overlay, returned as a handle to a marker overlay object.

## See Also



Introduced in R2013b

## wmline

Display geographic line on web map

## Syntax

```
wmline(lat,lon)
wmline(P)
wmline(wm,__)
wmline(,Name,Value)
h = wmline(
```

$\qquad$

``` )
```


## Description

wmline(lat, lon) displays a line overlay defined by the vertices in lat, lon on the current web map. If there is no current web map, wmline creates one. wmline centers the map so that all vector overlays displayed on the web map are visible.
$w m l i n e(P)$ displays a line overlay based on the vector geographic features stored in $P$.
wmline(wm, $\qquad$ ) displays the line overlay on the web map specified by the web map handle, wm. wmline( $\qquad$ ,Name, Value) specifies name-value pairs that set additional display properties.
h = wmline( $\qquad$ ) returns a handle to line overlay.

## Examples

## Display Line on Web Map

Import a shapefile containing the coordinates of world cities as a geospatial table. Create a subtable containing the rows for London and Paris.

```
cities = readgeotable("worldcities.shp");
rows = cities.Name == "London" | cities.Name == "Paris";
londonParis = cities(rows,:);
Display a line from London to Paris on a web map.
```

```
wmline(londonParis)
```

```
wmline(londonParis)
```



## Display Reduced Line on Web Map

Large data sets can sometimes be slow to display, making the web map appear to hang. To work around this issue, reduce the size of the data set using the reducem function before calling wmline.

Load vector data representing the coordinates of coastlines.
load coastlines
Reduce the number of points in the latitude and longitude vectors using the reducem function.
[lat,lon] = reducem(coastlat,coastlon);
Create a web map that does not wrap because the data is of global extent.
webmap('ocean basemap','WrapAround',false)


Display the coastlines on the web map. The figure shows the description balloon that appears when you click on the line. Name the feature using the 'FeatureName' name-value pair.

```
wmline(lat,lon,'LineWidth',3,'FeatureName','coastline')
wmzoom(3)
```



## Display Circles on Web Map

Define the latitude and longitude of the feature. This example shows how to display lines on a web map that represent range data for an airport approach pattern.
lat0 $=51.50487$;
lon0 = 0.05235;
Create a web map and specify a base layer.
webmap('OpenStreetMap')
Compute a small circle with a 1000 meter radius. Setting the az parameter to an empty matrix causes scirclel to compute a complete circle.
radius = 1000;
az = [];
e = wgs84Ellipsoid;
[lat,lon] = scircle1(lat0,lon0,radius,az,e);
Display a red circle with 1000 meter radius, using the latitude and longitude values returned by scirclel in the previous step.

```
wmline(lat,lon,'Color','red','OverlayName','1000 Meters')
```



Compute another small circle, this time with a 2000 meter radius.

```
radius = 2000;
```

[lat,lon] = scircle1(lat0,lon0,radius,az,e);

Draw the 2000 meter radius circle on the web map, setting the color to black.
wmline(lat,lon,'Color','k','OverlayName','2000 Meters')


## Input Arguments

## lat - Latitudes of vertices

matrix
Latitudes of vertices, specified as a matrix.
Data Types: single|double

## Lon - Longitudes of vertices

matrix
Longitudes of vertices, specified as a matrix.
Data Types: single | double

## P - Geographic features

geospatial table | geopoint vector | geoshape vector
Geographic features, specified as one of the following:

- A geospatial table containing geopointshape, geolineshape, or geopolyshape objects. The wmline function does not support geospatial tables containing more than one type of shape object. For more information about geospatial tables, see "Create Geospatial Tables".
- A geopoint vector.
- A geoshape vector.

If $P$ is a geospatial table containing geopointshape objects or a geopoint vector, then the overlay contains a single line connecting the vertices.

If P is a geospatial table containing geolineshape or geopolyshape objects, or a geoshape vector, then the overlay contains one line feature for each feature of $P$.

## wm - Web map

web map handle
Web map, specified as a web map handle. ${ }^{11}$

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: wmline(lat,lon,'OverlayName','Shortest Route');

## Autofit - Overlay visibility

## true (default) | false

Overlay visibility, specified as the comma-separated pair consisting of 'Autofit' and the scalar logical or numeric value true (1) or false (0).

- If true, wmline adjusts the spatial extent of the map to ensure that all the vector overlays on the map are visible.
- If false, wmline does not adjust the spatial extent when this vector layer is added to the map.

Data Types: double | logical

## Description - Description of feature

empty character vector (' ' ) (default) | character vector | cell array of character vectors | scalar structure

Description of feature, specified as the comma-separated pair consisting of 'Description' and a character vector, cell array of character vectors, or a scalar structure. The description defines the content of the description balloon displayed when you click the feature in a web map. Description elements can be either plain text or HTML markup. When an attribute spec is provided, the display in the balloon for the attribute fields of P are modified according to the specification.

- If you specify a scalar cell array, wmline applies the value to all line features.
- If you specify a nonscalar cell array, the cell array must contain a value for each feature, that is, the cell array must be the same length as $P$.
- If the value is a structure, wmline applies the attribute specification to each line.

Data Types: char | struct | cell

## OverlayName - Name of overlay layer

'Line Overlay ${ }^{\text {' }}$, (default)| character vector
Name of overlay layer, specified as the comma-separated pair consisting of 'OverlayName' and a character vector. wmline inserts the name in the Layer Manager under the "Overlays" item. The

[^9]Layer Manager is the tool that appears on the right side of the web map. The default name is ' Line Overlay $N$ ' where $N$ is the number assigned to this overlay.

## Data Types: char

## FeatureName - Name of feature

' OverlayName: Line $K^{\prime}$ (default) | character vector | cell array of character vectors
Name of feature, specified as the comma-separated pair consisting of 'FeatureName' and character vector or cell array of character vectors. The name appears in the balloon that displays when you click the feature in the web map. The default value is 'OverlayName : Line $K^{\prime}$ ', where OverlayName is the name of the overlay and $K$ is the number assigned to the particular line.

- If the value is a character vector, it applies to all features.
- If the value is a cell array of character vectors, it must be either a scalar or the same length as P .

Data Types: char | cell

## Color - Line color

'black' (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets

Line color, specified as the comma-separated pair consisting of 'Color' and one of these options.

- A color name such as ' red ' or a short name such as 'r'.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, $[0.40 .60 .7]$.
- A cell array of color names such as \{'red', 'green', 'blue'\} or \{'r','g','b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.

- To apply the same color to all lines in P, specify a single color name or RGB triplet.
- To apply a different color to each line in P, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of P .

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	


Color Name	Short Name	RGB Triplet	Appearance
'white'	'W'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	$\square$

Data Types: char | string | cell| double

## LineWidth - Width of line in pixels

1 (default) | positive numeric scalar or vector
Width of line in pixels, specified as the comma-separated pair consisting of LineWidth and a positive numeric scalar or vector. If you specify a vector, it must include a value for each line, that is, the vector must be the same length as $P$.
Data Types: single | double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

## Alpha - Transparency of line

1 (default) | numeric scalar or vector
Transparency of line, specified as the comma-separated pair consisting of 'Alpha' and a numeric scalar or vector. If you specify a vector, it must include a value for each line, that is, the vector must be the same length as $P$. The default value, 1 , means that the line is fully opaque.

```
Data Types: single| double| int8| int16| int32| int64|uint8|uint16|uint32|uint64
```


## Output Arguments

h - Overlay layer
handle to line overlay
Overlay layer, returned as a handle to a line overlay.

## Tips

- Under certain conditions, when you zoom in on a line overlay in a web map, parts of the line may become invisible. This can occur if the data is one long line segment that is composed of many parts. To workaround this issue, break the long line into a series of line segments by inserting NaNs in the line data.


## See Also

wmclose | wmpolygon | wmcenter | webmap | wmlimits | wmprint | wmmarker | wmremove | wmzoom

## Introduced in R2013b

## wmpolygon

Display geographic polygon on web map

## Syntax

```
wmpolygon(lat,lon)
wmpolygon(P)
wmpolygon(wm, __)
wmpolygon(___,Name,Value)
h = wmpolygon(
```

$\qquad$

## Description

wmpolygon(lat,lon) displays the polygon overlay defined by the vertices in lat and lon on the current web map. If there is no current web map, wmpolygon creates one. wmpolygon centers and scales the map so that all the vector overlays displayed in the web map are visible.
wmpolygon ( P ) displays a polygon overlay based on the vector geographic features stored in P. The overlay contains one polygon feature for each element of $P$.
wmpolygon(wm, $\qquad$ ) displays the overlay in the web map specified by the web map handle, wm. wmpolygon( $\qquad$ ,Name, Value) specifies name-value pairs that set additional display properties.
$\mathrm{h}=\mathrm{wmpolygon}($ $\qquad$ ) returns a handle to the overlay.

## Examples

## Display Coastlines as Polygon

Load coastline data from a MAT-file.

```
load coastlines
```

Display the coastlines as a polygon overlay layer.

```
wmpolygon(coastlat,coastlon,'OverlayName','Polygon coastlines')
```



## Display Polygon with Inner Ring

Define coordinates of rings. For this example, the coordinates define a location centered on the Eiffel Tower.

```
lat0 = 48.858288;
lon0 = 2.294548;
outerRadius = .01;
innerRadius = .005;
[lat1,lon1] = scircle1(lat0,lon0,outerRadius);
[lat2,lon2] = scircle1(lat0,lon0,innerRadius);
lat2 = flipud(lat2);
lon2 = flipud(lon2);
lat = [lat1; NaN; lat2];
lon = [lon1; NaN; lon2];
```

Display on a web map.
webmap('worldimagery')
wmpolygon(lat,lon,'EdgeColor','g','FaceColor','c','FaceAlpha', .5)


## Display USA State Boundaries Using Political Colormap

Import a shapefile containing state boundary data as a geospatial table.
GT = readgeotable("usastatelo.shp");
Create a colormap from random, muted colors.
colors = polcmap(height(GT));
Display the polygons as an overlay on a web map. Make the polygons semitransparent by using the FaceAlpha name-value argument.

```
webmap("worldphysicalmap")
wmpolygon(GT,"FaceColor",colors,"FaceAlpha",0.5,"EdgeColor","k", ...
 "EdgeAlpha",0.5,"OverlayName","USA Boundary","FeatureName",GT.Name)
```



## Display Reduced High Resolution Polygon Data on Web Map

Large data sets can sometimes be slow to display, making the web map appear to hang. This example shows how to reduce the size of a data set using reducem before calling wmpolygon.

First, load high-resolution vector data into the workspace.

```
states = shaperead('usastatehi.shp','UseGeoCoords',true);
states = geoshape(states);
```

Then, reduce the number of points in the latitude and longitude vectors using the reducem function.

```
for k = l:length(states)
 [states(k).Latitude, states(k).Longitude] = reducem(...
 states(k).Latitude', states(k).Longitude');
end
```

Display state boundaries on the web map. Note that the borders of the reduced polygons may not meet if you zoom in on them.

```
colors = polcmap(length(states));
webmap('worldphysicalmap')
wmpolygon(states,'FaceColor',colors,'FaceAlpha',.5,'EdgeColor','k', ...
 'EdgeAlpha',.5,'OverlayName','USA Boundary','FeatureName',states.Name)
```



## Input Arguments

## lat - Latitude vertices

matrix in the range [-90, 90]
Latitude vertices, specified as matrix in the range [-90, 90].
Data Types: single | double

## Lon - Longitude vertices

matrix
Longitude of vertices, specified as a matrix.
Data Types: single | double

## P - Geographic features

geospatial table | geoshape vector
Geographic features, specified as one of the following:

- A geospatial table containing geopolyshape objects. For more information about geospatial tables, see "Create Geospatial Tables".
- A geoshape vector with polygon geometry.


## wm - Web map

handle to a web map
Web map, specified as a handle to a web map. ${ }^{12}$

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: wmpolygon(lat,lon, 'Autofit', true)

## Autofit - Overlay visibility

true (default) | false
Overlay visibility, specified as the comma-separated pair consisting of 'Autofit' and the scalar logical or numeric value true (1) or false (0).

- If true, wmpolygon adjusts the spatial extent of the map to ensure that all the vector overlays on the map are visible.
- If false, wmpolygon does not adjust the spatial extent of the map when this vector layer is added to the map.

Data Types: single | double | int8 | int16|int32 | int64 | uint8|uint16|uint32|uint64 | logical

## Description - Description of feature

empty character vector (default) | character vector | cell array of character vectors | scalar structure
Description of feature, specified as the comma-separated pair consisting of 'Description' and a character vector, cell array of character vectors, or a scalar structure.

- If you specify a character vector, the text defines the content displayed in the description balloon, which appears when you click the feature in the web map. Description elements can be either plain text or marked up with HTML markup.
- If you specify a cell array, it must be either a scalar or the same length as $P$, and specifies the description for each polygon.
- If the value is a structure (attribute specification), wmpolygon displays the attribute fields of P in the balloon, modified according to the specification.

Data Types: char | struct | cell

## OverlayName - Name of overlay layer

'Polygon Overlay N', (default)| character vector
Name of overlay layer, specified as the comma-separated pair consisting of 'OverlayName' and a character vector. wmpolygon inserts the name in the Layer Manager under the "Overlays" item. The Layer Manager is the tool that appears on the right side of the web map. The default name is 'Polygon Overlay $N$ ' where $N$ is the number assigned to this overlay.

## Data Types: char

## FeatureName - Name of feature

'OverlayName: Line K' (default) | character vector | cell array of character vectors

[^10]Name of feature, specified as the comma-separated pair consisting of 'FeatureName' and character vector or cell array of character vectors. The name appears in the balloon when you click the feature in the web map. The default value is 'OverlayName: Polygon K', where OverlayName is the name of the overlay and $K$ is the number assigned to the particular polygon.

- If the value is a character vector, it applies to all features.
- If the value is a cell array of character vectors, it must be either a scalar or the same length as P .


## Data Types: char | cell

## FaceColor - Color of polygon faces

'black' (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | ' none '

Color of polygon faces, specified as the comma-separated pair consisting of 'FaceColor' and one of these options.

- A color name such as 'red ' or a short name such as ' $r$ '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, $[0.40 .60 .7]$.
- A cell array of color names such as \{'red', 'green','blue'\} or \{'r','g','b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.

- To apply the same face color to all polygons in $P$, specify a single color name or RGB triplet.
- To apply a different color to each polygon in P, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of $P$.
- To create polygons with no fill, specify ' none '.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red '	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

Data Types: char | string | cell|double

## FaceAlpha - Transparency of polygon faces

1 (default) | numeric scalar or vector in the range [0,1]

Transparency of polygon faces, specified as the comma-separated pair consisting of 'FaceAlpha' and a numeric scalar or vector in the range $[0,1]$. The default value, 1 , means that the polygon is fully opaque.

- If the value is a scalar, it applies to all polygon faces.
- If the value is a vector, it must be the same length as $P$.

Data Types: single|double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## EdgeColor - Color of polygon edges

' none ' (default) | color name | RGB triplet | cell array of color names | string vector of color names | matrix of RGB triplets | ' none'

Color of polygon edges, specified as the comma-separated pair consisting of 'EdgeColor' and one of these options.

- A color name such as 'red ' or a short name such as ' $r$ '.
- An RGB triplet, which is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1$]$; for example, $[0.40 .60 .7]$.
- A cell array of color names such as \{'red', 'green','blue'\} or \{'r','g','b'\}.
- A string vector of color names such as ["red" "green" "blue"] or ["r" "g" "b"].
- A matrix of RGB triplets, which is a three-column matrix in which each row is an RGB triplet.

The way you specify the color depends on the desired color scheme.

- To apply the same edge color to all polygons in P, specify a single color name or RGB triplet.
- To apply a different edge color to each polygon in $P$, specify a cell array of color names, a string vector of color names, or a matrix of RGB triplets. The number of colors and RGB triplets must match the length of P .
- To create polygons with no edge color, specify ' none '.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

## Data Types: char | string | cell | double

## EdgeAlpha - Transparency of polygon edges

1 (default) | numeric scalar or vector in the range [0, 1]

Transparency of polygon edges, specified the comma-separated pair consisting of 'EdgeAlpha' and as a numeric scalar or vector in the range [0, 1].

- If the value is a scalar, it applies to all polygon faces.
- If the value is a vector, it must be the same length as $P$.

Data Types: single | double | int8| int16|int32|int64|uint8|uint16|uint32|uint64

## LineWidth - Width of polygon edges

1 (default) | positive numeric scalar or vector
Width of polygon edges, specified as the comma-separated pair consisting of 'LineWidth ' and a positive numeric scalar or vector.

- If the value is a scalar, it applies to all polygon faces.
- If the value is a vector, it must be the same length as $P$.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

## Output Arguments

## h - Polygon overlay

handle to polygon overlay
Polygon overlay, returned as a handle to the polygon overlay.

## Tips

- When you move the cursor over the polygons you define on an image and click, wmpolygon displays a description balloon and disables panning. If you move the cursor off the polygon, you can still click and pan the image. You can also use the arrow keys to pan the image.


## See Also

## Functions

wmclose | wmcenter \| webmap | wmlimits \| wmline \| wmprint \| wmmarker | wmremove |wmzoom
Objects
geoshape

## Topics

"Create and Display Polygons"
Introduced in R2016a

## wmremove

Remove overlay on web map

## Syntax

wmremove()
wmremove(h)

## Description

wmremove() removes the overlay most recently inserted into the current web map. ${ }^{13}$
wmremove ( h ) removes the overlay or overlays specified by the scalar overlay handle or vector of overlay handles, h .

## Examples

## Remove a Marker Overlay

Draw a marker on a web map. wmmarker creates the web map. Pause, and then remove the marker overlay.

```
wmmarker(42, -73);
pause(1);
wmremove()
```


## Remove Multiple Overlays

Draw several marker overlays on a web map. wmmarker creates the web map. Pause, and then remove the marker overlays, specifying a vector of overlay handles.

```
h1 = wmmarker(42, -80);
h2 = wmmarker(42, -78);
pause(1);
wmremove([h1 h2])
```


## Remove Line Overlay

Create a web map.
wm = webmap();
Load coastline data and display it as an overlay on the web map.

[^11]```
load coastlines
h = wmline(coastlat, coastlon);
```

Remove the overlay specified by h .
wmremove(h)

Input Arguments

h - Web map overlay
scale overlay handle or vector of overlay handles
Web map overlay, specified as a scalar overlay handle or a vector of overlay handles.

See Also

wmclose | wmcenter | wmline |wmlimits | wmprint | wmmarker | webmap|wmzoom Introduced in R2013b

wmcenter

Set or obtain web map center point

Syntax

```
wmcenter(centerLatitude,centerLongitude)
wmcenter(wm, centerLatitude,centerLongitude)
wmcenter(
```

\qquad

``` , zoomLevel)
[lat,lon] = wmcenter()
[lat,lon] = wmcenter(wm)
```


Description

wmcenter(centerLatitude, centerLongitude) centers the current web map at the specified latitude and longitude. If there is no current web map, wmcenter creates a new web map.
wmcenter(wm, centerLatitude, centerLongitude) centers the web map, specified by the handle wm, at the specified latitude and longitude.
wmcenter (__ , zoomLevel) centers and zooms the web map to the specified zoom level.
[lat,lon] = wmcenter() returns the latitude and longitude of the center point of the current web map.
[lat,lon] = wmcenter(wm) returns the latitude and longitude of the center point of the web map specified by the handle wm.

Examples

Center a Web Map

Display a web map and find its center point. There is no current web map, so wmcenter creates one.

```
[centerLatitude,centerLongitude] = wmcenter()
centerLatitude = 51.5200
centerLongitude = 0
```


Center the map at a specified center point.
wmcenter(51.52, 0)

Specify Center and Zoom Level for Multiple Web Maps

Create two web maps.
wm1 = webmap('OpenStreetMap');
wm2 = webmap('USGSImagery');

Specify the latitude and longitude for the web map center, as well as a zoom level. Then, center the web maps.

```
centerLatitude = 36.1;
centerLongitude = -113.2;
zoomLevel = 10;
wmcenter(wm1,centerLatitude,centerLongitude,zoomLevel)
wmcenter(wm2,centerLatitude,centerLongitude,zoomLevel)
```


Input Arguments

centerLatitude - Latitude of center point
scalar in the range [-90 90] of type single or double
Latitude of center point, specified as a scalar in the range [-90 90] of type single or double.
Data Types: single | double
centerLongitude - Longitude of center point
scalar in the range [-180 180] of type single or double
Longitude of center point, specified as a scalar in the range [-180 180] of type single or double.
Data Types: single | double
wm - Web map
web map handle
Web map, specified as a web map handle. ${ }^{14}$

zoomLevel - Zoom level

scalar numeric integer in the range [0 18] of type single or double
Zoom level, specified as a scalar numeric integer in the range [0 18] of type single or double.
Data Types: single | double

Output Arguments

lat - Latitude of center point

scalar in the range [-90 90] of type single or double
Latitude of center point, returned as a scalar in the range [-90 90] of type single or double.
Data Types: single | double

lon - Longitude of center point

scalar in the range [-180 180] of type single or double
Longitude of center point, returned as a scalar in the range [-180 180] of type single or double.
Data Types: single | double

Tips

- Particular maps may not support every available zoom level. If your map displays as completely white, try another zoom level. The map you are displaying may not support the zoom level you have currently selected. You can also select another base layer, which might support the specified zoom level.

See Also

wmclose | webmap | wmline | wmlimits | wmprint | wmmarker | wmremove |wmzoom

[^12]Introduced in R2013b

wmzoom

Set or obtain zoom level of web map

Syntax

```
wmzoom(zoomLevel)
wmzoom(wm,zoomLevel)
zoomLevelOut = wmzoom()
zoomLevelOut = wmzoom(wm)
```


Description

wmzoom(zoomLevel) specifies the zoom level of the current web map, zoomLevel. If there is no current web map, wmzoom creates a new web map.
wmzoom(wm,zoomLevel) specifies the zoom level of the web map, specified by the handle wm.
zoomLevelOut $=$ wmzoom() returns the zoom level of the current web map.
zoomLevel0ut $=\mathrm{wmzoom}(\mathrm{wm})$ returns the zoom level of the web map specified by the handle wm .

Examples

Get Zoom Level of Current Web Map and Specify New Zoom Level

Create a web map at default zoom level.

```
zoomLevel = wmzoom()
```

zoomLevel =
0
Zoom in and center the web map at the specified latitude and longitude (London).

```
wmzoom(10)
```

wmcenter(51.52, 0)

Specify Zoom Level of Several Web Maps

Create two web maps.

```
wm1 = webmap;
wm2 = webmap('worldtopographic');
```

Zoom in and center both maps at a specified latitude and longitude (Paris).

```
lat = 48.821;
lon = 1.9391;
```

```
zoomLevel = 10;
wmzoom(wm1, zoomLevel)
wmcenter(wm1, lat, lon)
wmzoom(wm2, zoomLevel)
wmcenter(wm2, lat, lon)
```


Input Arguments

zoomLevel - Zoom level

scalar numeric integer in the range [0 18]
Zoom level, specified as a scalar numeric integer in the range [0 18].
Data Types: single | double
wm - Web map
web map handle
Web map, specified as a web map handle. ${ }^{15}$

Output Arguments

zoomLevelOut - Zoom level of the current web map

scalar numeric integer in the range [0 18]
Zoom level of the current web map, returned as a scalar numeric integer in the range [0 18].
Data Types: single | double

Tips

- Particular maps may not support every available zoom level. If your map displays as completely white, try another zoom level. The map you are displaying may not support the zoom level you have currently selected. You can also select another base layer, which might support the specified zoom level.

See Also

wmclose | wmcenter |wmline |wmlimits | wmprint | wmmarker | wmremove | webmap

Introduced in R2013b

[^13]
wmlimits

Set or obtain web map limits

Syntax

wmlimits(latitudeLimits,longitudeLimits)
wmlimits(wm,latitudeLimits,longitudeLimits)
[latlim, lonlim] = wmlimits()
[latlim,lonlim] = wmlimits(wm)

Description

wmlimits(latitudeLimits, longitudeLimits) center the current web map within the specified latitude limits and the longitude limits. If there is no current web map, wmlimits creates one.

Note The resulting limits often do not match the specified limits because the zoom level is quantized to discrete integer values and the longitude limits may be constrained if the map was constructed with the WrapAround property equal to false.
wmlimits(wm,latitudeLimits,longitudeLimits) centers the web map specified by the web map handle wm within the specified latitude limits and longitude limits.
[latlim, lonlim] = wmlimits() returns the latitude and longitude limits of the current web map.
[latlim,lonlim] = wmlimits(wm) returns the latitude and longitude limits of the web map specified by wm.

Examples

Specify Limits for Web Map

Specify latitude and longitude limits. wmlimits creates the web map.
wmlimits([37 42],[-108.9 -100.7])

Get the latitude and longitude limits of the current web map.

```
[latitudeLimits,longitudeLimits] = wmlimits()
latitudeLimits = 1×2
    34.7311 44.0468
longitudeLimits = 1\times2
    -113.0397 -96.5603
```


Specify Limits for Multiple Web Maps

Create two web maps, specifying different base layers.
wm1 = webmap('OpenStreetMap');
wm2 = webmap('USGSImagery');

Specify latitude and longitude limits and apply to both maps to get two different views of the same region.
latitudeLimits = [37, 42];
longitudeLimits = [-108.9, -100.7];
wmlimits(wm1, latitudeLimits, longitudeLimits)
wmlimits(wm2, latitudeLimits, longitudeLimits)

Input Arguments

latitudeLimits - Latitude limits in degrees
1 -by-2 row vector of type double
Latitude limits in degrees, specified as a 1-by-2 row vector of type double of the form [southernlimit northern-limit].
Example: [37, 42]
Data Types: double

longitudeLimits - Longitude limits in degrees

1 -by-2 row vector of type double
Longitude limits in degrees, specified as a 1-by-2 row vector of type double of the form [westernlimit eastern-limit].

Example: [-108.9, -100.7]
Data Types: double
wm - Web map
scalar web map handle
Web map, specified as a scalar web map handle. ${ }^{16}$

Output Arguments

latlim - Latitude limits in degrees

1 -by-2 row vector of type double
Latitude limits in degrees, returned as a 1-by-2 row vector of type double.
Example: [37, 42]
Data Types: double

lonlim - Longitude limits in degrees

1 -by-2 row vector of type double
Longitude limits in degrees, returned as a 1-by-2 row vector of type double.
Example: [-108.9, -100.7]
Data Types: double

See Also

wmclose | wmcenter | wmline | webmap | wmprint | wmmarker | wmremove | wmzoom

Introduced in R2013b

[^14]
WMSCapabilities

Web Map Service capabilities document

Description

A WMSCapabilities object represents a Web Map Service (WMS) capabilities document obtained from a WMS server. A capabilities document is an XML document that contains metadata describing the geographic content offered by the server.

Creation

You can create a WMSCapabilities object using the WMSCapabilities function described here, or using the wmsinfo function to specify a timeout. A WMSCapabilities is also returned from the getCapabilities function when you have a WebMapServer object.

Syntax

```
capabilities = WMSCapabilities(serverURL,capabilitiesResponse)
Description
```

capabilities = WMSCapabilities(serverURL, capabilitiesResponse) creates a
WMSCapabilities object, sets the ServerURL property, and defines the capabilities of the server
using the XML elements in capabilitiesResponse.

Input Arguments

serverURL - URL of WMS server

character vector | string scalar
URL of WMS server, specified as a character vector or a string scalar. The server URL must include the protocol 'http://' or 'https://'.
Data Types: char | string
capabilitiesResponse - XML elements that describe the capabilities of the WMS server character vector | string scalar

XML elements that describe the capabilities of the WMS server, specified as a character vector or a string scalar.
Data Types: char|string

Properties

ServerTitle - Title of WMS server

character vector
This property is read-only.

Title of WMS server, returned as a character vector.
Data Types: char

ServerURL - URL of WMS server

character vector
This property is read-only.
URL of WMS server, returned as a character vector. The server URL must include the protocol 'http://' or 'https://'.
Data Types: char
ServiceName - Name of Web map service
character vector
This property is read-only.
Name of Web map service, returned as a character vector.
Data Types: char

Version - WMS version specification

character vector
This property is read-only.
WMS version specification, returned as a character vector.
Data Types: char

Abstract - Information about server

character vector
This property is read-only.
Information about server, returned as a character vector.
Data Types: char
OnlineResource - Online information about server
character vector
This property is read-only.
Online information about server, returned as a character vector.
Data Types: char

ContactInformation - Contact information for an individual or an organization structure

This property is read-only.
Contact information for an individual or an organization, returned as a ContactInformation structure, containing the following fields:

Field Name	Data Type	Field Content
Person	Character vector	Name of individual
Organization	Character vector	Name of organization
Email	Character vector	Email address

Data Types: struct

AccessConstraints - Constraints inherent in accessing the server

character vector
This property is read-only.
Constraints inherent in accessing the server, such as server load limits, returned as a character vector.

Data Types: char

Fees - Types of fees associated with accessing server
 character vector

This property is read-only.
Types of fees associated with accessing server, returned as a character vector.
Data Types: char

KeywordList - Descriptive keywords of the server

cell array of character vectors
This property is read-only.
Descriptive keywords of the server, returned as a cell array of character vectors.
Data Types: char
ImageFormats - Image formats supported by server
cell array of character vectors
This property is read-only.
Image formats supported by server, returned as a cell array of character vectors.
Data Types: char

LayerNames - Layer names provided by server

cell array of character vectors
This property is read-only.
Layer names provided by server, returned as a cell array of character vectors.
Data Types: cell

Layer - Information about layers on WMS server

WMSLayer array
This property is read-only.

Information about layers on WMS server, returned as an array of WMSLayer objects.

AccessDate - Date of request to server

character vector
This property is read-only.
Date of request to server, returned as a character vector.
Data Types: char

Object Functions

disp Display properties of WMS layers or capabilities

Examples

Create WMS Capabilities Object

Create a WMSCapabilities object from the content of a downloaded capabilities file from the NASA SVS Image Server.

```
nasa = wmsfind('NASA SVS Image', 'SearchField', 'servertitle');
serverURL = nasa(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = server.getCapabilities;
filename = 'capabilities.xml';
websave(filename, server.RequestURL);
fid = fopen(filename, 'r');
capabilitiesResponse = fread(fid,'uint8=>char');
fclose(fid);
capabilities = WMSCapabilities(serverURL,capabilitiesResponse);
```


See Also

WMSLayer | WebMapServer | wmsinfo | websave

Topics

"Explore Layers on Same Server"

Introduced in R2009b

wmsfind

Search local database for Web map servers and layers

Syntax

layers = wmsfind(querystr)
layers = wmsfind(querystr, Name, Value)

Description

layers = wmsfind(querystr) searches the fields of the installed "WMS Database" on page 11670 for partial matches of querystr, which is a string, string array, character vector, or cell array of character vectors. By default, wmsfind searches the Layer or LayerName properties but you can include other fields in the search using the SearchFields parameter.
wmsfind returns layers, an array of WMSLayer objects containing one object for each layer whose name or title partially matches querystr. WMS servers produce maps of spatially referenced raster data, such as temperature or elevation, that are known as layers.
layers = wmsfind(querystr, Name, Value) modifies the search of the WMS Database based on the values of the parameters. You can abbreviate parameter names and case does not matter.

Examples

Find Temperature Data in the WMS Database

Search the WMS Database for temperature data.

```
layers = wmsfind('temperature');
```

The wmsfind function searches both the LayerName and LayerTitle fields of the WMS Database for partial matches. The function returns an array of WMSLayer objects, which contains one object for each layer whose name or title partially matches 'temperature'.

Refine the search to include temperature data from NOAA. Display information about the first layer.

```
layersNOAA = refine(layers,'noaa');
layersNOAA(1)
ans =
    WMSLayer
    Properties:
                Index: 1
        ServerTitle: 'WMS for SST and SST Anomaly, NOAA Global Coral Bleaching Monitoring, 5km, V.3
            ServerURL: 'https://coastwatch.pfeg.noaa.gov/erddap/wms/NOAA_DHW_monthly/request?'
            LayerTitle: 'SST and SST Anomaly, NOAA Global Coral Bleaching}\mp@subsup{\overline{M}}{M}{\prime
            LayerName: 'NOAA_DHW_monthly:sea_surface_temperature'
                    Latlim: [-89.9750 89.9750]
                    Lonlim: [-179.9750 179.9750]
```


Methods

A WMSLayer object contains three properties that do not appear in the WMS Database: Abstract, CoordRefSysCodes, and Details. Populate these properties by using the wmsupdate function.

```
updatedLayers = wmsupdate(layersNOAA(1));
updatedLayers(1)
ans =
    WMSLayer
    Properties:
                Index: 1
        ServerTitle: 'WMS for SST and SST Anomaly, NOAA Global Coral Bleaching Monitoring, 5km, V.3
            ServerURL: 'https://coastwatch.pfeg.noaa.gov/erddap/wms/NOAA_DHW_monthly/request?'
            LayerTitle: 'SST and SST Anomaly, NOAA Global Coral Bleaching Monitoring, 5km, V.3.1, Montl
            LayerName: 'NOAA DHW monthly:sea surface temperature'
                Latlim: [-89.\overline{9750-89.9750]}
                    Lonlim: [-179.9750 179.9750]
            Abstract: '
CoordRefSysCodes: {'EPSG:4326'}
            Details: [1x1 struct]
```

 Methods
 Your results might be different because the WMS Database changes each release.

Search the WMS Database for Layers

Search the Entire WMS Database

Search the WMS database for layers that contain the word "temperature". The wmsfind function returns an array of WMSLayer objects.
layers = wmsfind('temperature');
Find layers that contain global temperature data. The query includes the asterisk wildcard character '*'.
layers = wmsfind('global*temperature');

Search Specific Fields in the WMS Database

Search the LayerTitle field for all layers that contain an exact match for the term 'Rivers '. You must use the MatchType parameter to specify an exact match.

```
layers = wmsfind('Rivers','MatchType','exact', ...
    'IgnoreCase',false,'SearchFields','layertitle');
```

Search the LayerName field for all layers that contain a partial match for 'elevation'. By default, wmsfind searches for partial matches.

```
layers = wmsfind('elevation','SearchFields','layername');
```

Search the LayerName field for all unique servers that contain 'BlueMarbleNG '.

```
layers = wmsfind('BlueMarbleNG','SearchFields','layername', ...
    'MatchType','exact');
urls = servers(layers);
```


Limit Your Search to Specific Geographic Regions

Find layers that contain elevation data for Colorado. Use the Latlim and Lonlim parameters to specify the location.

```
latlim = [35 43];
lonlim = [-111 -101];
layers = wmsfind('elevation','Latlim',latlim,'Lonlim',lonlim);
```

Find all layers that contain temperature data for a point in Perth, Australia. Use the Latlim and Lonlim parameters to specify the location.

```
lat = -31.9452;
lon = 115.8323;
layers = wmsfind('temperature','Latlim',lat,'Lonlim',lon);
```

Find all the unique URLs of all government servers.

```
layers = wmsfind('*.gov*','SearchFields','serverurl');
urls = servers(layers);
```


Search Multiple Fields at the Same Time and Refine Your Search

Search both the LayerTitle and the LayerName fields for all the layers that contain the word "temperature".
fields = [string('layertitle') string('layername')];
temperature = wmsfind('temperature','SearchFields',fields);
Refine the results of your temperature search to find only those layers that deal with sea surface temperatures. Use the WMSLayer object refine method.

```
sst = refine(temperature,'sea surface');
```

Refine your sea surface temperature search further to find only those layers that deal with global sea surface temperatures.
global_sst = refine(sst, 'global');

Search the Entire WMS Database and Progressively Refine Your Search

Note that finding all the layers from the WMS database may take several seconds to execute and require a substantial amount of memory. The database contains more than 100,000 layers.

Find all the layers in the WMS database and sort them into a set that comprises only the unique layer titles.

```
layers = wmsfind('*');
layerTitles = sort(unique({layers.LayerTitle}))';
```

Refine your original search, layers, to include only those layers with global coverage. Use the WMSLayer object refineLimits method.

```
global_layers = refineLimits(layers, ...
    'Latlim',[-90 90],'Lonlim',[-180 180]);
```

Refine the results of your global layers search to contain only layers with global extent that include the word "topography". Use the WMSLayer object refine method.
global_topography_layers = refine(global_layers,'topography');
Refine your original search, layers, to contain only layers that have some combination of the terms "oil" and "gas" in the LayerTitle field.

```
oil_gas_layers = refine(layers,'oil*gas','SearchFields','layertitle');
```


Search Online Version of WMS Database

Search the WMS database for layers containing the word "elevation". Search the online version of the database by specifying the Version name-value pair argument as 'online '. If you do not specify the version, then wmsfind reads from the installed database.

```
elevation = wmsfind('elevation','Version','online');
```


Input Arguments

querystr - Characters to search for in WMS Database fields

string scalar \mid string array \mid character vector \mid cell array of character vectors
Characters to search for in WMS Database fields, specified as a string scalar, string array, character vector, or cell array of character vectors. querystr can contain the asterisk wildcard character (*).
Data Types: char \| string

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: $[A, R]=$ wmsfind('elevation','SearchFields','layername');

IgnoreCase - Ignore case when comparing field values to querystr
 true (default) | false

Ignore case when comparing field values to querystr, specified as the logical value true or false.
Data Types: single|double | int8|int16|int32|int64|uint8|uint16|uint32|uint64| logical

Latlim - Latitudinal limits of the search

two-element numeric vector | numeric scalar
Latitudinal limits of the search, specified as a two-element vector of the form [southern_limit northern_limit] or a scalar value representing the latitude of a single point. Values are in the
range [-90, 90]. All angles are in units of degrees. If provided and not empty, a given layer appears in the results only if its limits fully contain the specified 'Latlim' limits. Partial overlap does not result in a match.

Data Types: double |int16| int32| int64 | int8| single|uint8|uint16|uint32|uint64

Lonlim - Longitudinal limits of the search

two-element numeric vector | numeric scalar
Longitudinal limits of the search, specified as a two-element vector of the form [western_limit eastern_limit] or scalar value representing the longitude of a single point. All angles are in units of degrees. If provided and not empty, a given layer appears in the results only if its limits fully contain the specified 'Lonlim' limits. Partial overlap does not result in a match.

Data Types: double |int16|int32 | int64 | int8 | single | uint8 | uint16|uint32|uint64

MatchType - Strictness of match

'partial' (default)|'exact'
Strictness of match, specified as the character vector or string 'partial' or 'exact '. If
'MatchType' is 'exact' and querystr is '*', a match occurs when the search field matches the character '*'.

Data Types: char | string

SearchFields - Fields to search in the WMS Database

'layer' (default)|'server'|'layertitle'|'layername'|'servertitle'|'serverurl'| 'any'

Fields to search in the WMS Database, specified as a character vector, cell array of character vectors, string, or array of strings. The function searches the values of the specified fields in the WMS Database for a partial or exact match with querystr. The following table lists valid values.

Field	Behavior
' layername '	Search the LayerName field in the WMS Database. The layer name is an abbreviated form of the LayerTitle field and is the keyword the server uses to retrieve the layer.
' layertitle'	Search the LayerTitle field in the WMS Database. The layer title includes descriptive information about a layer and facilitates understanding the meaning of the raster values of the layer.
' layer'	Search both the LayerTitle and the LayerName fields.
'servertitle'	Search the ServerTitle field in the WMS Database. A server title includes descriptive information about the server.
'serverurl'	Search the ServerURL field in the WMS Database. The server URL and layer information facilitate the reading of raster layers by the function wms read.
'server'	Search both the ServerTitle and the ServerURL fields.
'any'	Search all fields.

Data Types: char | cell| string

Version - Version of the WMS Database to read

'installed' (default)|'online'| 'custom'

Version of the WMS Database to read, specified as one of the following values.

Value	Description
'installed '	Read from the installed database. This is the default. The information found in the installed database is static and is not automatically updated-it was validated at the time of the software release.
' online'	Read from the version of the database hosted on the MathWorks website. This version of the database contains more up-to-date information about servers because it is updated regularly. Note, however, that searching this online database requires a connection to the Internet. If your network uses a firewall or another method of protection that
restricts Internet access, you can provide information about your	
proxy server to MATLAB. For more information, see "Proxy Server	
Authentication".	

Data Types: char \| string

Output Arguments

layers - Layers that match search criteria

WMSLayer objects
Layers that match search criteria, returned as an array of WMSLayer objects, one for each layer found.

More About

WMS Database

Mapping Toolbox contains a database of over 1000 stored WMS servers and over 100,000 layers. MathWorks creates this database, called the WMS Database, by conducting a series of Internet searches and qualifying the search results.

Note MathWorks does not guarantee the stability or accuracy of WMS data. The servers listed in the WMS Database are located on the Internet and are independent from MathWorks. Occasionally, you might receive error messages from servers experiencing difficulties. Servers might go down or become unavailable.

The wmsfind function is the only function that accesses the stored WMS Database. By default, the wmsfind function searches the WMS Database that is installed with the product. You can search a version of the WMS Database hosted on the MathWorks website or a WMS Database from a previous release by using the Version name-value argument. The information in the WMS Database installed with the product is static. The web-hosted database is updated regularly.

The WMS Database contains these fields:

Field Name	Data Type	Field Content
ServerTitle	Character vector	Title of the WMS server, descriptive information about the server
ServerURL	Character vector	URL of the WMS server
LayerTitle	Character vector	Title of the layer, descriptive information about the layer
LayerName	Character vector	Name of the layer, keyword the server uses to retrieve the layer
Latlim	Two-element vector	Southern and northern latitude limits of the layer
Lonlim	Two-element vector	Western and eastern longitude limits of the layer

The LayerTitle and LayerName fields sometimes have the same values. The LayerName field indicates a code used by the servers, such as '29:2', while the LayerTitle field provides more descriptive information. For example, 'Elevation and Rivers with Backdrop' might be an entry in the LayerTitle field.

Tips

- The WMSLayer objects returned by wmsfind contain properties with the same names as the field names of the WMS Database, along with three additional properties: 'Abstract ',
'CoordRefSysCodes', and 'Details'. The WMS Database does not contain information about these properties. To get this information about a server, you must use the wmsupdate function which updates these properties of the WMSLayer object by downloading information from the server. To view these properties, use the WMSLayer. disp method, specifying the 'Properties' parameter value 'all'. If you want to know more about a WMS server, use the wmsinfo function with the specific server URL.

See Also

wmsupdate | wmsinfo | wms read | WebMapServer | WMSLayer

Topics

"Basic Workflow for Creating WMS Maps"

Introduced in R2009b

wmsinfo

Information about WMS server from capabilities document

Syntax

[capabilities,infoRequestURL] = wmsinfo(serverURL)
[capabilities,infoRequestURL] = wmsinfo(infoRequestURL)
[capabilities,infoRequestURL] = wmsinfo(\qquad ,'TimeoutInSeconds',sec)

Description

[capabilities,infoRequestURL] = wmsinfo(serverURL) accesses the Internet to read a capabilities document from a Web Map Service (WMS) server specified by string or character vector serverURL. A capabilities document is an XML document that contains metadata describing the geographic content offered by the server.

The wmsinfo function returns the contents of the capabilities document in capabilities, a WMSCapabilities object. The wmsinfo function also returns the character vector infoRequestURL, which is composed of the serverURL with additional WMS parameters. You can insert infoRequestURL into a browser, or the url read function, to get the XML capabilities document.

The wmsinfo function requires an Internet connection. WMS servers can periodically be unavailable. Retrieving the map can take several minutes.
[capabilities,infoRequestURL] = wmsinfo(infoRequestURL) reads the capabilities document from a WMS infoRequestURL and returns the contents in capabilities.
[capabilities,infoRequestURL] = wmsinfo(___,'TimeoutInSeconds',sec) specifies the number of seconds before a server times out. Specify sec as a non-negative integer. If you specify sec as 0 , then wmsinfo ignores the time-out mechanism.

Examples

Read Capabilities Document and Display Abstract

Read the capabilities document from the NASA Goddard Space Flight Center WMS server.

```
serverURL = 'http://svs.gsfc.nasa.gov/cgi-bin/wms?';
capabilities = wmsinfo(serverURL);
```

Display information about the first layer.

```
capabilities.Layer(1)
ans =
    WMSLayer
    Properties:
            Index: 1
```

```
    ServerTitle: 'NASA SVS Image Server'
    ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
    LayerTitle: 'African Fires During 2002 (1024\times1024 Animation)'
    LayerName: '2890_17402'
            Latlim: [-39.0000 41.0000]
            Lonlim: [-22.0000 58.0000]
            Abstract: 'This animation shows fire activity in Africa from January 1, 2002 to December
Additional Credit:
B>Please give credit for this item to:</b><br />'
CoordRefSysCodes: {'CRS:84'}
    Details: [1x1 struct]
    Methods
```

Refine the list to include only layers with the term "glacier retreat" in the layer title.

```
glaciers = capabilities.Layer.refine('glacier retreat', ...
    'SearchFields','LayerTitle');
```

Display the abstract of the first layer.

```
glaciers(1).Abstract
ans =
    'Since measurements of Jakobshavn Isbrae were first taken in 1850, the glacier has gradually
    Additional Credit:
    B>Please give credit for this item to:</b><br />'
```


Input Arguments

serverURL - WMS server URL

string scalar | character vector
WMS server URL, specified as a string scalar or character vector. The serverURL contains the protocol 'http://' or 'https://' and additional WMS or access keywords.

Data Types: char|string

Output Arguments

capabilities - Capabilities document

WMSCapabilities object
Capabilities document, returned as a WMSCapabilities object.
infoRequestURL - URL composed of serverURL with additional WMS parameters
string | character vector
URL composed of the serverURL with additional WMS parameters, returned as a character vector.

Tips

- To specify a proxy server to connect to the Internet, select File $>$ Preferences $>$ Web and enter your proxy information. Use this feature if you have a firewall.
- wmsinfo communicates with the server using a WebMapServer object representing an implementation of a WMS specification. The object acts as a proxy to a WMS server and resides physically on the client side. The object accesses the server's capabilities document. The object supports multiple WMS versions and negotiates with the server to use the highest known version that the server can support. The object automatically times-out after 60 seconds if a connection is not made to the server.

See Also

wmsfind | wmsupdate | wms read | WebMapServer | WMSLayer

Topics

"Basic Workflow for Creating WMS Maps"

Introduced in R2009b

WMSLayer

Web Map Service layer

Description

A WMSLayer object describes a Web Map Service (WMS) layer or layers.

Creation

You can create a WMSLayer object using any of the following methods:

- wmsfind - Returns a WMSLayer array.
- wmsinfo - Returns a WMSCapabilities object, which contains an array of WMSLayer objects in its Layer property.
- The WMSLayer object creation function, described here.

Syntax

layers = WMSLayer(Name,Value)

Description

layers = WMSLayer(Name, Value) constructs a WMSLayer object, where Name is the name of any property of the WMSLayer and Value is the value that you want to assign to the property. You can specify several name-value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN. The size of the output layers is scalar unless all inputs are cell arrays, in which case, the size of layers matches the size of the cell arrays.

Properties

ServerTitle - Descriptive information about the server
 empty character vector ($'$ ') (default) | character vector

Descriptive information about the server, specified as a character vector.
Data Types: char

ServerURL - URL of WMS Server

empty character vector (${ }^{\prime}$) (default) | character vector
URL of WMS Server, specified as a character vector.
Data Types: char
LayerTitle - Descriptive information about the layer
empty character vector (' ') (default) | character vector

Descriptive information about the layer, specified as a character vector. The LayerTitle clarifies the meaning of the raster values of the layer.

Data Types: char

LayerName - Keyword the server uses to retrieve the layer

empty character vector (${ }^{\prime}$ ') (default) | character vector
Keyword the server uses to retrieve the layer, specified as a character vector.
Data Types: char

Latlim - Latitude limits of the layer in units of degrees

[] (default) | two-element numeric vector
Latitude limits of the layer in units of degrees, specified as a two-element numeric vector. The limits specify the southern and northern latitude limits and must be in units of degrees and in the range [-90, 90].
Data Types: double

Lonlim - Longitude limits of the layer in units of degrees

[] (default) | two-element numeric vector
Longitude limits of the layer in units of degrees, specified as a two-element numeric vector. The limits specify the western and eastern longitude limits and must be ascending and in the range [-180, 180] or $[0,360]$.

Data Types: double

Abstract - Information about the layer

empty character vector (' ') (default) | character vector
Information about the layer, specified as a character vector.
Data Types: char
CoordRefSysCodes - Codes identifying available coordinate reference systems empty cell array \{\} (default) | cell array of character vectors

Codes identifying available coordinate reference systems, specified as a cell array of character vectors.

Data Types: cell

Details - Detailed information about the layer

structure
Detailed information about the layer, specified as a structure containing: URL of metadata, attributes, scale, dimension, and style. See the WMSLayer. Details on page 1-1679 reference page for more information.
Data Types: struct

Object Functions

disp	Display properties of WMS layers or capabilities
refine	Refine search of WMS layers

refineLimits Refine search of WMS layers based on geographic limits
servers Return URLs of unique WMS servers
serverTitles Return titles of unique WMS servers

Examples

Construct WMSLayer Object from WMS GetMap Request URL

Specify the server URL. These values are typically found during an Internet search. The WMSLayer ServerURL value is obtained from the host and path of the request URL. The WMSLayer LayerName value is obtained from the LAYERS value in the query part of the URL.

```
host = 'www.mrlc.gov';
path = '/geoserver/NLCD_Land_Cover/wms?';
serverURL = ['https://' host path];
requestURL = [serverURL 'SERVICE=WMS&FORMAT=image/jpeg&REQUEST=GetMap&' ...
    'STYLES=&SRS=EPSG:4326&VERSION=1.1.1&LAYERS=mrlc_display:NLCD_2016_Land_Cover_L48&', ...
    'WIDTH=1024&HEIGHT=470&BBOX=-128,23,-65,51'];
layerName = 'mrlc_display:NLCD_2016_Land_Cover_L48';
```

Construct the WMSLayer object by using the serverURL variable and the value of the WMS LAYERS parameter.

```
layer = WMSLayer('ServerURL',serverURL,'LayerName',layerName);
```

Use the wmsupdate function to get the other properties of the WMSLayer array from the server.

```
layer = wmsupdate(layer);
layer.Lonlim = [-180 180];
```

Retrieve an image from the WMS server using layer and parameter values from the WMS GetMap request URL. Set latitude and longitude limits from the BBOX request value. Set image height and width values from the WIDTH and HEIGHT request values.

```
lonlim = [-128 -65];
latlim = [23 51];
height = 470;
width = 1024;
[A,R] = wmsread(layer,'Latlim',latlim,'Lonlim',lonlim, ...
    'ImageHeight',height,'ImageWidth',width);
```

Display the image from the server.

```
figure
usamap(A,R)
geoshow(A,R)
title('NLCD Land Cover')
```


This image can also be retrieved using the WMS requestURL.
$[A, R]=$ wms read $($ requestURL);

See Also

Functions

wmsfind | wmsinfo | wms read | wmsupdate
Objects
WebMapServer | WMSCapabilities | WMSMapRequest

Introduced in R2009b

Details property

Detailed information about WMS layer

Description

A structure containing detailed information about a layer
Details Structure

Field Name	Data Type	Field Content
MetadataURL	Character vector	URL containing metadata information about layer.
Attributes on page 1- 1679	Structure	Attributes of layer.
BoundingBox on page 1-1680	Structure array	Bounding box of layer.
Dimension on page 1- 1680	Structure array	Dimensional parameters of layer, such as time or elevation.
ImageFormats	Cell array	Image formats supported by server.
ScaleLimits on page 1-1681	Structure	Scale limits of layer.
Style on page 1-1681	Structure array	Style parameters that determine layer rendering.
Version	Character vector	WMS version specification.

Attributes Structure

Field Name	Data Type	Field Content
Queryable	Logical	True if you can query the layer for feature information.
Cascaded	Double	Number of times a Cascading Map server has retransmitted the layer.
Opaque	Logical	True if the map data are mostly or completely opaque.
NoSubsets	Logical	True if the map must contain the full bounding box. false if the map can be a subset of the full bounding box.
FixedWidth	Logical	True if the map has a fixed width that the server cannot change. false if the server can resize the map to an arbitrary width.
FixedHeight	Logical	True if the map has a fixed height that the server cannot change. false if the server can resize the map to an arbitrary height.

BoundingBox Structure

Field Name	Data Type	Field Content
CoordRefSysCode	character vector	Code number for coordinate reference system.
XLim	Double array	X limit of layer in units of coordinate reference system.
YLim	Double array	Y limit of layer in units of coordinate reference system.

Dimension Structure

Field Name	Data Type	Field Content
Name	Character vector	Name of the dimension; such as time, elevation, or temperature.
Units	Character vector	Measurement unit.
UnitSymbol	Character vector	Symbol for unit.
Default	Character vector	Default dimension setting. For example, if default is 'time' and dimension is not specified, server returns time holding.
MultipleValues	Logical	True if multiple values of the dimension may be requested. false if only single values may be requested.
NearestValue	Logical	True if nearest value of dimension is returned in response to request for nearby value. false if request value must correspond exactly to declared extent values.
Current	Logical	True if temporal data are kept current (valid only for temporal extents).
Extent	Character vector	Values for dimension. Expressed in any of the following ways: - Single value (value) - List of values (value1, value2, ...) - Interval defined by bounds and resolution (min1/ max1/res1) - List of intervals (min1/max1/res1, min2/max2/ res2, ...)

ScaleLimits Structure

Field Name	Data Type	Field Content
ScaleHint	Double array	Minimum and maximum scales for which it is appropriate to display layer. Expressed as scale of ground distance in meters represented by diagonal of central pixel in image.
MinScaleDenominator	Double	Minimum scale denominator of maps for which a layer is appropriate.
MaxScaleDenominator	Double	Maximum scale denominator of maps for which a layer is appropriate.

Style Structure Array

Field Name	Data Type	Field Content
Title	Character vector	Descriptive title of style.
Name	Character vector	Name of style.
Abstract	Character vector	Information about style.
LegendURL on page 1-1681	Structure	Information about legend graphics.

LegendURL Structure

Field Name	Data Type	Field Content
OnlineResource	Character vector	URL of legend graphics.
Format	Character vector	Format of legend graphics.
Height	Double	Height of legend graphics.
Width	Double	Width of legend graphics.

WMSMapRequest

Web Map Service map request

Description

A WMSMapRequest object contains a request to a WMS server to obtain a map, which represents geographic information. The WMS server renders the map as a color or grayscale image. The object contains properties that you can set to control the geographic extent, rendering, or size of the requested map.

Creation

Syntax

mapRequest = WMSMapRequest(layer)
mapRequest = WMSMapRequest(layer, server)

Description

mapRequest $=$ WMSMapRequest(layer) creates a WMSMapRequest object, setting the Layer property. The WMSMapRequest object updates the properties of Layer, if necessary.
mapRequest = WMSMapRequest(layer,server) creates a WMSMapRequest object, setting the Layer and Server properties. The ServerURL property of layer must match the ServerURL property of server. The Server object updates Layer properties.

Properties

Server - Web map server

scalar WebMapServer object
Web map server, specified as a scalar WebMapServer object. If a server is not supplied as an argument when creating the WMSMapRequest, the value of Server is set to the ServerURL of Layer.

Layer - Web Map Service layers

array of WMSLayer objects
Web Map Service layers, specified as an array of WMSLayer objects.
Layer contains one unique ServerURL, which must match the ServerURL property of Server. The Server property updates the properties of Layer when the property is set.

CoordRefSysCode - Coordinate reference system code

'CRS:84'|'EPSG:4326'
Coordinate reference system code, specified as the character vector 'CRS:84' for WMS version 1.3.x, and 'EPSG: 4326' for all other versions.

- If 'EPSG:4326' is not found in Layer.CoordRefSysCodes, then the CoordRefSysCode value is set from the first CoordRefSysCode found in the Layer. Details.BoundingBox structure array.
- When CoordRefSysCode is set to 'EPSG:4326' or 'CRS:84', the XLim and YLim properties are set to [] and the Latlim and Lonlim properties are set to the geographic extent defined by the Layer array.
- When CoordRefSysCode is set to a value other than 'EPSG:4326' or 'CRS: 84', then the XLim and YLim properties are set from the values found in the Layer. Details.BoundingBox structure and the Latlim and Lonlim properties are set to [].
- Automatic projections are not supported. (Automatic projections begin with 'AUTO ' .)

Data Types: char

RasterReference - Map or geographic raster reference

MapCellsReference or GeographicCellsReference
Map or geographic raster reference, specified as a MapCellsReference or GeographicCellsReference object. RasterReference references the raster map to an intrinsic coordinate system

Latlim - Latitude limits

two-element vector
Latitude limits, specified as a two-element vector. Lat lim contains the southern and northern latitudinal limits of the request in units of degrees. The limits must be ascending. By default, the latitude limits span all latitudinal limits found in the Layer. Latlim property.

Lonlim - Longitude limits

two-element vector
Longitude limits, specified as a two-element vector. Lonlim contains the western and eastern longitudinal limits of the request in units of degrees. The limits must be ascending and in the range [-180, 180] or [0, 360]. By default, the longitude limits span all longitudinal limits found in the Layer. Lonlim property.

XLim - Western and eastern limits in the units of the coordinate reference system

[] (default) | two-element vector
Western and eastern limits of the requested map in the units of the coordinate reference system, specified as a two-element vector. The limits must be ascending. You can set XLim only if you set CoordRefSysCode to a value other than EPSG:4326.

YLim - Southern and northern in the units of the coordinate reference system

[] (default) | two-element vector
Southern and northern limits of the requested map in the units of the coordinate reference system, specified as a two-element vector. The limits must be ascending. You can set YLim only if you set CoordRefSysCode to a value other than EPSG: 4326.

ImageHeight - Height in pixels for the requested raster map
 positive integer

Height in pixels for the requested raster map, specified as a positive integer. The property MaximumHeight defines the maximum value for ImageHeight. The WMSMapRequest object
initializes the ImageHeight property to either 512 or to an integer value that best preserves the aspect ratio of the coordinate limits, without changing the coordinate limits.

ImageWidth - Width in pixels for the requested raster map positive integer

Width in pixels for the requested raster map, specified as a positive integer. The property MaximumWidth defines the maximum value for ImageWidth. The WMSMapRequest object initializes the ImageWidth property to either 512 or to an integer value that best preserves the aspect ratio of the coordinate limits, without changing the coordinate limits.

MaximumHeight - Maximum height in pixels of requested map 8192

This property is read-only.
Maximum height in pixels for the requested map, specified as the number 8192.
Data Types: double
MaximumWidth - Maximum width in pixels of requested map
8192
This property is read-only.
Maximum width in pixels for the requested map, specified as the number 8192.
Data Types: double

Elevation - Elevation extent of requested map

' ' (default) | character vector
Elevation extent of the requested map, specified as a character vector. When you set the property, 'elevation' must be the value of the Layer. Details.Dimension. Name field.

Time - Time extent of requested map

character vector | numeric scalar
Time extent of the requested map, specified as a character vector or numeric scalar. See the WMSMapRequest. Time on page 1-1689 reference page for more information.

Data Types: double | char

SampleDimension - Name and value of a sample dimension

two-element cell array of character vectors
Name and value of a sample dimension, specified as a two-element cell array of character vectors. The name cannot be 'time' or 'elevation'. SampleDimension\{1\} must be the value of the Layer.Details.Dimension.Name field.

Transparent - Flag indicating transparency of map background
 false (default) | logical scalar

Flag indicating transparency of map background, specified as a logical scalar. When you set Transparent to true, the server sets all pixels not representing features or data values in that layer to a transparent value, producing a composite map. When you set Transparent to false, the server sets all non-data pixels to the value of the background color.

Data Types: logical

BackgroundColor - Color of the background (non-data) pixels of the map

 three-element numeric vectorColor of the background (non-data) pixels of the map, specified as a three-element numeric vector. The values range from 0 to 255 . The default value, [$255,255,255$], specifies the background color as white. You can set BackgroundColor using non-uint8 numeric values, but they are cast and stored as uint8.

Data Types: uint8

StyleName - Style to use when rendering the image

\{\} (default) | character vector or cell array of character vectors
Style to use when rendering the image, specified as a character vector or cell array of character vectors. The StyleName must be a valid entry in the Layer. Details. Style. Name field. The cell array of character vectors contains the same number of elements as does Layer.

ImageFormat - Desired image format used to render the map as an image character vector

Desired image format used to render the map as an image, specified as a character vector. If set, the format must match an entry in the Layer. Details.ImageFormats cell array and an entry in the ImageRenderFormats property. If not set, the format defaults to a value in the ImageRenderFormats property.

ImageRenderFormats - Preferred image rendering formats when Transparent is set to false

cell array
This property is read-only.
Preferred image rendering formats when Transparent is set to false, specified as a cell array. The first entry is the most preferred image format. If the preferred format is not stored in the Layer property, then the next format from the list is selected, until a format is found. The ImageRenderFormats array is not used if the ImageFormat property is set.

ImageTransparentFormats - Preferred image rendering formats when Transparent is set to true
 cell array

This property is read-only.
Preferred image rendering formats when Transparent is set to true, specified as a cell array. The first entry is the most preferred image format. If the preferred format is not stored in the Layer property, then the next format from the list is selected, until a format is found. If a transparent image format is not found in the list, or if the ImageFormat property is set to a non-default value, then ImageFormat is unchanged.

ServerURL - Server URL for the WMS GetMap request

character vector
Server URL for the WMS GetMap request, specified as a character vector. In general, ServerURL matches the ServerURL of the Layer. However, some WMS servers, such as the Microsoft ${ }^{\oplus}$

TerraServer, require a different URL for GetMap requests than for WMS GetCapabilities requests. By default, ServerURL is Layer(1). ServerURL.

Data Types: char

RequestURL - Full URL for the WMS GetMap request

character vector
This property is read-only.
Full URL for the WMS GetMap request, specified as a character vector. It is composed of the ServerURL with additional WMS parameter/value pairs.

Object Functions

boundImageSize Bound size of raster map

Examples

Read and Display Map of Global Sea-Surface Temperature

Read a global, half-degree resolution, sea-surface temperature map for the month of November 2009. The map, from the AMSR-E sensor on NASA's Aqua satellite, uses data provided by NASA's Earth Observations (NEO) WMS server.

```
sst = wmsfind('AMSRE_SSTAn_M');
sst = sst(1);
server = WebMapServer(sst.ServerURL);
mapRequest = WMSMapRequest(sst, server);
timeRequest = '2009-11-01';
mapRequest.Time = timeRequest;
samplesPerInterval = .5;
mapRequest.ImageHeight = ...
    round(abs(diff(sst.Latlim))/samplesPerInterval);
mapRequest.ImageWidth = ...
    round(abs(diff(sst.Lonlim))/samplesPerInterval);
mapRequest.ImageFormat = 'image/png';
sstImage = server.getMap(mapRequest.RequestURL);
```

Read the legend for the layer using the OnlineResource URL field in the LegendURL structure. The legend shows that the temperature ranges from -2 to 35 degrees Celsius. The WMSMapRequest object updates the layer information from the server.

```
url = mapRequest.Layer.Details.Style(1).LegendURL.OnlineResource;
[legendImg,cmap] = imread(url);
if ~isempty(cmap)
    % Convert indexed image to RGB.
    legendRGB = ind2rgb(legendImg,cmap);
else
    % Already have an RGB image.
    legendRGB = legendImg;
end
Display the temperature map and legend.
```

```
fig = figure;
```

fig = figure;
ax = worldmap('world');

```
ax = worldmap('world');
```

```
setm(ax,'MlabelParallel',-90,'MlabelLocation',90)
    geoshow(sstImage,mapRequest.RasterReference);
    title({mapRequest.Layer.LayerTitle,timeRequest})
figurePosition = fig.Position;
centerWidth = figurePosition(3)/2;
axleft = centerWidth-size(legendImg,2)/2;
axbottom = 30;
axwidth = size(legendRGB,2);
axheight = size(legendRGB,1);
axes('Units','pixels','Position',[axleft axbottom axwidth axheight])
image(legendRGB)
axis off
```

Sea Surface Temperature Anomaly (1 month - Aqua/AMSR-E, 2002-11)

Read abstract information for this layer from the MetadataURL field.
readerFcn = @(filename)readstruct(filename,'FileType','xml'); options = weboptions('ContentReader',readerFcn,'Timeout',10); xml = webread(mapRequest.Layer.Details.MetadataURL,options); abstract = xml.idinfo.descript.abstract;

See Also

Functions

wms read | wmsinfo | wmsfind

Objects
 WebMapServer | WMSCapabilities | WMSLayer
 Introduced in R2009b

Time property

Requested time extent

Description

The WMSMapRequest. Time property stores time as a character vector or a double indicating the desired time extent of the requested map. When you set the property, 'time ' must be the value of the Layer.Details.Dimension. Name field. The default value is ' $'$.

Time is stored in the ISO^{\circledR} 8601:1988(E) extended format. In general, the Time property is stored in a yyyy-mm-dd format or a yyyy-mm-ddThh:mm:ssZ format, if the precision requires hours, minutes, or seconds. You can use several different character vector and numeric formats to set the Time property, according to the following table (where dateform number is the number used by the Standard MATLAB Date Format Definitions). Express all hours, minutes, and seconds in Coordinated Universal Time (UTC).

Dateform (number)	Input (character vector)	Stored format
0	dd-mm-yyyy HH:MM:SS	yyyy-mm-ddTHH:MM:SSZ
1	dd-mm- yyyy	yyyy-mm-dd
2	mm/dd/yy	yyyy-mm-dd
6	mm/dd	yyyy-mm-dd (current year)
10	yyyy	yyyy
13	HH:MM:SS	yyyy-mm-ddTHH:MM:SSZ
14	HH:MM:SS PM	yyyy-mm-ddTHH:MM:SSZ
15	HH:MM	yyyy-mm-ddTHH:MM:00Z
16	mmm.dd \quad MM	yyyy-mm-ddTHH:MM:00Z
21	mmm.dd, yyyy $:$ SS	yyyy-mm-ddTHH:MM:SSZ
22	mm/dd/yyyy	yyyy-mm-dd
23	yyyy/mm/dd	yyyy-mm-dd
26	yyyy-mm-dd	yyyy-mm-dd
29	yyyymmddTHHMMSS	yyyy-mm-dd
30	yyyy-mm-dd HH:MM:SS	yyyy-mm-ddTHH:MM:SSZ
31	yyyy-mm-ddTHH:MM:SSZ	

Inputs using the dateform numbers 13-16 return the date set to the current year, month, and day. Use of other dateform formats, especially $19,20,24$, and 25 , results in erroneous output.

In addition to these standard MATLAB dateform formats, the WMSMapRequest.Time property also accepts the following inputs.

Input (character vector)	Description
' current '	The current time holdings of the server

Input (character vector)	Description
numeric datenum	Numeric date value converted to yyyy-mm-dd (dateform 29 format)
Byyyy	B.C.E. year

Use the prefixes K, M, and G , followed by a character vector number (thousand, million, and billion years, respectively), for geologic data sets that refer to the distant past.

wmsread

Retrieve WMS map from server

Syntax

```
[A,R] = wmsread(layer)
[A,R] = wmsread(layer,Name,Value,...)
[A,R] = wmsread(mapRequestURL)
[A,R,mapRequestURL] = wmsread(...)
```


Description

$[A, R]=$ wms read(layer) accesses the Internet to render and retrieve a raster map from a Web Map Service (WMS) server. The ServerURL property of the WMSLayer object, layer, specifies the server. If layer has more than one element, then the server overlays each subsequent layer on top of the base (first) layer, forming a single image. The server renders multiple layers only if all layers share the same ServerURL value.

The WMS server returns a raster map, either a color or grayscale image, in the output A. The second output, R, is a raster reference object that ties A to the EPSG:4326 geographic coordinate system on page 1-1700. The rows of A are aligned with parallels, with even sampling in longitude. Likewise, the columns of A are aligned with meridians, with even sampling in latitude.

The geographic limits of A span the full latitude and longitude extent of layer. The wms read function chooses the larger spatial size of A to match its larger geographic dimension. The larger spatial size is fixed at the value 512. In other words, assuming RGB output, A is $512-$ by $-\mathrm{N}-\mathrm{by}-3$ if the latitude extent exceeds longitude extent and N -by-512-by-3 otherwise. In both cases $\mathrm{N}<=512$. The wms read function sets N to the integer value that provides the closest possible approximation to equal cell sizes in latitude and longitude. The map spans the full extent supported for the layer.
[A,R] = wms read(layer,Name,Value,...) specifies parameter-value pairs that modify the request to the server. You can abbreviate parameter names, which are case-insensitive.
$[A, R]=$ wms read(mapRequestURL) uses the input argument mapRequestURL to define the request to the server. The mapRequestURL contains a WMS serverURL with additional WMS parameters. These WMS parameters include BBOX, GetMap and the EPSG:4326 or CRS:84 keyword. Obtain a mapRequestURL from the output of wms read, the RequestURL property of a WMSMapRequest object, or an Internet search.
[A,R, mapRequestURL] = wms read (...) returns a WMS GetMap request URL in the character vector mapRequestURL. You can insert the mapRequestURL into a browser to make a request to a server, which then returns the raster map. The browser opens the returned map if its mime type is understood, or saves the raster map to disk.

Examples

Read and Display Layer from NASA

Search the WMS database for layers containing the string "NASA". Refine the search to find layers containing Blue Marble: Next Generation by specifying the search string as "bluemarbleng".

```
nasa = wmsfind('NASA','SearchField','serverurl');
layer = refine(nasa,'bluemarbleng', ...
    'SearchFields','layername', ...
    'MatchType', 'exact');
```

Read the first layer and display the map.

```
[A,R] = wmsread(layer(1));
axesm globe
axis off
geoshow(A,R)
title('Blue Marble')
```


Read and Display Orthoimage

Read and display an orthoimage of the northern section of the Golden Gate Bridge in San Francisco, California, using the USGS National Map Seamless server.

First, specify the latitude and longitude limits of the Golden Gate Bridge.

```
latlim = [37.78 37.84];
lonlim = [-122.53 -122.40];
```

Then, find the USGS high-resolution orthoimagery layer by reading the capabilities document from the server. The server may be busy, so try to connect multiple times.

```
numberOfAttempts = 5;
attempt = 0;
info = [];
serverURL = 'http://basemap.nationalmap.gov/ArcGIS/services/USGSImagery0nly/MapServer/WMSServer?
while(isempty(info))
    try
        info = wmsinfo(serverURL);
        orthoLayer = info.Layer(1);
    catch e
        attempt = attempt + 1;
        if attempt > numberOfAttempts
            throw(e);
            else
                fprintf('Attempting to connect to server:\n"%s"\n', serverURL)
            end
    end
end
```

Retrieve the map from the server and display it in a UTM projection.

```
imageLength = 1024;
```

[A,R] = wmsread(orthoLayer,'Latlim',latlim, ...
'Lonlim',lonlim, ...
'ImageHeight',imageLength, ...
'ImageWidth', imageLength);
axesm('utm', ...
'Zone', utmzone(latlim, lonlim), ...
'MapLatlimit', latlim, ...
'MapLonlimit', lonlim, ...
'Geoid', wgs84Ellipsoid)
geoshow(A, R)
axis off
title(\{'San Francisco','Northern Section of Golden Gate Bridge'\})

San Francisco Northem Section of Golden Gate Bridge

Read and Display Composite of Sea Surface Temperature

Read and display a global monthly composite of sea surface temperature based on data from the AMSR-E sensor on board the Aqua satellite.

First, search the WMS database for layers containing the word "coastwatch". Refine the search to find layers from the AMSR-E sensor.

```
coastwatch = wmsfind('coastwatch','SearchField','serverurl');
layers = refine(coastwatch,'erdAAsstamday','Searchfield','serverurl');
```

Read and display the composite of sea surface temperature for April 16, 2010. Include the coastline, landmask, and nation layers.

```
time = '2010-04-16T00:00:00Z';
[A,R] = wmsread(layers(end:-1:1),'Time',time);
axesm('pcarree','Maplonlimit', [0, 360], ...
    'PLabelLocation',45, ...
    'MLabelLocation',90, ...
    'MLabelParallel', -90, ...
    'MeridianLabel', 'on', ...
    'ParallelLabel','on');
geoshow(A,R);
title({layers(end).LayerTitle,time})
```


Aqua AMSR-E, Near Real Time, Global, 2005-2011 (Monthly Composite), Lon+/-1 2010-04-16T00:00:00Z

Customize Map Appearance

The wms read function enables you to set optional parameters such as the image height, image width, and background color. For this example, customize the map by specifying an image resolution and background color.

Search the WMS Database for layers that contain topography in the name. Select the layer from the Decision Support and Management Information Systems (Demis) server. The default background color defines the ocean and is white.

```
topolayers = wmsfind("topography");
topolayer = refine(topolayers,"demis*worldmap","SearchFields","serverurl");
topolayer = topolayer(1);
```

Define a background color by specifying the red, green, and blue levels. Specify the cell size as 0.5 degrees.

```
oceanColor = [0 170 255];
cellSize = 0.5;
```

Read the map. Specify the background color and resolution using name-value arguments.

```
[A,R] = wmsread(topolayer,"BackgroundColor",oceanColor, ...
    "CellSize",cellSize);
```

Display the map and add a title.

```
worldmap world
geoshow(A,R)
title("Topography")
```


Input Arguments

layer - Information about the layer you are retrieving
WMSLayer object
Information about the layer you are retrieving, specified as a WMSLayer object.
Example: [A,R] = wmsread(layers(1));
mapRequestURL - WMS GetMap request URL
character vector
WMS GetMap request URL, specified as a character vector.
Example: [A,R] = wmsread(mapURL);
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: $[A, R]=$ wmsread(layers(1),'latlim',[40 50]);

latlim - Latitude limits of the output image in degrees

[] (default) | two-element vector
Latitude limits of the output image in degrees, specified as a two-element vector of the form [southern_limit northern_limit]. The limit values must be ascending. By default, 'Latlim' is empty, and wms read uses the full extent in latitude of layer. If Layer.Details.Attributes. NoSubsets is true, 'Latlim' may not be modified.
Example: [A,R] = wmsread(layers(1),'latlim',[40 50]);
Data Types: double

lonlim - Longitude limits of the output image in degrees

[] (default) | two-element vector
Longitude limits of the output image in degrees, specified as a two-element vector in the form [western_limit eastern_limit]. The limit values must be ascending. By default, 'Lonlim' is empty and the full extent in longitude of layer is used. If
Layer. Details.Attributes.NoSubsets is true, you cannot modify 'Lonlim'
Example: $[A, R]=$ wmsread(layers(1),'lonlim',[40 50]);
Data Types: double
ImageHeight - Desired height of the raster map in pixels
scalar, positive, integer-valued number
Desired height of the raster map in pixels, specified as a scalar, positive, integer-valued number. ImageHeight cannot exceed 8192. If layer. Details.Attributes.FixedHeight contains a positive number, you cannot modify ' ImageHeight '.
Example: [A, R] = wmsread(layers(1),'ImageHeight',40);
Data Types: double

ImageWidth - Desired width of the raster map in pixels

scalar, positive, integer-valued number
Desired width of the raster map in pixels, specified as a scalar, positive, integer-valued number. ImageWidth cannot exceed 8192. If Layer. Details.Attributes. FixedWidth contains a positive number, you cannot modify ' ImageWidth '.

Example: [A, R] = wmsread(layers(1),'ImageWidth',100);
Data Types: double

Target size of the output pixels (raster cells) in degrees, specified as a scalar or two-element vector. If you specify a scalar, the value applies to both height and width dimensions. If you specify a vector, use the form [height width]. The wms read function issues an error if you specify both CellSize and ImageHeight or ImageWidth. The output raster map must not exceed a size of [8192,8192].
Example: [A,R] = wmsread(layers(1),'Cellsize',5);
Data Types: double

RelTolCellSize - Relative tolerance for 'CellSize'

. 001 (default) | scalar or two-element vector
Relative tolerance for 'CellSize', specified as a scalar or two-element vector. If you specify a scalar, the value applies to both height and width dimensions. If you specify a vector, the tolerances appear in the order [height width].

Example: [A,R] = wmsread(layers(1),'RelTolCellsize',[4 5]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 |uint16|uint32|uint64
ImageFormat - Desired format to use in rendering the map as an image
first available format in the Layer. Details. ImageFormats cell array (default) | character vector
Desired format to use in rendering the map as an image, specified as one of the following character vectors. If specified, the format must match an entry in the Layer. Details.ImageFormats cell array. If not specified, the format defaults to the first available format in the supported format list. .

Value	Description
'image/jpeg'	JPEG
'image/gif'	GIF
'image/png'	PNG
'image/tiff'	TIFF
'image/geotiff'	GeoTIFF
'image/geotiff8'	GeoTIFF8
'image/tiff8'	TIFF8
'image/png8'	PNG8
'image/bil'	Band Interleaved by Line (BIL) format. When you specify the 'image/bil' format, wms read returns A as a two-dimensional array with a class type of int16 or int32.

Example: [A,R] = wmsread(layers(1),'ImageFormat','image/png');
Data Types: char

StyleName - Style to use when rendering the image

' ' (default) | character vector | cell array of character vectors
Style to use when rendering the image, specified as a character vector or cell array of character vectors. The StyleName must be a valid entry in the Layer. Details.Style. Name field. If you request multiple layers, each with a different style, then StyleName must be a cell array of character vectors.

Example: [A, R] = wmsread(layer(1),'StyleName','style');

Data Types: char | cell

Transparent - Pixel transparency

false (default) | true
Pixel transparency, specified as a logical value, true or false. When you set Transparent to true, pixel transparency is enabled, meaning all pixels not representing features or data values are set to a transparent value. When you set Transparent to false, non-data pixels are set to the value of the background color.
Example: [A,R] = wmsread(layers(1),'Transparent',true);
Data Types: logical

BackgroundColor - Color used for background (nondata) pixels of the map

[255, 255, 255] (default) | three-element vector

Color used for background (nondata) pixels of the map, specified as a three-element vector.
Example: $[A, R]=$ wmsread(layers(1),'BackgroundColor', [0, 0, 255]);
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16|uint32|uint64

Elevation - Desired elevation extent of the requested map

character vector
Desired elevation extent of the requested map, specified as a character vector. The layer must contain elevation data, which is indicated by the 'Name' field of the Layer. Details.Dimension structure. The 'Name' field must contain the value 'elevation'. The 'Extent' field of the Layer. Details.Dimension structure determines the permissible range of values for the parameter.

Example: [A,R] = wmsread(layer(1),'Elevation','test');
Data Types: char

Time - Desired time extent of the requested map

character vector | numeric date number
Desired time extent of the requested map, specified as a character vector or numeric date number. The layer must contain data with a time extent, which is indicated by the 'Name' field of the Layer.Details.Dimension structure. The 'Name' field must contain the value 'time'. The 'Extent ' field of the Layer. Details.Dimension structure determines the permissible range of values for the parameter. For more information about setting this parameter, see the WMSMapRequest. Time property reference page.
Example: $[A, R]=$ wms read(layer(1),'Time','June 15, 2015');
Data Types: double | char

SampleDimension - Name of sample dimension

two-element cell array of character vectors
Name of dimension, specified as a two-element cell array of character vectors, other than 'time ' or 'elevation' and its character vector value. The layer must contain data with a sample dimension extent, which is indicated by the 'Name' field of the Layer. Details.Dimension structure. The 'Name' field must contain the value of the first element of 'SampleDimension'. The 'Extent'
field of the Layer. Details.Dimension structure determines the permissible range of values for the second element of 'SampleDimension'.

Example: [A,R] = wmsread(layer(1), 'SampleDimension', \{'sample','test'\});
Data Types: cell
TimeoutInSeconds - Number of seconds to elapse before issuing a server time-out 60 (default) | scalar integer

Number of seconds to elapse before issuing a server time-out, specified as a scalar integer. If you set the value to 0, wms read ignores the time-out mechanism.
Example: [A,R] = wmsread(layers(1), 'TimeoutInSeconds', 80);
Data Types: single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Output Arguments

A - Color or grayscale image
real, nonsparse, 2-D matrix
Color or grayscale image, returned as a real, nonsparse, 2-D matrix.
R - Geographic raster reference object
map. rasterref. GeographicCellsReference object
Geographic raster reference object, returned as a map.rasterref.GeographicCellsReference object. A raster referencing object ties the image A to the EPSG:4326 geographic coordinate system.

mapRequestURL - WMS GetMap request URL

character vector
WMS GetMap request URL, returned as a character vector.

More About

EPSG: 4326 Coordinate Reference System

The EPSG:4326 coordinate reference system is based on the WGS84 (1984 World Geodetic System) datum. Latitude and longitude are in degrees and longitude is referenced to the Greenwich Meridian.

Tips

- Establish an Internet connection to use wms read. Periodically, the WMS server is unavailable. Retrieving the map can take several minutes. wms read communicates with the server using a WebMapServer object representing a WMS server. The object acts as a proxy to a WMS server and resides physically on the client side. The object retrieves the map from the server. The object automatically times-out after 60 seconds if a connection is not made to the server.
- To specify a proxy server to connect to the Internet, select File > Preferences > Web and enter your proxy information. Use this feature if you have a firewall.
- wms read supports reading data in WMS versions 1.0.0, 1.1.1, and 1.3.0. For version 1.3.0 only, the WMS specification states, "EPSG:4326 refers to WGS 84 geographic latitude, then longitude. That is, in this CRS the x-axis corresponds to latitude, and the y-axis to longitude." Most servers
provide data in this manner; however, some servers conform to version 1.1.1, where the x-axis corresponds to longitude and the y-axis to latitude.
wms read attempts to validate whether a server is confirming to the specification. It checks the EPSG:4326 bounding box, and if the XLim values exceeds the range of latitude, then the axes are swapped to conform to version 1.1.1 rather than 1.3.0. If wms read does not detect that the XLim values exceed the range of latitude and you notice that the latitude and longitude limits are reversed, then you need to swap them. You can either modify the bbox parameters in the mapRequestURL or modify the Latlim and Lonlim parameter values, if permissible.

See Also

wmsfind | wmsinfo | wmsupdate | WebMapServer | WMSLayer

Topics

"Basic Workflow for Creating WMS Maps"

Introduced before R2006a

wmsupdate

Synchronize WMSLayer object with server

Syntax

[updatedLayers,index] = wmsupdate(layers)
[...] = wmsupdate(layers,Name,Value, ...)

Description

[updatedLayers,index] = wmsupdate(layers) returns a Web Map Service (WMS) layer array with its properties synchronized with values from the server, where layers contains only one, unique ServerURL. wmsupdate removes layers that are no longer available on the server.
wmsupdate returns the logical array index which contains true for each available layer. Thus, the return value updatedLayers has the same size as layers(index). Except for deletion, updatedLayers preserves the same order of layers as layers.
[...] = wmsupdate(layers,Name,Value, ...) specifies parameter-value pairs that modify the request. Parameter names can be abbreviated and are case-insensitive.

The function accesses the Internet to update the properties. Periodically, the WMS server is unavailable. Updating the layer can take several minutes. The function times-out after 60 seconds if a connection is not made to the server.

Examples

Update Layers

Search the WMS database for layers from the NASA Goddard Space Flight Center. Then, synchronize the properties of the layers with values from the servers.

```
nasa = wmsfind('gsfc.nasa.gov','SearchField','serverurl');
nasa = wmsupdate(nasa,'AllowMultipleServers',true);
```


Update Layer and Refine Search

When you synchronize WMS layers with the corresponding WMS server, the Abstract, CoordRefSysCodes, and Details properties of the WMSLayer objects become available. You can use the additional information to refine your search.

Find all layers in the WMS Database with the title 'Global Sea Surface Temperature'. Determine the number of unique servers by using the servers function.

```
global_sst = wmsfind ('Global Sea Surface Temperature', ...
    'SearchField','LayerTitle');
servers(global_sst)
```

```
ans = 1\times1 cell array
    {'https://svs.gsfc.nasa.gov/cgi-bin/wms?'}
```

Synchronize the layers with the server. View the abstract, coordinate reference system code, and details of the first layer.

```
global_sst = wmsupdate(global_sst);
global_sst(1).Abstract
ans =
    'The temperature of the surface of the world's oceans provides a clear indication of the sta
    Additional Credit:
    B>Please give credit for this item to:</b><br />'
global_sst(1).CoordRefSysCodes
ans = 1\times1 cell array
    {'CRS:84'}
global_sst(1).Details
ans = struct with fields:
    MetadataURL: 'http://svs.gsfc.nasa.gov/vis/a000000/a002900/a002905/a002905.fgdc'
        Attributes: [1\times1 struct]
        BoundingBox: [1×1 struct]
        Dimension: [1×1 struct]
    ImageFormats: {'image/png'}
        ScaleLimits: [1×1 struct]
            Style: [1\times2 struct]
            Version: '1.3.0'
```

Search for abstracts for layers that contain 'El Nino'.

```
el_nino = refine(global_sst,'El Nino', ...
    'SearchFields','abstract');
```


Update and Display Layers

Search the WMS database for layers from the NASA Goddard Space Flight Center SVS Image Server. Synchronize the properties of the layers with values from the server. Then, refine the search to find layers containing the term "blue marble".

```
gsfc = wmsfind('svs.gsfc.nasa.gov','SearchField','serverurl');
gsfc = wmsupdate(gsfc);
blue_marble = refine(gsfc,'blue marble','SearchField','abstract');
```

Further refine the search to find the first layer with a title containing the terms " 512 " and "image".

```
queryStr = '*512*image';
layers = refine(blue_marble,queryStr);
layer = layers(1);
```

Display the layer.

```
[A,R] = wmsread(layer);
worldmap world
plabel off
mlabel off
geoshow(A,R)
title(layer.LayerTitle)
```


Save Updated Layers

Updating layers from multiple servers might take a long time. You can avoid updating layers multiple times by saving updated layers to a MAT file.

Search the WMS Database for server URLs that contain NOAA. Refine the search to include information about oceans.
layers = wmsfind('noaa','SearchFields','ServerURL');
layers = refine(layers,'ocean');
Update the layers. The code might take several minutes to run because it is synchronizing layers for multiple servers.
updatedLayers = wmsupdate(layers,'AllowMultipleServers',true);

Save the layers to a MAT file called oceanLayers.
save('oceanLayers','updatedLayers')
In the future, you can load the MAT file, refine your search, and read a map without updating the layers again.

Note that servers change, so the layers contained in the MAT file might become out-of-date.

Input Arguments

layers - Updated layers
WMSLayer object
Updated layers, specified as an array of WMSLayer objects.
Data Types: char|string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

TimeoutInSeconds - Number of seconds before server times out
 numeric scalar

Number of seconds to elapse before a server times out, specified as an integer-valued, scalar double. If you specify the value 0, wmsinfo ignores the time-out mechanism.
Data Types: double | int16|int32 | int64|int8|single | uint8|uint16|uint32|uint64

AllowMultipleServers - Layer array may contain elements from multiple servers

 false (default) | trueLayer array may contain elements from multiple servers, specified as true or false. The value false indicates the array must contain elements from the same server. Use caution when setting the value to true, since you are making a request to each unique server and each request can take several minutes to finish.
Data Types: double | int16|int32|int64|int8| single | uint8|uint16|uint32|uint64 | logical

Output Arguments

```
updatedLayers - Synchronized layers
WMSLayer objects
```

Synchronized layers, returned as an array of WMSLayer objects with its properties synchronized with values from the server.

index - Available layers

logical array

Available layers, returned as a logical array where the value true indicates that the layer was available from the server.

Tips

- To specify a proxy server to connect to the Internet, click Preferences and, in the Preferences dialog box, select Web. Enter your proxy information. Use this feature if you have a firewall. For more information, see "Proxy Server Authentication".
- Depending on the number or reliability of servers, you might have to wait several minutes for information to download. Servers can become unavailable.

See Also

wmsfind | wmsinfo | wms read | WebMapServer | WMSLayer
Topics
"Basic Workflow for Creating WMS Maps"
Introduced in R2009b

worldFileMatrix

Package: map.rasterref
Return world file parameters for transformation

Syntax

W = worldFileMatrix(R)

Description

$\mathrm{W}=$ worldFileMatrix(R) returns a 2-by-3 world file matrix from geographic or map raster R .

Examples

Create World File Matrix from a Planar Map Raster

Create a MapCellsReference raster reference object.

```
xWorldLimits = [207000 208000];
yWorldLimits = [912500 913000];
rasterSize = [10 20];
R = maprefcells(xWorldLimits,yWorldLimits,rasterSize,'ColumnsStartFrom','north')
R =
    MapCellsReference with properties:
                            XWorldLimits: [207000 208000]
                            YWorldLimits: [912500 913000]
                        RasterSize: [10 20]
        RasterInterpretation: 'cells'
            ColumnsStartFrom: 'north'
                    RowsStartFrom: 'west'
            CellExtentInWorldX: 50
            CellExtentInWorldY: 50
        RasterExtentInWorldX: 1000
        RasterExtentInWorldY: 500
            XIntrinsicLimits: [0.5 20.5]
            YIntrinsicLimits: [0.5 10.5]
            TransformationType: 'rectilinear'
        CoordinateSystemType: 'planar'
            ProjectedCRS: []
```

Compute the world file matrix.

```
W = worldFileMatrix(R)
W = 2\times3
```

Observe that $W(2,1)$ and $W(1,2)$ are 0 . This value is expected since R. TransformationType is 'rectilinear'.

Input Arguments

R - Geographic or map raster

GeographicCellsReference, GeographicPostingsReference, MapCellsReference, or MapPostingsReference object

Geographic or map raster, specified as a GeographicCellsReference, GeographicPostingsReference, MapCellsReference, or MapPostingsReference object.

Output Arguments

W - World file matrix

2-by-3 numeric array
World file matrix, returned as a 2-by-3 numeric array. Each of the six elements in W matches one of the lines in a world file corresponding to the transformation defined by raster referencing object R.

Data Types: double

More About

World File Matrix

A world file matrix maps points in intrinsic coordinates to points in geographic or planar world coordinates.

Given a world file matrix W of the form:

```
W = [A B C;
    D E F]
```

a point ($x_{\mathrm{i}}, y_{\mathrm{i}}$) maps to a point ($x w, y w$) in world coordinates according to:
$x w=A \times\left(x_{\mathrm{i}}-1\right)+B \times\left(y_{\mathrm{i}}-1\right)+C$
$y w=D \times\left(x_{i}-1\right)+E \times\left(y_{i}-1\right)+F$.
More compactly:
$[x w y w]^{\prime}=W \times\left[\left(x_{\mathrm{i}}-1\right)\left(y_{\mathrm{i}}-1\right)\right]$.

Note Similar equations hold true for points (lat, lon) in geographic coordinates. However, the geographic coordinate ordering is switched. That is, $x w$ is substituted by lon, and $y w$ is substituted by lat.

The -1 s are needed to maintain the Mapping Toolbox convention for intrinsic coordinates, which is consistent with the 1-based indexing used throughout MATLAB.
W is stored in a world file with one term per line in column-major order: A, D, B, E, C, F. That is, a world file contains the elements of W in this order:
$W(1,1)$
W $(2,1)$
W $(1,2)$
$W(2,2)$
$W(1,3)$
$W(2,3)$
The previous expressions hold for both affine and rectilinear transformations of rasters. The values B, $D, W(2,1)$ and $W(1,2)$ are identically 0 whenever:

- R is a geographic raster, since longitude depends only on intrinsic x and latitude depends only on intrinsic y
- R is a map raster and R.TransformationType is 'rectilinear'

See Also

Introduced in R2013b

worldFileMatrixToRefmat

(To be removed) Convert world file matrix to referencing matrix

Note worldFileMatrixToRefmat will be removed in a future release. Use the georasterref or maprasterref function instead. For more information, see "Compatibility Considerations".

Syntax

refmat $=$ worldFileMatrixToRefmat(W)

Description

refmat $=$ worldFileMatrixToRefmat (W) converts the 2 -by- 3 world file matrix W to a 3 -by-2 referencing matrix refmat.

For a definition of a world file matrix, see the worldFileMatrix method of the map raster reference and geographic raster reference classes.

Compatibility Considerations

worldFileMatrixToRefmat will be removed

Warns starting in R2022a
Some functions that return referencing matrices will be removed, including the worldFileMatrixToRefmat function. Instead, create a raster reference object using the georasterref or maprasterref function. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and MapPostingsReference functions.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, change instances of the worldFileMatrixToRefmat function to the georasterref or maprasterref function and specify the size of the raster A. Use the georasterref function for geographic coordinates and the maprasterref function for planar map coordinates.

```
R = georasterref(W,size(A));
```

You can also specify the raster interpretation as 'cells' for a raster of cells or 'postings' for a raster of regularly posted samples. By default, the georasterref and maprasterref functions use 'cells'.
$R=$ georasterref(W,size(A),'postings');

See Also

refmatToWorldFileMatrix|georasterref|maprasterref

Introduced in R2011a

worldfileread

Read world file and return reference object

Note Syntaxes of the worldfileread function that return referencing matrices will be removed in a future release. Use a syntax that returns a reference object instead. For more information, see "Compatibility Considerations".

Syntax

R = worldfileread(worldFileName,coordinateSystemType, rasterSize)

Description

R = worldfileread(worldFileName,coordinateSystemType,rasterSize) reads the world file, worldFileName, and constructs a spatial referencing object, R. The argument coordinateSystemType specifies the type of referencing object. rasterSize specifies the size of the image corresponding to the world file.

Examples

Read Image Referenced to Projected Coordinate System

Read an ortho image referenced to a projected coordinate system (Massachusetts State Plane Mainland).

```
filename = 'concord ortho w.tif';
[X, cmap] = imread(filename);
```

Derive world file name from image file name.

```
worldFileName = getworldfilename(filename);
```

Read the world file, returning a referencing object.

```
R = worldfileread(worldFileName, 'planar', size(X))
R =
    MapCellsReference with properties:
        XWorldLimits: [207000 209000]
            YWorldLimits: [911000 913000]
            RasterSize: [2000 2000]
    RasterInterpretation: 'cells'
            ColumnsStartFrom: 'north'
            RowsStartFrom: 'west'
        CellExtentInWorldX: 1
        CellExtentInWorldY: 1
    RasterExtentInWorldX: 2000
    RasterExtentInWorldY: 2000
```

XIntrinsicLimits: [0.5 2000.5]
YIntrinsicLimits: [0.5 2000.5]
TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'
ProjectedCRS: []

Read Image Referenced to Geographic Coordinate System

Read image reference to a geographic coordinate system.

```
filename = 'boston_ovr.jpg';
RGB = imread(filename);
```

Derive world file name from image file name,

```
worldFileName = getworldfilename(filename);
```

Read world file, returning a referencing object.

```
R = worldfileread(worldFileName, 'geographic', size(RGB))
R =
    GeographicCellsReference with properties:
            LatitudeLimits: [42.3052018188767 42.4165064733949]
            LongitudeLimits: [-71.1308390797572 -70.9898400731705]
                RasterSize: [769 722]
            RasterInterpretation: 'cells'
                    ColumnsStartFrom: 'north'
                        RowsStartFrom: 'west'
            CellExtentInLatitude: 0.000144739472715501
            CellExtentInLongitude: 0.000195289482807142
            RasterExtentInLatitude: 0.11130465451822
            RasterExtentInLongitude: 0.140999006586757
            XIntrinsicLimits: [0.5 722.5]
            YIntrinsicLimits: [0.5 769.5]
            CoordinateSystemType: 'geographic'
                        GeographicCRS: []
                        AngleUnit: 'degree'
```


Input Arguments

worldFileName - Name of world file

character vector
Name of world file, specified as a character vector.
Example: worldFileName = getworldfilename(filename);
Data Types: char

coordinateSystemType - Type of referencing object

'planar'|'geographic'
Type of referencing object, specified as one of the following:

Value	Description
'geographic'	Latitude-longitude systems
'planar'	Projected map coordinate systems

Example: R = worldfileread(worldFileName, 'geographic', size(RGB));
Data Types: char

rasterSize - Size of the image corresponding to the world file

two-element vector
Size of the image corresponding to the world file, specified as a two-element vector, [$m n$], where m is the number of rows in the image and n is the number of columns in the image.

Example: size(I)
Data Types: double

Output Arguments

R - Spatial referencing object

raster reference object
Spatial referencing object, returned as a raster reference object.

Compatibility Considerations

worldfileread syntaxes that return referencing matrices will be removed

Warns starting in R2022a
Syntaxes of the worldfileread function that return referencing matrices will be removed. Use syntaxes that return reference objects instead. Reference objects have several advantages over referencing matrices.

- Unlike referencing matrices, reference objects have properties that document the size of the associated raster, its limits, and the direction of its rows and columns. For more information about reference object properties, see the GeographicCellsReference and MapPostingsReference objects.
- You can manipulate the limits of rasters associated with reference objects using the geocrop or mapcrop function.
- You can manipulate the size and resolution of rasters associated with reference objects using the georesize or mapresize function.
- Most functions that accept referencing matrices as inputs also accept reference objects.

To update your code, specify the coordinate system type as a second argument. Use 'planar' for planar map coordinates or 'geographic' for geographic coordinates. Specify the size of the associated raster, A , as a third argument.

Will Be Removed	Recommended
refmat $=$ worldfileread(worldFileName);	R = worldfileread(worldFileName,coordinatesystemType,

```
See Also
getworldfilename|worldToIntrinsic|worldfilewrite|intrinsicToWorld| readgeoraster
```


Introduced before R2006a

worldfilewrite

Write world file from referencing object or matrix

Syntax

worldfilewrite(R, worldfilename)

Description

worldfilewrite(R, worldfilename) calculates the world file entries corresponding to referencing object or matrix R and writes them into the file worldfilename. The argument R can be a map raster reference object, a geographic raster reference object, or a 3-by-2 referencing matrix.

Examples

Write out the information from a referencing object for the image file concord orthow.tif

```
info = imfinfo('concord_ortho_w.tif');
R = worldfileread('concōrd ortho w.tfw', ...
    'planar', [info.Height info.Width])
worldfilewrite(R, 'concord_ortho_w_test.tfw');
type concord_ortho_w_test.\overline{tfw}
```


See Also

getworldfilename|intrinsicToWorld|worldToIntrinsic|worldfileread
Introduced before R2006a

worldGrid

Package: map.rasterref
World coordinates of raster elements

Syntax

$[\mathrm{X}, \mathrm{Y}]=$ worldGrid(R)
[X,Y] = worldGrid(R,gridOption)

Description

$[\mathrm{X}, \mathrm{Y}]=$ worldGrid(R$)$ returns the world coordinates of raster elements as the 2-D arrays X and Y . The coordinates of raster element (i, j) are ($X(i, j), Y(i, j))$.
$[\mathrm{X}, \mathrm{Y}]=$ worldGrid(R,gridOption), where gridOption is 'gridvectors', returns X and Y as row vectors. The coordinates of raster element (i, j) are ($\mathrm{X}(\mathrm{j}), \mathrm{Y}(\mathrm{i})$). The default for gridOption is 'fullgrid', which returns X and Y as 2-D arrays.

Examples

Find Coordinates of Raster Elements

Import elevation data, find the coordinates of the imported data, then display the data as a surface.
First import elevation data [1] on page 1-0 for an area around Mount Washington as an array and a map cells reference object. Prepare the data for plotting by replacing missing data values with 0 . Then, find the coordinates of each element in the array.

```
[Z,R] = readgeoraster('MtWashington-ft.grd','OutputType','double');
info = georasterinfo('MtWashington-ft.grd');
Z = standardizeMissing(Z,info.MissingDataIndicator);
[X,Y] = worldGrid(R);
```

Display the elevation data as a surface using an appropriate colormap. Set the EdgeColor property to ' none' to remove the mesh from the surface.

```
surf(X,Y,Z,'EdgeColor','none')
demcmap(Z)
xlabel('x (meters)')
ylabel('y (meters)')
zlabel('Elevation (feet)')
```


[1] The elevation data used in this example is courtesy of the U.S. Geological Survey.

Get Vectors Instead of Arrays

Create a map cells reference object for a 3-by-4 raster with x values in the range [7000, 7400] meters and y values in the range $[2700,3300]$ meters. Get the coordinates of the raster elements and return them as row vectors.

```
R = maprefcells([7000 7400],[2700 3300],[3 4]);
[X,Y] = worldGrid(R,'gridvectors')
X = 1\times4
    7050
        7 1 5 0
        7250
        7350
Y = 1\times3
    2 8 0 0
        3 0 0 0
        3 2 0 0
```

If you do not specify the second argument as 'gridvectors' , then the worldGrid function returns 2-D arrays by default.

```
[xFull,yFull] = worldGrid(R)
```

xFull $=$	3×4		
	7050	7150	7250
7050	7150	7250	7350
	7050	7150	7250
yFull $=$	3×4		
			7350
3800	2800	2800	2800
3000	3000	3000	3000
3200	3200	3200	3200

Input Arguments

R-Spatial reference

MapCellsReference object | MapPostingsReference object
Spatial reference, specified as a MapCellsReference or MapPostingsReference object.
If R is a MapCellsReference object, then X and Y are cell centers. If R is a MapPostingsReference object, then X and Y are posting points.

gridOption - Grid option

```
'fullgrid' (default)|'gridvectors'
```

Grid option, specified as one of these values:

- 'fullgrid ' - Return X and Y as 2-D arrays, where each row of X is identical and each column of Y is identical. This is the default behavior.
- 'gridvectors ' - Return X and Y as row vectors. Use this option when you want to reduce memory usage and when 2-D arrays are unnecessary, such as when plotting large data sets with the surf function. You can specify gridOption as 'gridvectors' only when the TransformationType property of R has a value of 'rectilinear'.

This table shows the difference between 'fullgrid' and 'gridvectors'.

Data Types: char|string

Output Arguments

X - x-coordinates

2-D array (default) | row vector
x-coordinates, returned as a 2-D array or a row vector. By default, X is a 2-D array. To return X as a row vector, specify gridOption as 'gridvectors'.

By default, and when gridOption is 'fullgrid', the sizes of X and Y each equal the RasterSize property of R. When gridOption is 'gridvectors', the lengths of X and Y equal the second and first elements of the RasterSize property of R, respectively.
$\mathbf{Y} \boldsymbol{-} \boldsymbol{y}$-coordinates
2-D array (default) | row vector
y-coordinates, returned as a 2-D array or a row vector. By default, Y is a 2- D array. To return Y as a row vector, specify gridOption as 'gridvectors'.

By default, and when gridOption is 'fullgrid', the sizes of X and Y each equal the RasterSize property of R. When gridOption is 'gridvectors', the lengths of X and Y equal the second and first elements of the RasterSize property of R, respectively.

See Also

Functions

ndgrid | meshgrid | intrinsicToWorld | geographicGrid

Objects

MapCellsReference | MapPostingsReference

Introduced in R2021a

worldmap

Construct map axes for given region of world

Syntax

```
worldmap region
worldmap(region)
worldmap
worldmap(latlim,lonlim)
worldmap(Z,R)
h = worldmap(
```

\qquad

``` )
```


Description

worldmap region or worldmap(region) sets up an empty map axes with projection and limits suitable to the part of the world specified in region.
worldmap with no arguments presents a menu from which you can select the name of a single continent, country, island, or region.
worldmap(latlim,lonlim) allows you to define a custom geographic region in terms of its latitude and longitude limits in degrees.
worldmap (Z, R) derives the map limits from the extent of a regular data grid, Z, georeferenced by R.
h = worldmap(\qquad) returns the handle of the map axes.

Examples

Set up World Map and Draw Coastlines

Set up a world map and draw coarse coastlines.

```
worldmap('World')
load coastlines
plotm(coastlat,coastlon)
```


Create World Map with Land Areas, Lakes, and Other Landmarks

Read and display land areas, major lakes and rivers, cities, and populated places on a world map.

```
ax = worldmap("World");
setm(ax,"Origin",[0 180 0])
land = readgeotable("landareas.shp");
geoshow(ax,land,"FaceColor",[0.5 0.7 0.5])
lakes = readgeotable("worldlakes.shp");
geoshow(lakes,"FaceColor","blue")
rivers = readgeotable("worldrivers.shp");
geoshow(rivers,"Color","blue")
cities = readgeotable("worldcities.shp");
geoshow(cities,"Marker",".","Color","red")
```


Create Map of Antarctica

Read world land areas as a geospatial table. Extract the table row containing Antarctica.

```
GT = readgeotable("landareas.shp");
row = GT.Name == "Antarctica";
ant = GT(row,:);
```

Display Antarctica on a map with an appropriate projection.
worldmap("antarctica")
geoshow(ant)

Create Map of Africa and India with Major Cities

Read world land areas and cities as geospatial tables. Create a world map appropriate for Africa and India. Then, display the land areas and cities on the map

```
land = readgeotable("landareas.shp");
cities = readgeotable("worldcities.shp");
worldmap(["Africa" "India"])
geoshow(land,"FaceColor",[0.15 0.5 0.15])
geoshow(cities,"Marker",".","Color","red")
```


Display Geoid Heights Over South America and Central Pacific

Display geoid heights from the EGM96 geoid model over a map of South America and the central Pacific. First, get geoid heights and a geographic postings reference object. Load coastline latitude and longitude data.

```
[N,R] = egm96geoid;
```

load coastlines

Create a world map by specifying latitude and longitude limits. Then, display the geoid heights and coastline data.

```
latlim = [-50 50];
lonlim = [160 -30];
worldmap(latlim,lonlim)
geoshow(N,R,'DisplayType','surface')
geoshow(coastlat,coastlon,'Color','k')
```


Display Map of Terrain Elevations in Korea

Load elevation data and a geographic cells reference object for the Korean peninsula. Create a world map with appropriate latitude and longitude limits. Then, display the data as a texture map using geoshow. Apply a colormap appropriate for elevation data using demcmap.
load korea5c
worldmap(korea5c, korea5cR);
geoshow(korea5c, korea5cR,'DisplayType','texturemap') demcmap(korea5c)

Map the United States of America Coloring State Polygons

Create a map of the United States of America. Display the states using a palette of random, muted colors.

```
worldmap("USA");
load coastlines
geoshow(coastlat,coastlon, ...
    "DisplayType","polygon","FaceColor",[0.45 0.60 0.30])
states = readgeotable("usastatelo.shp");
h = height(states);
faceColors = makesymbolspec("Polygon", ...
    {'INDEX',[1 h],'FaceColor',polcmap(h)});
geoshow(states,"DisplayType","polygon", ...
    "SymbolSpec",faceColors)
```


Input Arguments

region - Region to display

'World'| 'North Pole'|'South Pole'|'Pacific'|character vector|string scalar|string array | cell array of character vectors

Region to display, specified as a string scalar, string array, character vector, or cell array of character vectors. Permissible values include names of continents, countries, and islands as well as 'World', 'North Pole','South Pole', and 'Pacific'.

Example: \{'Africa','India'\}

latlim - Latitude limits

two-element vector
Latitude limits, specified as a two-element vector of the form [southern_limit northern_limit].

Lonlim - Longitude limits

two-element vector
Longitude limits, specified as a two-element vector of the form [western_limit eastern_limit].

Z - Data grid
 M-by- N array

Data grid, specified as an M-by- N array. Z is a regular data grid associated with a geographic reference R.

R - Geographic reference

geographic raster reference object | vector | matrix
Geographic reference, specified as one of the following.

Type	Description
Geographic raster reference object	GeographicCellsReference or GeographicPostingsReference geographic raster reference object. The RasterSize property must be consistent with the size of the data grid, size(Z).
Vector	1-by-3 numeric vector with elements: [cells/degree northern_latitude_limit western_longitude__imit]
Matrix	3-by-2 numeric matrix that transforms raster row and column indices to or from geographic coordinates according to: [lon lat] = [row col 1] * R R defines a (non-rotational, non-skewed) relationship in which each column of the data grid falls along a meridian and each row falls along a parallel.

For more information about referencing vectors and matrices, see "Georeferenced Raster Data".

Output Arguments

h - Handle of the map axes

handle object
Handle of the map axes, returned as a handle object.

Tips

- All axes created with worldmap are initialized with a spherical Earth model having a radius of 6,371,000 meters.
- worldmap uses tightmap to adjust the axes limits around the map. If you change the projection, or just want more white space around the map frame, use tightmap again or auto axis.

See Also

axesm| framem | geoshow|gridm | mlabel | plabel| tightmap|usamap

Introduced before R2006a

worldToDiscrete

Package: map.rasterref
Transform planar world to discrete coordinates

Syntax

[I,J] = worldToDiscrete(R,xWorld,yWorld)

Description

[I, J] = worldToDiscrete(R,xWorld,yWorld) returns the indices corresponding to world coordinates xWorld and yWorld in map raster R. If R.RasterInterpretation is:

- 'cells', then I and J are the row and column subscripts of the raster cells (or image pixels)
- 'postings ', then I and J refer to the nearest sample point (posting)

Examples

Find Indices of Cell from World Coordinates

Import a GeoTIFF image [1] on page 1-0 of Boston as an array and a MapCellsReference object. Find the indices of the cell containing data with world x - and y-coordinates of 776500 and 2956600 survey feet, respectively.

```
[Z,R] = readgeoraster('boston.tif');
[I,J] = worldToDiscrete(R,776500,2956600)
I = 1212
J = 3714
```

The result means that the cell center closest to the world coordinates is in row 1212 and column 3714 of the array.
[1] The data used in this example includes material copyrighted by GeoEye, all rights reserved.

Input Arguments

R - Map raster
MapCellsReference or MapPostingsReference object
Map raster, specified as a MapCellsReference or MapPostingsReference object.
xWorld - x-coordinates in the world coordinate system
numeric array
x-coordinates in the world coordinate system, specified as a numeric array.

Data Types: single | double
yWorld - \boldsymbol{y}-coordinates in the world coordinate system

numeric array

y-coordinates in the world coordinate system, specified as a numeric array. yWorld is the same size as xWorld.
Data Types: single | double

Output Arguments

I - World x-coordinate indices

array of integers
World x-coordinate indices, returned as an array of integers. I is the same size as xWorld.
For an m-by-n raster, $1 \leq \mathrm{I} \leq m$, except for points (xWorld (k), $\mathrm{yWorld}(k)$) that fall outside the bounds of the raster as defined by the function contains. In this case $I(k)$ and $J(k)$ are NaN .

Data Types: double

J - World \boldsymbol{y}-coordinate indices

array of integers
World y-coordinate indices, returned as an array of integers. J is the same size as yWorld.
For an m-by-n raster, $1 \leq \mathrm{I} \leq m$, except for points (xWorld (k), $\mathrm{yWorld}(k)$) that fall outside the bounds of the raster as defined by the function contains. In this case $I(k)$ and $J(k)$ are NaN .
Data Types: double

See Also

contains | worldToIntrinsic | geographicToDiscrete

Introduced in R2013b

worldToIntrinsic

Package: map.rasterref
Transform planar world to intrinsic coordinates

Syntax

[xIntrinsic,yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld)

Description

[xIntrinsic,yIntrinsic] = worldToIntrinsic(R,xWorld,yWorld) returns the intrinsic coordinates corresponding to planar world coordinates (xWorld, yWorld) in map raster R. If a point is outside the bounds of R , then worldToIntrinsic extrapolates the xIntrinsic and yIntrinsic coordinates.

Examples

Find Intrinsic Coordinates from World Coordinates

Import a GeoTIFF image [1] on page 1-0 of Boston as an array and a MapCellsReference object. Find the intrinsic coordinates corresponding to the world x - and y-coordinates of 776500 and 2956600 survey feet, respectively.

```
[Z,R] = readgeoraster('boston.tif');
[xIntrinsic,yIntrinsic] = worldToIntrinsic(R,776500,2956600)
xIntrinsic = 3.7136e+03
yIntrinsic = 1.2119e+03
```

The result means that the world coordinates fall close to the center of the cell corresponding to column 3713 and row 1211 of the array.

You can reverse the operation by using the intrinsicToWorld function.

```
[xWorld,yWorld] = intrinsicToWorld(R,xIntrinsic,yIntrinsic)
xWorld = 776500
yWorld = 2956600
```

[1] The data used in this example includes material copyrighted by GeoEye, all rights reserved.

Input Arguments

R - Map raster
 MapCellsReference or MapPostingsReference object

Map raster, specified as a MapCellsReference or MapPostingsReference object.

xWorld - x-coordinates in the world coordinate system

numeric array
x-coordinates in the world coordinate system, specified as a numeric array. xWorld coordinates can be outside the bounds of the raster R.

Data Types: single | double
yWorld - \boldsymbol{y}-coordinates in the world coordinate system
numeric array
y-coordinates in the world coordinate system, specified as a numeric array. yWorld is the same size as xWorld. yWorld coordinates can be outside the bounds of the raster R.

Data Types: single|double

Output Arguments

xIntrinsic - x-coordinates in the intrinsic coordinate system

numeric array
x-coordinates in the intrinsic coordinate system, returned as a numeric array. xIntrinsic is the same size as xWorld.

When x World (k) is outside the bounds of raster R, $x \operatorname{Intrinsic}(k)$ is extrapolated in the intrinsic coordinate system.

Data Types: double
yIntrinsic - y-coordinates in the intrinsic coordinate system
numeric array
y-coordinates in the intrinsic coordinate system, returned as a numeric array. yIntrinsic is the same size as xWorld.

When yWorld (k) outside the bounds of raster $\mathrm{R}, \mathrm{yIntrinsic}(k)$ is extrapolated in the intrinsic coordinate system.
Data Types: double

See Also

intrinsicToWorld|worldToDiscrete | geographicToIntrinsic

Introduced in R2013b

wrapTo180

Wrap angle in degrees to [-180 180]

Syntax

lonWrapped = wrapTo180(lon)

Description

lonWrapped = wrapTo180(lon) wraps angles in lon, in degrees, to the interval [-180, 180] such that 180 maps to 180 and -180 maps to -180. In general, odd, positive multiples of 180 map to 180 and odd, negative multiples of 180 map to -180 .

Examples

Wrap Longitudes to 180 Degrees

Specify a short list of longitudes to wrap.

```
lon = [-400 -190 -180 -175 175 180 190 380];
```

Wrap the longitudes to the range $[-180,180]$ degrees.

```
lonWrapped = wrapTo180(lon)
lonWrapped = 1×8
    -40
```

Specify a second list of longitudes that are sampled over a large range of angles. Wrap the longitudes.

```
lon2 = -720:720;
lon2Wrapped = wrapTo180(lon2);
```

Plot the wrapped longitudes. The wrapped longitudes stay in the range [-180, 180] degrees.

```
plot(lon2,lon2Wrapped)
xlabel("Longitude (degrees)")
ylabel("Wrapped Longitude (degrees)")
grid on
```


Input Arguments

Lon - Angles

numeric vector
Angles, specified as a numeric vector.
Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| logical

Output Arguments

lonWrapped - Wrapped angles

numeric vector
Wrapped angles, specified as a numeric vector with values in the range [-180, 180].

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

See Also

wrapTo360|wrapTo2Pi|wrapToPi

Introduced in R2007b

wrapTo360

Wrap angle in degrees to [0 360]

Syntax

lonWrapped = wrapTo360(lon)

Description

lonWrapped = wrapTo360(lon) wraps angles in lon, in degrees, to the interval [0, 360] such that 0 maps to 0 and 360 maps to 360 . In general, positive multiples of 360 map to 360 and negative multiples of 360 map to zero.

Examples

Wrap Longitudes to $\mathbf{3 6 0}$ Degrees

Specify a short list of longitudes to wrap.

```
lon = [-720 -400 -360 -355 350 360 370 720];
```

Wrap the longitudes to the range $[0,360]$ degrees.

```
lonWrapped = wrapTo360(lon)
lonWrapped = 1×8
    0
```

Specify a second list of longitudes that are sampled over a large range of angles. Wrap the longitudes.

```
lon2 = -1000:1000;
lon2Wrapped = wrapTo360(lon2);
```

Plot the wrapped longitudes. The wrapped longitudes stay in the range [0, 360] degrees.

```
plot(lon2,lon2Wrapped)
xlabel("Longitude (degrees)")
ylabel("Wrapped Longitude (degrees)")
grid on
```


Input Arguments

Lon - Angles

numeric vector
Angles, specified as a numeric vector.
Data Types: single | double | int8 | int16|int32 | int64 | uint8 | uint16|uint32|uint64 | logical

Output Arguments

lonWrapped - Wrapped angles

numeric vector
Wrapped angles, specified as a numeric vector with values in the range [0,360].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

See Also

wrapTo180|wrapTo2Pi |wrapToPi
Introduced in R2007b

wrapTo2Pi

Wrap angle in radians to [0 2^{*} pi]

Syntax

lambdaWrapped $=$ wrapTo2Pi(lambda)

Description

lambdaWrapped $=$ wrapTo2Pi(lambda) wraps angles in lambda, in radians, to the interval [0, $2 *$ pi] such that 0 maps to 0 and $2 *$ pi maps to $2 *$ pi. In general, positive multiples of $2 *$ pi map to $2 *$ pi and negative multiples of $2 *$ pi map to 0 .

Examples

Wrap Angles to 2Pi Radians

Specify a short list of angles to wrap.
lambda $=$ [-2*pi -pi-0.1 -pi -2.8 3.1 pi pi+1 2*pi];
Wrap the angles to the range $[0,2 \pi]$ radians.

```
lambdaWrapped = wrapTo2Pi(lambda)
lambdaWrapped = 1×8
    llllllll
```

Specify a second list of angles, and wrap them.

```
lambda2 = -10:0.1:10;
lambda2Wrapped = wrapTo2Pi(lambda2);
```

Plot the wrapped angles. The wrapped angles stay in the range [0, 2π] radians.

```
plot(lambda2,lambda2Wrapped)
xlabel("Angle (radians)")
ylabel("Wrapped Angle (radians)")
grid on
```


Input Arguments

lambda - Angles

numeric vector
Angles, specified as a numeric vector.
Data Types: single | double | int8 | int16| int32|int64|uint8|uint16|uint32|uint64| logical

Output Arguments

lambdaWrapped - Wrapped angles

numeric vector
Wrapped angles, specified as a numeric vector with values in the range [0, $2 *$ pi].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

See Also

wrapTo180 | wrapTo360 | wrapToPi

Introduced in R2007b

wrapToPi

Wrap angle in radians to [-pi pi]

Syntax

lambdaWrapped $=$ wrapToPi(lambda)

Description

lambdaWrapped $=$ wrapToPi(lambda) wraps angles in lambda, in radians, to the interval [-pi, pi] such that pi maps to pi and -pi maps to -pi. In general, odd, positive multiples of pi map to pi and odd, negative multiples of pi map to -pi.

Examples

Wrap Angles to Pi Radians

Specify a short list of angles to wrap.

```
lambda = [-2*pi -pi-0.1 -pi -2.8 3.1 pi pi+1 2*pi];
```

Wrap the angles to the range $[-\Pi, \Pi]$ radians.
lambdaWrapped = wrapToPi(lambda)
lambdaWrapped $=1 \times 8$

$$
\begin{array}{lllllll}
0 & 3.0416 & -3.1416 & -2.8000 & 3.1000 & 3.1416 & -2.1416
\end{array}
$$

Specify a second list of angles, and wrap them.

```
lambda2 = -10:0.1:10;
lambda2Wrapped = wrapToPi(lambda2);
```

Plot the wrapped angles. The wrapped angles stay in the range $[-\Pi, \Pi]$ radians.

```
plot(lambda2,lambda2Wrapped)
xlabel("Angle (radians)")
ylabel("Wrapped Angle (radians)")
grid on
```


Input Arguments

lambda - Angles

numeric vector
Angles, specified as a numeric vector.
Data Types: single | double | int8 | int16| int32 | int64 | uint8|uint16|uint32|uint64 | logical

Output Arguments

lambdaWrapped - Wrapped angles

numeric vector
Wrapped angles, specified as a numeric vector with values in the range [-pi, pi].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder $^{\text {TM }}$.

See Also

wrapTo180 | wrapTo360 | wrapTo2Pi
Introduced in R2007b

zdatam

Adjust z-plane of displayed map objects

Syntax

```
zdatam
zdatam(hndl)
zdatam('str')
zdatam(hndl,zdata)
zdatam('str',zdata)
```


Description

zdatam displays a GUI for selecting an object from the current axes and modifying its ZData property.
zdatam(hndl) and zdatam('str') display a GUI to modify the ZData of the object(s) specified by the input. str is any character vectors recognized by handlem.
zdatam(hndl, zdata) alters the z-plane position of displayed map objects designated by the MATLAB graphics handle hndl. The z-plane position may be the Z position in the case of text objects, or the ZData property in the case of other graphic objects. The function behaves as follows:

- If hndl is an hggroup handle, the ZData property of the children in the hggroup are altered.
- If the handle is scalar, then ZData can be either a scalar (z-plane definition), or a matrix of appropriate dimension for the displayed object.
- If hndl is a vector, then ZData can be a scalar or a vector of the same dimension as hndl.
- If ZData is a scalar, then all objects in hndl are drawn on the ZData z-plane.
- If ZData is a vector, then each object in hndl is drawn on the plane defined by the corresponding ZData element.
- If ZData is omitted, then a modal dialog box prompts for the ZData entry.
zdatam('str',zdata) identifies the objects by the input str, where str is any of the character vectors recognized by handlem, and uses zdata as described above to update their ZData property.

This function adjusts the z-plane position of selected graphics objects. It accomplishes this by setting the objects' ZData properties to the appropriate values.

See Also

handlem | setm

Introduced before R2006a

zero22pi

(To be removed) Wrap longitudes to [0 360] degree interval

Note The zero22pi function will be removed in a future release. Use the wrapTo360 or wrapTo2Pi instead.

Syntax

```
newlon = zero22pi(lon)
newlon = zero22pi(lon,angleunits)
```


Description

newlon $=$ zero22pi(lon) wraps the input angle lon in degrees to the 0 to 360 degree range.
newlon $=$ zero22pi(lon, angleunits) works in the units defined by angleunits, which can be either 'degrees' or 'radians'. angleunits can be abbreviated and is case-insensitive.

Examples

```
zero22pi(567.5)
ans =
    207.5
zero22pi(-567.5)
ans =
    152.5
zero22pi(-7.5,'radian')
ans =
    5.0664
```


See Also

wrapTo2Pi | wrapTo360
Introduced before R2006a

zerom

(To be removed) Construct regular data grid of 0s

Note zerom will be removed in a future release. Use the georefcells and zeros functions instead. For more information, see "Compatibility Considerations".

Syntax

[Z,refvec] = zerom(latlim,lonlim,scale)

Description

[Z,refvec] = zerom(latlim,lonlim,scale) returns a full regular data grid consisting entirely of 0 s and a three-element referencing vector for the returned Z. The two-element vectors latlim and lonlim define the latitude and longitude limits of the geographic region. They should be of the form [south north] and [west east], respectively. The scalar scale specifies the number of rows and columns per degree of latitude and longitude.

Examples

```
[Z,refvec] = zerom([46,51],[-79,-75],1)
```

Z =

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
refvec $=$			
1	51	-79	

Compatibility Considerations

zerom will be removed

Warns starting in R2022a
Some functions that return referencing vectors will be removed, including the zerom function. Instead, create a geographic raster reference object using the georefcells function and a matrix of zeros using the zeros function. Reference objects have several advantages over referencing vectors.

- Unlike referencing vectors, reference objects have properties that document the size of the associated raster, its geographic limits, and the direction of its rows and columns. For examples of reference object properties, see the GeographicPostingsReference object.
- You can manipulate the limits of rasters associated with geographic reference objects using the geocrop function.
- You can manipulate the size and resolution of rasters associated with geographic reference objects using the georesize function.
- Most functions that accept referencing vectors as inputs also accept reference objects.

This table shows how to update your code to use the georefcells and zeros functions instead of the zerom function.

Will Be Removed	Recommended
$[Z$, refvec $]=$ zerom(latlim, lonlim,scale);	R = georefcells(latlim,lonlim,1/scale,1/scolle); $Z=$ zeros(R.RasterSize);

See Also

NaN | ones | sparse | georefcells |zeros
Introduced before R2006a

axesmui

Define map axes and modify map projection and display properties

Activation

Command Line	Maptool	Map Display
axesmui	Display > Projection	extend-click map display
c = axesmui (...)		

Description

axesmui activates a Projection Control dialog box for the current map axes. The dialog box allows map projection definition and property modification.
c is an optional output argument that indicates whether the Projection Control dialog box was closed by the cancel button. c $=1$ if the cancel button is pushed. Otherwise, $\mathrm{c}=0$.

Extend-clicking a map display brings up the Projection Control dialog box for that map axes.

Controls

The Map Projection pull-down menu is used to select a map projection. The projections are listed by type, and each is preceded by a four-letter type indicator:

```
Cyln = Cylindrical
Pcyl = Pseudocylindrical
Coni = Conic
Poly = Polyconic
Pcon = Pseudoconic
Azim = Azimuthal
Mazi = Modified Azimuthal
Pazi = Pseudoazimuthal
```

The Zone button and edit box are used to specify a zone for the Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS) projections.

Note The Zone button and edit box are not supported in MATLAB Online. Programmatically create map axes instead. For example, create map axes using a UTM projection by specifying the MapProjection and Zone name-value pairs:
ax = axesm('MapProjection','UTM','Zone','54S');

The Geoid edit boxes and pull-down menu are used to specify the geoid. Units must be in meters for the UTM and UPS projections, since this is the standard unit for the two projections. For non-UTM and UPS projections, the geoid unit can be anything, bearing in mind that the resulting projected data will be in the same units as the geoid.

The Angle Units pull-down menu is used to specify the angle units used on the map projection. All angle entries corresponding to the current map projection must be entered in these units. Current angle entries are automatically updated when new angle units are selected.

The Map Limits edit boxes are used to specify the extent of the map data in geographic coordinates. The Latitude edit boxes contain the southern and northern limits of the map. The Longitude edit boxes contain the western and eastern limits of the map. The map limits establish the extent of the meridian and parallel grid lines, regardless of the display settings (see grid settings). Map limits are always in geographic coordinates, regardless of the map origin and orientation setting. In the normal aspect, the map display is trimmed to the minimum of the map and frame limits.

The Frame Limits edit boxes are used to specify the location of the map frame, measured from the center of the map projection in the base coordinate system. The Latitude edit boxes contain the southern and northern frame edge locations. The Longitude edit boxes contain the western and eastern frame edge locations. Displayed map data are trimmed at the frame limits. For azimuthal map projections, the latitude limits should be set to -inf and the desired trim distance from the map origin. In the normal aspect, the map display is trimmed to the minimum of the map and frame limits.

The Map Origin edit boxes are used to specify the origin and aspect angle of the map projection. The Lat and Long boxes specify the map origin in geographic coordinates. This is the point that is placed in the center of the projection. If either box is left blank, 0 degrees is used. The Orientation box specifies the azimuth angle of the North Pole relative to the map origin. Azimuth is measured clockwise from the top of the projection. If the Orientation box is disabled, then the selected map projection requires a fixed orientation. See the Mapping Toolbox User's Guide for a complete description of the map origin.

The Cartesian Origin edit boxes are used to specify the x - y offset, along with a desired scale factor of the map projection. The False E and \mathbf{N} boxes specify the false easting and northing in Cartesian
coordinates. These must be in the same units as the geoid. The Scalefactor box specifies the scale factor used in the map projection calculations.

The Parallels edit boxes specify the standard parallels of the selected map projection. A particular map projection may have one or two standard parallels. If the edit boxes are disabled, then the selected projection has no standard parallels or the standard parallels are fixed.

The Aspect pull-down menu is used to select a normal or transverse display aspect. When the aspect is normal, north (on the base projection) is up, and the map is displayed in a portrait setting. In a transverse aspect, north (in the base projection) is to the right, and the map is displayed in a landscape setting. This property does not control the map projection aspect. The projection aspect is determined by the map Origin property).

The Frame button brings up the Map Frame Properties dialog box, which allows the map frame settings to be modified.

The Grid button brings up the Map Grid Properties dialog box, which allows the map grid settings to be modified.

The Labels button brings up the Map Label Properties dialog box, which allows the parallel and meridian label settings to be modified.

The Fill in button is used to compute projection and display settings based on any currently specified map parameters. Only settings that are left blank are affected when this button is pushed.

The Reset button is used to reset the default projection properties and display settings of the current map. Default display settings include frame, grid, and label properties set to 'off'.

The Apply button is used to apply the projection and display settings to the current map, which results in the map being reprojected.

The Help button is used to bring up online help text for each control on the Projection Control dialog box.

The Cancel button disregards any modified projection or display settings and closes the Projection Control dialog box.

Map Frame Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Frame button on the Projection Control dialog box.

The Frame selection buttons determine whether the map frame is visible.
The Face Color pull-down menu is used to select the background color of the map frame. Selecting none results in a transparent frame background, i.e., the same as the axes color. Selecting custom allows a custom RGB triple to be defined for the background color.

The Edge Color pull-down menu is used to select the color of the frame edge. Selecting none hides the frame edge. Selecting custom allows a custom RGB triple to be defined for the edge color.

The Edge Width edit box is used to enter the line width of the frame edge, in points.
The Points per Edge edit box is used to enter the number of points used to display each edge of the map frame.

The Accept button accepts any modifications made to the map frame properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map frame properties and returns to the Projection Control dialog box.

Map Grid Properties Dialog Box

This dialog box allows modification of the map frame settings. It is accessed via the Grid button on the Projection Control dialog box.

The Grid selection buttons determine whether the map grid is visible.
The Color pull-down menu is used to select the color of the map grid lines. Selecting custom allows a custom RGB triple to be defined for the grid line color.

The Style pull-down menu is used to select the line style of the map grid lines.
The Line Width edit box is used to enter the width of the map grid lines, in points.
The Grid Altitude edit box is used to enter z-axis location of the map grid. This property can be used to place some mapped objects above or below the map grid. The default map grid altitude is inf, which places the grid above all other mapped objects.

The Meridian and Parallel Settings button brings up the Meridian and Parallel Properties dialog box, which allows the properties of the meridian and parallel grid lines to be modified.

The Accept button accepts any modifications made to the map grid properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map grid properties and returns to the Projection Control dialog box.

Meridian and Parallel Properties Dialog Box

This dialog box is used to modify the settings for meridian and parallel grid lines. It is accessed via the Meridian and Parallel Settings button on the Map Grid Properties dialog box.

The Meridians selection buttons determine whether the meridian grid lines are visible when the map grid is turned on.

The Longitude Location(s) edit box is used to specify which meridians are to be displayed if the meridian lines are turned on. If a scalar interval value is entered, meridian lines are displayed at that interval, starting from the Prime Meridian and proceeding in east and west directions. If a vector of values is entered, meridian lines are displayed at locations given by each element of the vector.

The Latitude Limits edit box is used to specify the latitude limits beyond which meridian lines do not extend. If this property is left empty, all meridian lines extend to the map latitude limits (specified by the Latitude Map Limits entry on the Projection Control dialog box). This entry must be a twoelement vector enclosed in brackets.

The Longitude Exceptions edit box is used to enter specific meridians of the displayed grid that are to extend beyond the latitude limits, to the map limits. This entry is a vector of longitude values.

The Parallels selection buttons determine whether the parallel grid lines are visible when the map grid is turned on.

The Latitude Location(s) edit box is used to specify which parallels are to be displayed if the parallel lines are turned on. If a scalar interval value is entered, parallel lines are displayed at that interval, starting from the Equator and proceeding in north and south directions. If a vector of values is entered, parallel lines are displayed at locations given by each element of the vector.

The Longitude Limits edit box is used to specify the longitude limits beyond which parallel lines do not extend. If this property is left empty, all parallel lines extend to the map longitude limits (specified by the Longitude Map Limits entry on the Projection Control dialog box). This entry must be a twoelement vector enclosed in brackets.

The Latitude Exceptions edit box is used to enter specific parallels of the displayed grid that are to extend beyond the longitude limits, to the map limits. This entry is a vector of latitude values.

The Points per Line edit boxes are used to enter the number of points used to plot each meridian and each parallel grid line. The default value is 100 points.

The Accept button accepts any modifications that have been made to the meridian and parallel grid line properties and return to the Map Grid Properties dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel grid lines and returns to the Map Grid Properties dialog box.

Map Label Properties Dialog Box

This dialog box is used to modify the settings of the meridian and parallel labels. It is accessed via the Label button on the Projection Control dialog box.

The Meridian and Parallel selection buttons determine whether the meridian and parallel labels are visible.

The Format pull-down menu is used to specify the format of the grid labels. If compass is selected, meridian labels are appended with E for east and W for west, and parallel labels are appended with N for north and S for south. If signed is chosen, meridian labels are prefixed with + for east and - for west, and parallel labels are prefixed with + for north and - for south. If none is selected, western meridian labels and southern parallel labels are prefixed by -, but no symbol precedes eastern meridian labels and northern parallel labels.

The label Units pull-down menu is used to specify the angle units used to display the parallel and meridian labels. These units, used for display purposes only, need not be the same as the angle units of the map projection.

The Font edit box is used to specify the character font used to display the parallel and meridian labels. If the font specified does not exist on the computer, the default of Helvetica is used. Pressing the Font button previews the selected font.

The font Size edit box is used to enter an integer value that specifies the font size of the parallel and meridian labels. This value must be in the units specified by the font Units pull-down menu.

The font Color pull-down menu is used to select the color of the parallel and meridian labels. Selecting custom allows a custom RGB triple to be defined for the labels.

The font Weight pull-down menu is used to specify the character weight of the parallel and meridian labels.

The font Units pull-down menu is used to specify the units used to interpret the font size entry. When set to normalized, the value entered in the Size edit box is interpreted as a fraction of the height of the axes. For example, a normalized font size of 0.1 sets the label text to a height of one tenth of the axes height.

The font Angle pull-down menu is used to select the character slant of the parallel and meridian labels. normal specifies nonitalic font. italic and oblique specify italic font.

The Meridian and Parallel Settings button brings up the Meridian and Parallel Label Properties dialog box, which allows modification of properties specific to the meridian and parallel grid labels.

The Accept button accepts any modifications that have been made to the map label properties and returns to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map labels and returns to the Projection Control dialog box.

Meridian and Parallel Label Properties Dialog Box

This dialog box is used to modify properties specific to the meridian and parallel grid labels. It is accessed via the Meridian and Parallel Settings button on the Map Label Properties dialog box.

Meridian and Parallel Label Properties

Meridians Labels:
Longitude Location(s):

Display Parallel:

Cancel

The Longitude Location(s) edit box is used to specify which meridians are to be labeled. Meridian labels need not coincide with displayed meridian grid lines. If a scalar interval value is entered, labels are displayed at that interval, starting from the Prime Meridian and proceeding in east and west
directions. If a vector of values is entered, labels are displayed at longitude locations given by each element of the vector.

The Display Parallel pull-down menu and edit box are used to specify the latitude location of the meridian labels. If a scalar latitude value is provided in the edit box, the meridian labels are placed at that parallel. Alternatively, the pull-down menu can be used to select a latitude location. If north is chosen, meridian labels are placed at the maximum map latitude limit. If south is chosen, meridian labels are placed at the minimum map latitude limit.

The Latitude Location(s) edit box is used to specify which parallels are to be labeled. Parallel labels need not coincide with displayed parallel grid lines. If a scalar interval value is entered, labels are displayed at that interval, starting from the Equator and proceeding in north and south directions. If a vector of values is entered, labels are displayed at latitude locations given by each element of the vector.

The Display Meridian pull-down menu and edit box are used to specify the longitude location of the parallel labels. If a scalar longitude value is provided in the edit box, the parallel labels are placed at that meridian. Alternatively, the pull-down menu can be used to specify a longitude location. If east is chosen, parallel labels are placed at the maximum map longitude limit. If west is chosen, parallel labels are placed at the minimum map longitude limit.

The Decimal Round edit boxes are used to specify the power of ten to which the meridian and parallel labels are rounded. For example, a value of -1 results in labels displayed to the tenths decimal place.

The Accept button accepts any modifications that have been made to the meridian and parallel label properties and return to the Map Label Properties dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and parallel labels and returns to the Map Label Properties dialog box.

The Map Geoid edit box is used to specify the geoid (ellipsoid) definition for the current map axes. The geoid is defined by a two-element vector of the form [semimajor-axis eccentricity]. Eccentricity must be a value between 0 and 1, but not equal to 1 . A nonzero eccentricity represents an ellipsoid. The default geoid is a sphere with radius 1 , represented as [10]. If a scalar entry is provided, it is assumed to be the radius of a sphere.

The Accept button accepts any modifications that have been made to the map geoid and return to the Projection Control dialog box. Changes are applied to the current map only when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map geoid and returns to the Projection Control dialog box.

See Also

axesm

Introduced in R2007a

clmo-ui

GUI to clear mapped objects

Activation

Command Line	Maptool
clmo	Tools $>$ Delete $>$ Object

Description

clmo brings up a Select Object dialog box for selecting mapped objects to delete.

Controls

The scroll box is used to select the desired objects from the list of mapped objects.

Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the OK button deletes the selected objects from the map. Pushing the Cancel button aborts the operation.

See Also

clmo

Introduced in R2007a

clrmenu

Add colormap menu to figure window

Activation

Command Line
 cl rmenu
 clrmenu(h)

Description

clrmenu adds a colormap menu to the current figure.
$\mathrm{clrmenu}(\mathrm{h})$ adds a colormap menu to the figure specified by the handle h.

Controls

The following choices are included on the colormap menu:
Parula, Gray, Hsv, Hot, Pink, Cool, Bone, Jet, Copper, Spring, Summer, Autumn, Winter, Flag, and Prism generate colormaps.

Rand is a random colormap.
Brighten increases the brightness.
Darken decreases the brightness.
Flipud inverts the order of the colormap entries.
Fliplr interchanges the red and blue components.
Permute permutes the colormap: red $>$ blue, blue $>$ green, green $>$ red.
Define allows a workspace variable to be specified for the colormap.
Remember stores the current colormap.
Restore reverts to the stored colormap (initially, the stored colormap is the colormap in use when clrmenu is invoked).

Refresh redraws the current figure window.
Digital Elevation activates the DEM Colormap Input dialog box. Use it to specify a colormap for a digital elevation map, and then apply the colormap to the current figure. The number of land and sea colors in the colormap is appropriate for the maximum elevations and depths of the data grid. The dialog box is shown and described below:

The Mode selection buttons are used to specify whether the length of the colormap is specified or whether the altitude range increment assigned to each color is specified.

The Map variable edit box is used to specify the data grid containing the elevation data.
The Colormap Size edit box is used in Size mode. This entry defines the length of the colormap. If omitted, a default length of 64 is used. This entry must be a scalar value.

The Altitude Range edit box is used in Range mode. This entry defines the altitude range increment assigned to each color. If omitted, a default increment of 100 is used. This entry must be a scalar value.

The RGB Sea edit box is used to define colors for data with negative values. The actual sea colors of the generated colormap are interpolated from this matrix. This entry can be a matrix of any length (n -by-3) The colormap matrix of the current figure can be used by entering 'window' in this box. The demcmap function provides default sea colors, which are used if this entry is left blank.

The RGB Land edit box is used to define colors for data with positive values. The actual land colors of the generated colormap are interpolated from this matrix. This entry can be a matrix of any length (n-by-3). The colormap matrix of the current figure can be used by entering 'window' in this box. The demcmap function provides default sea colors, which are used if this entry is left blank.

Pressing the Apply button accepts the input data, creates the colormap, and assigns it to the current figure.

Pressing the Cancel button disregards any input data and closes the DEM Colormap Input dialog box.

See Also

demcmap

Introduced before R2006a

colorm

(To be removed) Create index map colormaps

Note The colorm function will be removed in a future release.

Syntax

colorm(datagrid,refvec)

Description

colorm(datagrid, refvec) displays the data grid in a new figure window and allows a colormap to be edited and saved to a new variable. datagrid and refvec are the data grid and the referencing vector of the surface. map must have positive index values into the colormap.

Controls

The colorm tool displays the surface map data in a new figure window with the current colormap.
Zoom and Colormaps menus are activated for that figure.
The Zoom On/Off menu toggles interactive zoom on and off.
The Colormaps menu provided a variety of colormap options that can be applied to the map. See cl rmenu in this guide for a description of the Colormaps menu options.

The Load button activates a dialog box, used to specify a colormap variable to be applied to the displayed surface map. This colormap can then be edited and saved.

The Select button activates the mouse cursor and allows a point on the map to be selected. The value of that point then appears in the Codes pull-down menu. The color of the selected point appears in the Color pull-down menu and can then be edited.

The Codes pull-down menu is used to select a particular value in the data grid. The color associated with that value then appears in the Color pull-down menu and can be edited.

The Color pull-down menu is used to select a particular color to assign to the value currently displayed in the Codes pull-down menu. A custom color can be defined by selecting the custom option. This brings up a custom color interface with which an RGB triple can be selected.

The Save button is used to save the modified colormap to the workspace. A dialog box appears in which the colormap variable name is entered.

See Also

encodem | maptrim
Introduced before R2006a

demdataui

UI for selecting digital elevation data

Syntax

demdataui

Description

demdataui is a graphical user interface to extract digital elevation map data from a number of external data files. You can extract data to MAT-files or the base workspace as regular data grids with referencing vectors.

The demdataui panel lets you read data from a variety of high-resolution digital elevation maps (DEMs). These DEMs range in resolution from about 10 kilometers to 100 meters or less. The data files are available over the Internet at no cost, or (in some cases) on CD-ROMs for varying fees. demdataui reads ETOPO5, TerrainBase, GTOPO30, GLOBE, satellite bathymetry from Smith and Sandwell, and DTED data. demdataui looks for these geospatial data files on the MATLAB path and, for some operating systems, on CD-ROM disks.

Note When it opens, demdataui scans your Mapping Toolbox path for candidate data files. On PCs, it also checks the root directories of CD-ROMs and other drives, including mapped network drives. This can cause a delay before the GUI appears.

You use the list to select the source of data and the map to select the region of interest. When you click the Get button, data is extracted and displayed on the map. Use the Save button to save the data in a MAT-file or to the base workspace for later display. The Close button closes the window.

Controls

The Map

The map controls the geographic extent of the data to be extracted. demdataui extracts data for areas currently visible on the map. Use the mouse to zoom in or out to the area of interest. See zoom for more on zooming.

Some data sources divide the world up into tiles. When extracting, data is concatenated across all visible tiles. The map shows the tiles in light yellow with light gray edges. When data resolution is high, extracting data for large area can take much time and memory. An approximate count of the number of points is shown above the map. Use the Samplefactor slider to reduce the amount of data.

The List

The list controls the source of data to be extracted. Click a name to see the geographic coverage in light yellow. The sources list shows the data sources found when demdataui started.
demdataui searches for data files on the MATLAB path. On some computers, demdataui also checks for data files on the root level of letter drives. demdataui looks for the following data:

- etopo5: The files new_etopo5.bil or etopo5.northern.bat and etopo5.southern.bat.
- tbase: The file tbase.bin.
- satbath: The file topo_6.2.img.
- gtopo30: A folder that contains subfolders with the data files. For example, demdataui would detect GTOPO30 data if a folder on the path contained the folders E060S10 and E100S10, each of which holds the uncompressed data files.
- globedem: A folder that contains data files and in the subfolder /esri/hdr and the *. hdr header files.
- dted: A folder that has a subfolder named DTED. The contents of the DTED folder are more subfolders organized by longitude and, below that, the DTED data files for each latitude tile.

The Samplefactor Slider

The Sample Factor slider allows you to reduce the density of the data. A sample factor of 2 returns every second point. The current sample factor is shown on the slider.

The Get Button

The Get button reads the currently selected data and displays it on the map. Press the standard interrupt key combination for your platform to interrupt the process.

The Clear Button

The Clear button removes any previously read data from the map.

The Save Button

The Save button saves the currently displayed data to a MAT-file or the base workspace. If you choose to save to a file, you will be prompted for a file name and location. If you choose to save to the base workspace, you can choose the variable name under which the data will be stored. The demdataui function returns one or more matrices as an array of display structures, having one element for each separate get you requested (assuming you did not subsequently Clear).

Data are returned as Mapping Toolbox Version 1 display structures. For information about display structure format, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym.

Use load and displaym to redisplay the data from a file on a map axes. To display the data in the base workspace, use displaym. To gain access to the data matrices, subscript into the structure (for example, datagrid = demdata(1).map; refvec = demdata(1).maplegend. Use worldmap to create easy displays of the elevation data (for example, worldmap(datagrid, refvec). Use meshm to add regular data grids to existing displays, or surfm or a similar function for geolocated data grids (for example, meshm(datagrid, refvec) or surfm(latgrat, longrat, z).

The Close Button

The Close button closes the demdataui panel.

Examples

Read Elevation Data Interactively

Read from data sets that demdataui has located. You will not necessarily have all the DEM data sets shown in this example. For information about finding data sets over the Internet, see "Find Geospatial Raster Data".

Open the demdataui UI. It scans the path for data before it is displayed.

```
demdataui
```

The Source list shows the data sets that were found. Here, the source is selected to present all DTED files available to a user.

Click GTOPO30. In this example, there are available GTOPO30 tiles. The coverage of each data set is indicated by a yellow tint on the map with gray borders around each tile of data.

Use the map in the UI to specify the location and density of data to extract. To interactively set a region of interest, click in the map to zoom by a factor of two centered on the cursor, or click and drag across the map to define a rectangular region. The size of the matrix of the area currently displayed is printed above the map. To reduce the amount of data, you can continue to zoom in, or
you can raise the Samplefactor slider. A sample factor of 1 reads every point, 2 reads every other point, 3 reads every third point, etc. The matrix size is updated when you move the Samplefactor slider.

Here is the UI panel after selecting GTOPO30 data and zooming in on the Indian subcontinent.

To see the terrain you have windowed at the sample factor you specified, click the Get button. This causes the GUI map pane to repaint to display the terrain grid with the demcmap colormap. In this example, the data grid contains 580-by-568 data values, as shown below.

If you are not satisfied with the result, click the Clear button to remove all data previously read in via Get and make new selections. You might need to close and reopen demdatui in order to select a new region of interest.

When you are ready to import DEM data to the workspace or save it as a MAT-file, click the Save button.

Tips

- If demdataui does not recognize data you think it should find, check your path and click Help to read about how files are identified.
- You can add the data grids to map axes using the geoshow function.
- Updating the data returned by demdataui to geographic data structures (geostructs) using the updategeostruct function is not supported because they are of type surface.

See Also

readgeoraster|vmap0ui
Introduced before R2006a

handlem-ui

GUI for selecting mapped objects

Activation

Command Line
$\mathrm{h}=$ handlem
$\mathrm{h}=$ handlem('prompt' $)$

Description

$\mathrm{h}=$ handlem brings up a Select Object dialog box, which lists all currently displayed objects. Returns the selected objects.
h = handlem('prompt') brings up a Specify Object dialog box, which allows greater control of object selection.

Controls

Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the OK button returns the object in the variable h. Pushing the Cancel button aborts the operation.

Specify Object Dialog Box

The Object Controls are used to select an object type or tag. The Name pull-down menu is used to select from a list of predefined objects. The Other Tag edit box is used to specify an object tag not listed in the Name pull-down menu. Pushing the Select button brings up the Select Object dialog box, which shows only the currently displayed objects for selection.

The Match Controls are used when a graphics object type (image, line, surface, patch, or text) is specified. The Untagged Objects selection button is used to return only those objects with empty tag properties. The All Objects selection button is used to return all objects of the specified type, regardless of whether they are tagged.

Pushing the Apply button returns the specified objects. Pushing the Cancel button aborts the operation.

See Also

handlem
Introduced in R2007a

hidem-ui

Hide specified mapped objects

Activation

Command Line	Maptool
hidem	Tools $>$ Hide $>$ Object

Description

hidem brings up a Select Object dialog box for selecting mapped objects to hide (Visible property set to 'off').

Controls

The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the OK button changes the Visible property of the selected objects to 'off'. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

See Also

hidem

Introduced in R2007a

maptool

Add menu-activated tools to map figure

Activation

```
Command Line
maptool(PropertyName,PropertyValue)
maptool(ProjectionFile,...)
h = maptool(...)
```


Description

maptool adds several items to the menu in the current figure window with a map axes and opens the Projection Control dialog box for defining map projection and display properties. The figure window features a special menu bar that provides access to most of Mapping Toolbox capabilities.
maptool (PropertyName, PropertyValue, ...) creates a figure window with a map axes defined by the supplied map properties. The MapProjection property must be the first input pair. maptool supports the same map properties as axesm.
maptool(ProjectionFile,PropertyName, PropertyValue,...) allows for the omission of the MapProjection property name. ProjectionFile must be the identifier of an available map projection.
$\mathrm{h}=$ maptool (...) returns a two-element vector containing the handle of the maptool figure window and the handle of the map axes.

Controls

Map Menu

The Lines option activates the Line Map Input dialog box for projecting two- and three-dimensional line objects onto the map axes.

The Patches option activates the Patch Map Input dialog box for projecting patch objects onto the map axes.

The Regular Surfaces option activates the Mesh Map Input dialog box for projecting a regular data grid onto a graticule projected onto the map axes.

The General Surfaces option activates the Surface Map Input dialog box for projecting a geolocated data grid onto the map axes.

The Contours option activates the Contour Map Input dialog box for projecting a two- or threedimensional contour plot onto the map axes.

The Quiver 2D option activates the Quiver Map Input dialog box for projecting a two-dimensional quiver plot onto the map axes.

The Quiver 3D option activates the Quiver3 Map Input dialog box for projecting a three-dimensional quiver plot onto the map axes.

The Stem option activates the Stem Map Input dialog box for projecting a stem plot onto the map axes.

The Scatter option activates the Scatter Map Input dialog box for projecting a scatter plot onto the map axes.

The Text option activates the Text Map Input dialog box for projecting text objects onto the map axes.

Display Menu

The Projection option activates the Projection Control dialog box for editing map projection properties and map display settings.

The Graticule option is used to view and edit the graticule size for surface maps.
The Legend option is used to display a contour map legend.
The Frame option is used to toggle the map frame on and off.
The Grid option is used to toggle the map grid on and off.
The Meridian Labels option is used to toggle the meridian grid labels on and off.

The Parallel Labels option is used to toggle the parallel grid labels on and off.
The Tracks option activates the Define Tracks input box for calculating and displaying Great Circle and Rhumb Line tracks on the map axes.

The Small Circles option activates the Define Small Circles input box for calculating and displaying small circles on the map axes.

The Surface Distances option activates the Surface Distance dialog box for distance, azimuth, and reckoning calculations.

Tools Menu

The Hide option is used to hide the mouse tool buttons.
The Off option is used to turn off the current mouse tool.

The Set Limits option is used to define the zoom out limits to the current settings on the axes.
The Full View option is used to zoom out to the current axes limit settings.
The Origin option is used to toggle Origin (originui) mode on and off. Origin mode is used to interactively modify the map origin.

The 2D View option is used to set the default two-dimensional view (azimuth=0, elevation=90).
The Edit option activates the MATLAB Property Editor to manipulate properties of a plotted object. Choose the Current Object option to edit the currently selected object or choose the Select Object option to open the Select Object dialog box and choose the object you want to edit.

The Show option is used to set the Visible property of mapped objects to ' on '. The All option shows all currently mapped objects. The Object option activates the Select Object dialog box.

The Hide option is used to set the Visible property of mapped objects to 'off'. Choose from the All or Map options, or choose the Object option to activate the Select Object dialog box.

The Delete option is used to clear the selected objects. The All option clears the current map, frame, and grid lines. The map definition is left in the axes definition. The Map option clears the current map, deleting objects plotted on the map but leaving the frame and grid lines displayed. The Object option activates the Select Object dialog box.

The Axes option is used to manipulate the MATLAB Cartesian axes. The Show option shows this axes, the Hide option hides this axes, and the Color option allows for custom color selection for this axes.

Colormaps Menu

The Colormaps menu allows for manipulation of the colormap for the current figure. See the clrmenu reference page for details on the Colormaps menu options.

See Also

axesm

Introduced before R2006a

maptrim

Interactively trim and convert map data from vector to raster format

Syntax

```
maptrim(lat,lon,LineSpec)
maptrim(datagrid,refvec)
maptrim(datagrid,refvec,PropertyName,PropertyValue)
```


Description

maptrim(lat, lon) displays the supplied map data in a new figure window and allows a region of the map to be selected and saved in the workspace. lat and lon must be vector map data. The output can be line, patch, or regular surface (matrix) data. If patch map output is selected, the inputs lat and lon must originally be patch map data.
maptrim(lat,lon,LineSpec) displays the supplied map using the specified line style, marker, and color on page 1-1777.
maptrim(datagrid, refvec) displays data grid data in a new figure window and allows a subset of this map to be selected and saved. The output is regular surface data.
maptrim(datagrid, refvec, PropertyName, PropertyValue) displays the data grid using the surface properties provided. The object Tag, EdgeColor, and UserData properties cannot be set.

Controls

The maptrim tool displays the supplied map data in a new figure window and activates a Customize menu for that figure. The Customize menu has three menu options: Zoom On/Off, Limits, and Save As.

The Zoom On/Off menu toggles interactive zoom on and off.
The Limits menu option activates the Enter Map Limits dialog box, which is used to enter the latitude and longitude limits of the desired map subset. These entries are two-element vectors, enclosed in brackets. Pressing the OK button zooms in to the new limits. Pressing the Cancel button disregards the new limits and returns to the map display.

The Save As menu option is used to specify the variable names in which to save the map data subset. To save line and patch data, enter the new latitude and longitude variable names, along with the map resolution. For surface data, enter the new map and referencing vector variable names, along with the scale of the map. Latitude and longitude limits are optional.

More About

Line Style, Marker, and Color

Specify the line style, marker, and color as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, specify a red dashed line using ' $-\quad-r$ '.

Line Style	Description	Resulting Line
' - '	Solid line	
'--'	Dashed line	- - - - -
':'	Dotted line
'-.'	Dash-dotted line	-.-.-.-.-

Marker	Description	Resulting Marker
'0'	Circle	\bigcirc
'+'	Plus sign	+
'*'	Asterisk	*
'.'	Point	-
'x'	Cross	\times
' -'	Horizontal line	-
'1'	Vertical line	\|
's'	Square	\square
'd'	Diamond	\diamond
'^'	Upward-pointing triangle	\triangle
'v'	Downward-pointing triangle	∇
'>'	Right-pointing triangle	D
'<'	Left-pointing triangle	\checkmark

Marker	Description	Resulting Marker
' p '	Pentagram	n
' h '	Hexagram	s

Color Name	Short Name	RGB Triplet	Appearance
'red'	'r'	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$	
'green'	'g'	$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$	
'blue'	'b'	$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$	
'cyan'	'c'	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$	
'magenta'	'm'	$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$	
'yellow'	'y'	$\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$	
'black'	'k'	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	
'white'	'w'	$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$	

See Also

mapclip|geoclip|maptriml|maptrimp|geocrop

Introduced before R2006a

mlayers

(Removed) GUI to control plotting of display structure elements

Note The mlayers function has been removed.

Activation

Command Line	Maptool
mlayers('filename')	Session > Layers
mlayers('filename' , h)	
mlayers(cellarray)	
mlayers(cellarray, h)	

Description

mlayers('filename') associates all display structures, which in this context are also called map layers, in the MAT-file filename with the current map axes. The display structure variables are accessible only through the mlayers tool, and not through the base workspace. filename must be a character vector.
mlayers('filename', h) assigns the layers found in filename to the map axes indicated by the handle h .
mlayers (cellarray) associates the layers specified by cellarray with the current map axes. cellarray must be of size n by 2 . Each row of cellarray represents a map layer. The first column of cellarray contains the layer structure, and the second column contains the name of the layer structure.
mlayers (cellarray, h) assigns the layers specified by cellarray to the map axes specified by the handle h .

Controls

The scrollable list box displays all of the map layers currently associated with the map axes. An asterisk next to the layer name indicates that the layer is currently visible. An h next to the layer name indicates a layer that is plotted, but currently hidden.

The Plot button plots the selected map layer. Once the selected layer is plotted, the button toggles between Hide and Show, to turn the Visible property of the plotted objects to 'off' and 'on', respectively.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the workspace variable containing the ZData for the selected map layer. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. This entry can also be a scalar.

The Highlight button is used to toggle the selected map layer between highlighted and normal display.

The Members button brings up a list of members of the selected map layer. Members of a layer are defined by their Tag property.

The Delete button deletes the selected map layer from the map.
The Property button activates the Define Layer Properties dialog box, which is used to specify or change properties of all objects in the selected map layer. Character vector entries must be enclosed in single quotes.

The Purge button deletes the selected map layer from the mlayers tool. Selecting Yes from the Confirm Purge dialog box deletes the map layer from both the mlayers tool and the map display.

Selecting Data Only from the Confirm Purge dialog box deletes the map layer from the mlayers tool, while retaining the plotted object on the map display.

See Also

Introduced before R2006a

mobjects

(To be removed) Manipulate object sets displayed on map axes

Note The mobjects function will be removed in a future release.

Activation

Command Line	Maptool
mobjects	Tools $>$ Objects
mobjects (h)	

Description

An object set is defined as all objects with identical tags. If no tags are supplied, object sets are defined by object type.
mobjects allows manipulation of the object sets on the current map axes.
mobjects (h) allows manipulation of the objects set on the map axes specified by the handle h .

Controls

The scrollable list box displays all of the object sets associated with the map axes. An asterisk next to an object set name indicates that the object set is currently visible. An h next to an object set name indicates an object set that is plotted, but currently hidden. The order shown in the list indicates the stacking order of objects within the same plane.

The Hide/Show button toggles the Visible property of the selected object set to 'off' and 'on', respectively, depending on the current Visible status.

The Zdata button activates the Specify Zdata dialog box, which is used to enter the workspace variable containing the ZData. The ZData property is used to specify the plane in which the selected object set is drawn. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. Alternatively, a scalar value can be entered instead of a variable.

The Highlight button highlights all objects belonging to the selected object set.
The Tag button brings up an Edit Tag dialog box, which allows the tag of all members of the selected object set to be modified.

The Delete button clears all objects belonging to the selected object set from the map. The cleared object set remains associated with the map axes.

The Property button activates the Define Object Properties dialog box, which is used to specify additional properties of all objects in the selected object set. Character vector entries must be enclosed in single quotes.

The Update button updates the list box display with current objects sets.
The Stacking Order buttons are used to modify the drawing order of the selected object set in relation to other plotted object sets in the same plane. Objects drawn first appear at the bottom of the stack, and objects drawn last appear at the top of the stack. The Top button places the selected object set above all other object sets in its plane. The Up and Dwn buttons move the selected object set up and down one place in the stacking order, respectively. The Btm button places the selected object set below all other object sets in its plane. Note that the ZData property overrides stacking order, i.e., if an object is at the top of the stacking order for its plane, it can still be covered by an object drawn in a higher plane.

See Also

Introduced before R2006a

originui

Interactively modify map origin

Activation

Command Line	Maptool
originui	Tools $>$ Origin (menu) $>$ Origin(button)
originui on	
originui off	

Description

originui provides a tool to modify the origin of a displayed map projection. A marker (dot) is displayed where the origin is currently located. This dot can be moved and the map reprojected with the identified point as the new origin.
originui automatically toggles the current axes into a mode where only actions recognized by originui are executed. Upon exit of this mode, all prior ButtonDown functions are restored to the current axes and its children.
originui on activates origin tool. originui off e-activates the tool. originui will toggle between these two states.

Controls

Keystrokes

originui recognizes the following keystrokes. Enter (or Return) will reproject the map with the identified origin and remain in the originui mode. Delete and Escape will exit the origin mode (same as originui off). $\mathbf{N}, \mathbf{S}, \mathbf{E}, \mathbf{W}$ keys move the marker North, South, East or West by 10.0 degrees for each keystroke. $\mathbf{n}, \mathbf{s}, \mathbf{e}, \mathbf{w}$ keys move the marker in the respective directions by 1 degree per keystroke.

Mouse Actions

originui recognizes the following mouse actions when the cursor is on the origin marker.

- Single-click and hold moves the origin marker. Double-click the marker reprojects the map with the specified map origin and remains in the origin mode (same as originui Return).
- Extended-click moves the marker along the Cartesian X or Y direction only (depending on the direction of greatest movement).
- Alternate-click exits the origin tool (same as originui off).

Macintosh Key Mapping

- Extend-click: Shift+click mouse button
- Alternate-click: Option+click mouse button

Microsoft Windows Key Mapping

- Extend-click: Shift+click left button or both buttons
- Alternate-click: Ctrl+click left button or right button

X-Windows Key Mapping

- Extend-click: Shift+click left button or middle button
- Alternate-click: Ctrl+click left button or right button

See Also

axesm|setm
Introduced before R2006a

panzoom

(To be removed) Zoom settings on 2-D map

Note The panzoom function will be removed in a future release. Use the zoom function instead.

Syntax

panzoom
panzoom on
panzoom off
panzoom setlimits
panzoom out
panzoom fullview

Description

panzoom toggles the pan and zoom tool on and off.
panzoom on is equivalent to zoom on.
panzoom off is equivalent to zoom off.
panzoom setlimits is equivalent to zoom reset.
panzoom out is equivalent to zoom out.
panzoom fullview sets the axes limit modes to 'auto' and resets zoom to the resulting limits.

See Also

zoom
Introduced before R2006a

parallelui

Interactively modify map parallels

Activation

Command Line	Maptool
parallelui	Tools $>$ Parallels (menu)
parallelui on	
parallelui off	

Description

parallelui toggles the parallel tool on and off.
parallelui on activates the parallel tool
parallelui off deactivates the parallel tool
The parallelui GUI provides a tool to modify the standard parallels of a displayed map projection. One or two red lines are displayed where the standard parallels are currently located. The parallel lines can be dragged to new locations, and the map reprojected with the locations of the parallel lines as the new standard parallels.

Controls

Mouse Interaction
A single-click-and-drag moves the parallel lines. A double-click on one of the standard parallels reprojects the map using the new parallel locations.

See Also

axesm| setm

Introduced before R2006a

property editors

GUIs to edit properties of mapped objects

Activation

map display: \quad Alternate-click mapped object (for Click-and-Drag Property Editor)
In plot edit mode, double-click mapped object (to obtain MATLAB Property Editor; click the More Properties... button to open the Property Inspector)
maptool: \quad Tools $>$ Edit Plot menu item (for MATLAB Property Editor)

Description

Alternate (e.g., Ctrl+clicking a mapped object activates a property editor, which allows modification of some basic properties of the object through simple mouse clicks and drags. The objects supported by this editor are map axes, lines, text, patches, and surfaces, and the properties supported for each object type are shown below.

In plot edit mode, double-clicking a mapped object activates the MATLAB Property Editor for that object. From the Property Editor you can launch the Property Inspector, a GUI that lists the properties and values of the selected object and allows you to modify them.

Controls

Click-and-Drag Property Editor

The Click-and-Drag editor lists object properties and values. The object tag appears at the top of the editor. Property names and values that appear in blue are toggles. For example, clicking Frame in the axes editor toggles the value of the Frame property between 'on' and 'off'.

Click-and-Drag Editor for a map axes

Property values that appear on the right side of the editor box are modified by clicking and dragging. For example, to change the MarkerColor property of a line object, click and hold the dot next to MarkerColor, and drag the cursor until the dot appears in the desired color.

Click-and-Drag Editor for a line object

The Drag control in the text editor is used to reposition the text character vector. In drag mode, use the mouse to move the text to a new location, and click to reposition the text. The Edit control in the text editor activates a Text Edit window, which is used to modify text.

Click-and-Drag Editor for a text object

The Marker property name in the patch editor is used to toggle the marker on and off. The property value to the right of Marker can be modified by clicking and dragging until the desired marker symbol appears.

Click-and-Drag Editor for a patch object

The Graticule control on the surface editor activates a Graticule Mesh dialog box, which is used to alter the size of the graticule.

To move the property editor around the figure window, hold down the Shift key while dragging the editor box. Alternate-clicking the background of the property editor closes the Click-and-Drag editing session.

Guide Property Editor

The MATLAB Property Inspector allows you to view and modify property values for most properties of the selected object. Use it to expand and collapse the hierarchy of objects, showing an object's parents and children. A plus sign (+) before a property indicates that it can be expanded to show its components, for example the axes AmbientLightColor applied to the surface object displayed below. A minus sign (-) before an object indicates an object can be collapsed to hide its components. To activate the Object Browser, check the Show Object Browser check box. The Property List shows all the property names of the selected object and their current values. To activate the Property List, check the Show Property List check box. To change a property value, use the edit boxes above the Property List. Pressing the Close button closes the Guide Property Editor and applies the property modifications to the object.

A lit surface object in a map axes

E Inspector: axes		-
\# ALim	[02]	Δ
ALimMode	auto	-
ActivePositionProperty	outerposition	-
\square AmbientLightColor	(1) \square	
red	1.0	O-
green	1.0	,
blue	0.0	0
BeingDeleted	off	
Box	on	-
BusyAction	queue	-
ButtonDownFcn	uimaptbx	θ
+ Clim	[-7473 5812.333]	
CLimMode	manual	-
\pm CameraPosition	[00 100000.008]	
CameraPositionMode	auto	\checkmark
\pm CameraTarget	[000]	
CameraTargetMode	auto	\checkmark
\# Cameralupyector	[010]	
CameraUpVectorMode	auto	\checkmark
CameraViewAngle	0.004	\checkmark

Property Inspector view of axes object

See Also

propedit | Property Inspector | uimaptbx

Introduced before R2006a

qrydata

(To be removed) GUI to interactively perform data queries

Note The qrydata function will be removed in a future release.

Activation

```
Command Line
qrydata(cellarray)
qrydata(titlestr,cellarray)
qrydata(h,cellarray)
qrydata(h,titlestr,cellarray)
qrydata(...,cellarray1,cellarray2,...)
```


Description

A data query is used to obtain the data corresponding to a particular (x, y) or (lat,lon) point on a standard or map axes.
qrydata (cellarray) activates a data query dialog box for interactive queries of the data set specified by cellarray (described below). qrydata can be used on a standard axes or a map axes. (x, y) or (lat,lon) coordinates are entered in the dialog box, and the data corresponding to these coordinates is then displayed.
qrydata(titlestr, cellarray) uses titlestr as the title of the query dialog box.
qrydata(h,cellarray) and qrydata(h,titlestr, cellarray) associate the data queries with the axes specified by the handle h, which in turn allows the input coordinates to be specified by clicking the axes.

The input cellarray is used to define the data set and the query. The first cell must contain a character vector that is the label of the data display line. The second cell must contain a character vector that specifies the type of query operation. The operation can be either a predefined operation or a valid user-defined function name. The predefined query operations are 'matrix', 'vector', 'mapmatrix', and 'mapvector'.

The 'matrix' query uses the MATLAB interp2 function to find the value of the matrix Z at the input (x, y) point. The format of the cellarray input for this query is:
\{'label', 'matrix', X, Y, Z, method $\}. X$ and Y are matrices specifying the points at which the data Z is given. The rows and columns of X and Y must be monotonic. method is an optional argument that specifies the interpolation method. Possible method values are 'nearest', 'linear', or 'cubic'. The default is 'nearest'.

The 'vector' query uses the interp2 function to find the value of the matrix Z at the input (x, y) point, then uses that value as an index to a data vector. The value of the data vector at that index is
returned by the query. The format of cellarray for this type of query is:
\{'label', 'vector', X, Y, Z, vector\}. X and Y are matrices specifying the points at which the data Z is given. The rows and columns of X and Y must be monotonic. vector is the data vector.

The 'mapmatrix' query interpolates to find the value of the map at the input (lat, lon) point. The format of cellarray for this query is: \{'label' , 'mapmatrix' , datagrid, refvec, method\}. datagrid and refvec are the data grid and the corresponding referencing vector. method is an optional argument that specifies the interpolation method. Possible method values are 'nearest', 'linear', or 'cubic'. The default is 'nearest'.

The 'mapvector' query interpolates to find the value of the map at the input (lat,lon) point, then uses that value as an index to a data vector. The value of the vector at that index is returned by the query. The format of cellarray for this type of query is \{'label','mapvector',datagrid, refvec, vector\}. datagrid and refvec are the data grid and the corresponding referencing vector. vector is the data vector.

User-defined query operations allow for functional operations using the input (x, y) or (lat,lon) coordinates. The format of cellarray for this type of query is \{'label',function,other arguments...\} where the other arguments are the remaining elements of cellarray as in the four predefined operations above. function is a user-created function and must refer to a MATLAB function with the signature $z=f c n\left(x, y, o t h e r _a r g u m e n t s . ..\right)$.
qrydata(..., cellarray1, cellarray2,...) is used to input multiple cell arrays. This allows more than one data query to be performed on a given point.

Controls

Sample data query dialog box

If an axes handle h is not provided, or if the axes specified by h is not a map axes, the currently selected point is labeled as Xloc and Yloc at the top of the query dialog box. If h is a map axes, the current point is labeled as Lat and Lon. Displayed below the current point are the results from the queries, each labeled as specified by the 'label' input arguments.

The Get button appears if an axes handle h is provided. Pressing this button activates a mouse cursor, which is used to select the desired point by clicking the axes. Once a point is selected, the queries are performed and the results are displayed.

The Process button appears if the handle h is not provided. In this case, the (x, y) coordinates of the desired point are entered into the edit boxes. Pressing the Process button performs the data queries and displays the results.

Pressing the Close button closes the query dialog box.

Examples

This example illustrates use of a user-defined query to display city names for map points specified by a mouse click. The query is evaluated by a user-supplied file called qrytest.m, described below:

```
axesm miller
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.5 0.7 0.5])
lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')
tightmap
lat = [cities.Lat]';
lon = [cities.Lon]';
mat = char(cities.Name);
qrydata(gca,'City Data',{'City','qrytest',lat,lon,mat})
```

Create the file qrytest.m on your path, and in it put the following code:

```
function cityname = qrytest(lt, lg, lat, lon, mat)
% function QRYTEST returns city name for mouse click
% QRYTEST will find the closest city (min radius) from
% the mouse click, within an angle of 5 degrees.
%
latdiff = lt-lat;
londiff = lg-lon;
rad = sqrt(latdiff.^2+londiff.^2);
[minrad,index] = min(rad);
if minrad > 5
    index = [];
end
switch length(index)
    case 0, cityname = 'No city located near click';
    case 1, cityname = mat(index,:);
end
```


Clicking the mouse over a city marker displays the name of the selected city. Clicking the mouse in an area away from any city markers displays 'No city located near click'.

See Also

interp2

Introduced before R2006a

scirclui

GUI to display small circles on map axes

Compatibility

Note scirclui is obsolete. Use scircleg instead.

Activation

Command Line	Maptool
scirclui	Display mall Circles
scirclui(h)	

Description

scirclui activates the Define Small Circles dialog box for adding small circles to the current map axes.
scirclui(h) activates the Define Small Circles dialog box for adding small circles to the map axes specified by the axes handle h.

Controls

Define Small Circles dialog box for one-point mode

The Style selection buttons are used to specify whether the circle radius is a constant great circle distance or a constant rhumb line distance.

The Mode selection buttons are used to specify whether one point or two points are to be used in defining the small circle. If one-point mode is selected, a center point, radius, and azimuth are the required inputs. If two-point mode is selected, a center point, and perimeter point on the circle are the required inputs.

The Center Point controls are used in both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the center point of the small circle to be displayed. These values must be in degrees. To display more than one small circle, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select a center point by clicking the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Circle Point controls are used only in two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of a point on the perimeter of the small circle to be displayed. These values must be in degrees. To display more than one small circle, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box
for easier entry of long vectors. The Mouse Select button is used to select a perimeter point by clicking the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Size and Sector controls are used only in one-point mode. The Radius Units button brings up a Define Range Units dialog box, which allows for modification of the small circle radius units and the normalizing geoid. The Rad edit box is used to enter the radius of the small circle in the proper units. The Arc edit box is used to specify the sector azimuth, measured in degrees, clockwise from due north. If the entry is omitted, a complete small circle is drawn. When entering radius and arc data for more than one small circle, vectors of values, enclosed in brackets, are entered in each edit box. Pushing the Rad or Arc button brings up an expanded edit box for that entry, which is useful for entering long vectors.

The \mathbf{Z} Plane edit box is used to enter a scalar value that specifies the plane in which to display the small circles.

The Other Properties edit box is used to specify additional properties of the small circles to be projected, such as 'Color', 'b'. Character vector entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the small circles on the current map axes.

Pressing the Cancel button disregards any input data and closes the Define Small Circles dialog box.

This dialog box, available only in one-point mode, allows for modification of the small circle radius units and the normalizing geoid.

The Radius Units pull-down menu is used to select the units of the small circle radius. The unit selected is displayed near the top of the Define Small Circles dialog box, and all latitude and longitude entries must be entered in these units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the radius entry is a multiple of the radius used to display the current map, as defined by the map geoid property.

The Normalizing Geoid edit box is used modify the radius used to normalize the small circle radius to a radian value, which is necessary for proper calculations and map display. This entry must be in the same units as the small circle radius. If the small circle radius units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Radius Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define Small Circles dialog box.

See Also

scircle1| scircle2

Introduced before R2006a

seedm

(To be removed) GUI to fill data grids with seeded values

Note The seedm function will be removed in a future release.

Activation

```
Command Line
seedm(datagrid,refvec)
```


Description

Encoding is the process of filling in specific values in regions of a data grid up to specified boundaries, which are indicated by entries of 1 in the variable map. Encoding entire regions at one time allows indexed maps to be created quickly.
seedm (datagrid, refvec) displays the surface map in a new figure window and allows for seeds to be specified and the encoded map generated. The encoded map can then be saved to the workspace. map is the data grid and must consist of positive integer index values. refvec is the referencing vector of the surface.

Controls

The Zoom On/Off menu toggles the zoom box on and off. The box can be moved by clicking the new location or by dragging the box to the new location. The box size can be increased or decreased by dragging a corner of the box. Pressing the Return key or double-clicking in the center of the box zooms in to the box limits.

The Colormaps menu provides a variety of colormap options that can be applied to the map. See cl rmenu in this guide for a description of the Colormaps menu options.

The Get button allows mouse selection of points on the map to which seeds are assigned. The number of points to be selected is entered in the \# of Seeds edit box. The value of the seed is entered in the Value edit box. This seed value is assigned to each point selected with the mouse. The Get button is pressed to begin mouse selection. After all the points have been selected, the Fill In button is pressed to perform the encoding operation. The region containing the seed point is filled in with the seed value. The Reset button is used to disregard all points selected with the mouse before the Fill In button is pressed.

Alternatively, specific map values can be globally replaced by using the From/To edit boxes. The value to be replaced is entered in the first edit box, and the new value is entered in the second edit box. Pressing the Change button replaces all instances of the From value to the To value in the map.

Note Values of 1 represent boundaries and should not be changed.

The Save button is used to save the encoded map to the workspace. A dialog box appears in which the map variable name is entered.

See Also

encodem | maptrim
Introduced before R2006a

showm-ui

Show specified mapped objects

Activation

Command Line	Maptool
showm	Tools $>$ Show $>$ Object

Description

showm brings up a Select Object dialog box for selecting mapped objects to show (Visible property set to 'on').

Controls

The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the OK button changes the Visible property of the selected objects to ' on '. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

See Also

showm
Introduced in R2007a

surfdist

Interactive distance, azimuth, and reckoning calculations

Activation

Command Line	Maptool
surfdist	Display $>$ Surface $>$ Distances
surfdist (h)	
surfdist([])	

Description

surfdist activates the Surface Distance dialog box for the current axes only if the axes has a proper map definition. Otherwise, the Surface Distance dialog box is activated, but is not associated with any axes.
surfdist (h) activates the Surface Distance dialog box for the axes specified by the handle h. The axes must be a map axes.
surfdist ([]) activates the Surface Distance dialog box and does not associate it with any axes, regardless of whether the current axes has a valid map definition.

Controls

The Style selection buttons are used to specify whether a great circle or rhumb line is used to calculate the surface distance. When all other entries are provided, selecting a style updates the surface distance calculation.

The Mode selection buttons are used to specify whether one point or two points are to be used in defining the track distance. If one-point mode is selected, a starting point, azimuth, and range are the required inputs, and the ending point is computed. If two-point mode is selected, starting and ending points of the track are required, and the azimuth and distance along this track are then computed.

The Show Track check box is used to indicate whether the track is shown on the associated map display. The track is deleted when the Surface Distance dialog box is closed, or when the Show Track check box is unchecked and the surface distance calculations are recomputed.

The Starting Point controls are used for both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the starting point of the track. These values must be in degrees. Only one starting point can be entered. The Mouse Select button is used to select a starting point by clicking the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Ending Point controls are enabled only for two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the ending point of the track. These values must be in degrees. Only one ending point can be entered. The Mouse Select button is used to select an ending point by clicking the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection. During one-point mode, the Ending Point controls are disabled, but the ending point that results from the surface distance calculation is displayed.

The Direction controls are enabled only for one-point mode. The Range Units button brings up a Define Range Units dialog box which allows for modification of the range units and the normalizing geoid. The Az edit box is used to enter the azimuth, which sets the initial direction of the track from the starting point. Azimuth is measured in degrees clockwise from due north. The Rng edit box is used to specify the reckoning range of the track, in the proper units. The azimuth and reckoning range, along with the starting point, are used to compute the ending point of the track in one-point mode. During two-point mode, the Direction controls are disabled, but the azimuth and range values resulting from the surface distance calculation are displayed.

Pressing the Close button disregards any input data, deletes any surface distance tracks that have been plotted, and closes the Surface Distance dialog box.

Pressing the Compute button accepts the input data and computes the specified distances.

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the reckoning range. The unit selected is displayed near the top of the Surface Distance dialog box, and all latitude and longitude entries must be entered in these units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the range entry is a multiple of the radius of the normalizing geoid. In this case, the normalizing geoid must be the same as the geoid used to display the current map.

The Normalizing Geoid edit box is used modify the radius used to normalize range entries to radian values, which is necessary for proper calculations and map display. This entry must be in the same units as the range units. If the range units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Surface Distance dialog box.
Introduced before R2006a

tagm-ui

GUI to edit tag property of mapped object

Activation

Command Line

tagm
tagm (h)

Description

tagm brings up a Select Object dialog box for selecting mapped objects and changing their Tag property. Upon selecting the objects, the Edit Tag dialog box is activated, in which the new tag is entered.
tagm (h) activates the Edit Tag dialog box for the objects specified by the handle h .

Controls

Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the Ok button activates the Edit Tag dialog box. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

Edit Tag Dialog Box

Enter the new tag character vector in the edit box. Pressing the Apply button changes the Tag property of all selected objected to the new tag character vector. Pressing the Cancel button closes the Edit Tag dialog box without changing the Tag property of the selected objects.

See Also

tagm

Introduced in R2007a

trackui

GUI to display great circles and rhumb lines on map axes

Compatibility

Note trackui is obsolete. Use trackg instead.

Activation

Command Line	Maptool
trackui	Display > Tracks
trackui (h)	

Description

trackui activates the Define Tracks dialog box for adding great circle or rhumb line tracks to the current map axes.
trackui (h) activates the Define Tracks dialog box for adding great circle or rhumb line tracks to the map axes specified by the axes handle h.

Controls

Define Tracks dialog box for two-point mode

The Style selection buttons are used to specify whether a great circle or rhumb line track is displayed.

The Mode selection buttons are used to specify whether one point or two points are to be used in defining the track. If one-point mode is selected, a starting point, azimuth, and range are the required inputs. If two-point mode is selected, starting and ending points are required.

The Starting Point controls are used for both one-point and two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the starting point of the track to be displayed. These values must be in degrees. To display more than one track, a vector of values can be entered, enclosed in brackets in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select a starting point by clicking the displayed map. The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Ending Point controls are used only for two-point mode. The Lat and Lon edit boxes are used to enter the latitude and longitude of the ending point of the track to be displayed. These values must be in degrees. To display more than one track, a vector of values can be entered, enclosed in brackets, in each edit box. Pushing the Lat or Lon button brings up an expanded edit box for easier entry of long vectors. The Mouse Select button is used to select an ending point by clicking the displayed map.

The coordinates of the selected point then appear in the Lat and Lon edit boxes and can be modified. The coordinates appear in degrees, regardless of the angle units defined for the current map projection.

The Direction controls are used only for one-point mode. The Range Units button brings up a Define Range Units dialog box, which allows for modification of the range units and the normalizing geoid. The Az edit box is used to enter the azimuth, which sets the initial direction of the track from the starting point. Azimuth is measured in degrees clockwise from due north. The Rng edit box is used to specify the range of the track, in the proper units. If the range entry is omitted, a complete track is drawn. When inputting azimuth and range data for more than one track, vectors of values, enclosed in brackets, are entered in each edit box. Pushing the Az or Rng button brings up an expanded edit box for that entry, which is useful for entering long vectors.

The Z Plane edit box is used to enter a scalar value that specifies the plane in which to display the tracks.

The Other Properties edit box is used to specify additional properties of the tracks to be projected, such as 'Color', 'b'. Character vector entries must be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the tracks on the current map axes.
Pressing the Cancel button disregards any input data and closes the Define Tracks dialog box.

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for modification of the range units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the track range. The unit selected is displayed near the top of the Define Tracks dialog box, and all latitude and longitude entries must be entered in these units. Users must also be sure to specify the normalizing geoid in the same units. If radians are selected, it is assumed the range entry is a multiple of the radius used to display the current map.

The Normalizing Geoid edit box is used to modify the radius used to normalize range entries to radian values, which is necessary for proper calculations and map display. This entry must be in the same units as the range units. If the range units are in radians, then the normalizing geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the Define Tracks dialog box.

See Also

track1|track2
Introduced before R2006a

uimaptbx

Handle buttondown callbacks for mapped objects

Activation

set the ButtonDownFcn property to 'uimaptbx'

Description

uimaptbx processes mouse events for mapped objects. uimaptbx can be assigned to an object by setting the ButtonDownFcn to 'uimaptbx'. This is the default setting for all objects created with Mapping Toolbox functions.

If uimaptbx is assigned to an object, the following mouse events are recognized: A single-click and hold on an object displays the object tag. If no tag is assigned, the object type is displayed. A doubleclick on an object activates the MATLAB Property Editor. An extend-click on an object activates the Projection Control dialog box, which allows the map projection and display properties to be edited. An alternate-click on an object allows basic properties to be edited using simple mouse clicks and drags.

Definitions of extend-click and alternate-click on various platforms are as follows:
For MS-Windows: Extend-click - Shift+click left button or both buttons
Alternate-click - Ctrl+click left button or right button
For X-Windows: Extend-click - Shift+click left button or middle button
Alternate-click - Ctrl+ click left button or right button

See Also
 axesm|axesmui|property editors

Introduced before R2006a

utmzoneui

Choose or identify UTM zone by clicking map

Activation

```
Command Line
utmzoneui
utmzoneui(InitZone)
```


Description

zone = utmzoneui opens an graphical user interface for choosing a UTM zone on a world display map. You select a zone by clicking an area for its appropriate zone, or entering a valid zone to identify the zone on the map.
zone = utmzoneui(InitZone) initialize the map displayed to the zone character vector specified in InitZone.

To interactively pick a UTM zone, activate the interface, and then click any rectangular zone on the world map to display its UTM zone. The selected zone is highlighted in red and its designation is displayed in the Zone edit field. Alternatively, type a valid UTM designation in the Zone edit field to select and see the location of a zone. Valid zone designations consist of an integer from 1 to 60 followed by a letter from C to X.

Typing only the numeric portion of a zone designation will highlight a column of cells. Clicking Accept returns a that UTM column designation. You cannot return a letter (row designation) in such a manner, however.

Controls

Tips

The syntax of utmzoneui is similar to that of utmzone. If utmzone is called with no arguments, the utmzoneui interface is displayed for you to select a zone. Note that utmzone can return latitudelongitude coordinates of a specified zone, but that utmzoneui only returns zone names.

See Also

utmgeoid | utmzone

Topics

ups
utm

Introduced before R2006a

vmap0ui

UI for selecting data from Vector Map Level 0

Description

vmap0ui(dirname) launches a graphical user interface for interactively selecting and importing data from a Vector Map Level 0 (VMAP0) data base. dirname is a character vector that specifies the folder containing the data base. For more on using vmap0ui, click the Help button after the interface appears.
vmap0ui(devicename) or vmap0ui devicename uses the logical device (volume) name specified in the character vector devicename to locate CD-ROM drive containing the VMAP0 CD-ROM. Under the Windows operating system it could be ' F : ', ' G : ' , or some other letter. Under Macintosh OS X it should be '/Volumes/VMAP'. Under other UNIX systems it could be '/cdrom/'.
vmap0ui can be used on Windows without any arguments. In this case it attempts to automatically detect a drive containing a VMAP0 CD-ROM. If vmap0ui fails to locate the CD-ROM device, then specify it explicitly.

Controls

The vmap0ui screen lets you read data from the Vector Map Level 0 (VMAP0). The VMAP0 is the most detailed world map database available to the public.

You use the list to select the type of data and the map to select the region of interest. When you click the Get button, data is extracted and displayed on the map. Use the Save button to save the data in a MAT-file or to the base workspace for later display. The Close button closes the window.

The Map

The Map controls the geographic extent of the data to be extracted. vmap0ui extracts data for areas currently visible on the map. Use the mouse to zoom in or out to the area of interest. Type help zoom for more on zooming.

The VMAP0 divides the world into tiles of about 5-by-5 degrees. When extracting, data is returned for all visible tiles, including those parts of the tile that are outside the current view. The map shows the VMAP0 tiles in light yellow with light gray edges. The data density is high, so extracting data for a large number of tiles can take much time and memory. A count of the number of visible tiles is above the map.

The List

The List controls the type of data to be extracted. The tree structure of the list reflects the structure of the VMAP0 database. Upon starting vmap0ui, the list shows the major categories of VMAP data, called themes. Themes are subdivided into features, which consist of data of common graphic types (patch, line, point, or text) or cultural types (airport, roads, railroads). Double-click a theme to see the associated features. Features can have properties and values, for example, a railroad tracks property, with values single or multiple. Double-click a feature to see the associated properties and values. Double-clicking an open theme or feature closes it. When a theme is selected, vmap0ui gets all the associated features. When a feature is selected, vmap0ui gets all of that feature's data. When properties and values are selected, vmap0ui gets the data for any of the properties and values that match (that is, the union operation).

The Get Button

The Get button reads the currently selected VMAP0 data and displays it on the map. Use the Cancel button on the progress bar to interrupt the process. For a quicker response, press the standard interrupt key combination for your platform.

The Clear Button

The Clear button removes any previously read data from the map.

The Save Button

The Save button saves the currently displayed VMAP0 data to a MAT-file or the base workspace. If you choose to save to a file, you are prompted for a file name and location. If you choose to save to the base workspace, you are notified of the variable names that will be overwritten.

Data are returned as Mapping Toolbox display structures with variable names based on theme and feature names. You can update vector display structures to geographic data structures. For information about display structure format, see "Version 1 Display Structures" on page 1-294 in the reference page for displaym. The updategeostruct function performs such conversions.

Use load and displaym to redisplay the data from a file on a map axes. To display the data in the base workspace, use displaym.

The Close Button

The Close button closes the vmap0ui panel.

Examples

1 Launch vmap0ui and automatically detect a CD-ROM on Microsoft Windows:
vmap0ui
2 Launch vmap0ui on Macintosh OS X (need to specify volume name): vmap0ui('Volumes/VMAP')

See also

displaym, vmap0data
Introduced before R2006a

zdatam-ui

GUI to adjust z-plane of mapped objects

Activation

Command Line

```
zdatam
```

zdatam(h)
zdatam(str)

Description

zdatam brings up a Select Object dialog box for selecting mapped objects and adjusting their ZData property. Upon selecting the objects, the Specify Zdata dialog box is activated, in which the new ZData variable is entered. Note that not all mapped objects have the ZData property (for example text objects).
zdatam(h) activates the Specify Zdata dialog box for the objects specified by the handle h .
zdatam($s t r$) activates the Specify Zdata dialog box for the objects identified by $s t r$, where $s t r$ is any of the character vectors recognized by handlem.

Controls

Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped objects. Pushing the Select all button highlights all objects in the scroll box for selection. Pushing the OK button activates another Specify Zdata dialog box. Pushing the Cancel button aborts the operation without changing any properties of the selected objects.

Specify ZData Dialog Box

The Zdata Variable edit box is used to specify the name of the ZData variable. Pressing the List button produces a list of all current workspace variables, from which the ZData variable can be selected. A scalar value or a valid MATLAB expression can also be entered. Pressing the Apply button changes the ZData property of all selected objected to the new values. Pressing the Cancel button closes the Specify ZData dialog box without changing the ZData property of the selected objects.

See Also

zdatam

Introduced in R2007a

[^0]: 1 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^1]: 2 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^2]: 3 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^3]: 4 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^4]: 5 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^5]: $7 \quad$ Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^6]: 8 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^7]: 9 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^8]: 10 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^9]: 11 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^10]: 12 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^11]: 13 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^12]: 14 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^13]: 15 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

[^14]: 16 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not imply endorsement by MathWorks.

